From cf56df31145c342df66f3340f5033e3ed95243af Mon Sep 17 00:00:00 2001 From: cephi Date: Sun, 15 Dec 2024 22:56:17 -0500 Subject: [PATCH] Synthetic data --- pytorch/batch.py | 2 +- ..._csr_10_10_10_synthetic_100000_0.0001.json | 1 + ...sr_10_10_10_synthetic_100000_0.0001.output | 65 + ...6_csr_10_10_10_synthetic_100000_1e-05.json | 1 + ...csr_10_10_10_synthetic_100000_1e-05.output | 85 + ...6_csr_10_10_10_synthetic_10000_0.0001.json | 1 + ...csr_10_10_10_synthetic_10000_0.0001.output | 81 + ...16_csr_10_10_10_synthetic_10000_0.001.json | 1 + ..._csr_10_10_10_synthetic_10000_0.001.output | 65 + ..._16_csr_10_10_10_synthetic_10000_0.01.json | 1 + ...6_csr_10_10_10_synthetic_10000_0.01.output | 45 + ..._16_csr_10_10_10_synthetic_10000_0.05.json | 1 + ...6_csr_10_10_10_synthetic_10000_0.05.output | 45 + ...16_csr_10_10_10_synthetic_10000_1e-05.json | 1 + ..._csr_10_10_10_synthetic_10000_1e-05.output | 1521 +++++++++++++ ...6_csr_10_10_10_synthetic_500000_1e-05.json | 1 + ...csr_10_10_10_synthetic_500000_1e-05.output | 68 + ...6_csr_10_10_10_synthetic_50000_0.0001.json | 1 + ...csr_10_10_10_synthetic_50000_0.0001.output | 65 + ...16_csr_10_10_10_synthetic_50000_0.001.json | 1 + ..._csr_10_10_10_synthetic_50000_0.001.output | 45 + ...16_csr_10_10_10_synthetic_50000_1e-05.json | 1 + ..._csr_10_10_10_synthetic_50000_1e-05.output | 62 + ...6_csr_20_10_10_synthetic_30000_0.0001.json | 1 + ...csr_20_10_10_synthetic_30000_0.0001.output | 62 + ...16_csr_20_10_10_synthetic_30000_0.001.json | 1 + ..._csr_20_10_10_synthetic_30000_0.001.output | 45 + ..._16_csr_20_10_10_synthetic_30000_0.01.json | 0 ...6_csr_20_10_10_synthetic_30000_0.01.output | 1 + ...16_csr_20_10_10_synthetic_30000_1e-05.json | 1 + ..._csr_20_10_10_synthetic_30000_1e-05.output | 62 + ..._csr_10_10_10_synthetic_100000_0.0001.json | 1 + ...sr_10_10_10_synthetic_100000_0.0001.output | 85 + ...6_csr_10_10_10_synthetic_100000_1e-05.json | 1 + ...csr_10_10_10_synthetic_100000_1e-05.output | 85 + ...6_csr_10_10_10_synthetic_10000_0.0001.json | 1 + ...csr_10_10_10_synthetic_10000_0.0001.output | 81 + ...16_csr_10_10_10_synthetic_10000_0.001.json | 1 + ..._csr_10_10_10_synthetic_10000_0.001.output | 85 + ..._16_csr_10_10_10_synthetic_10000_0.01.json | 1 + ...6_csr_10_10_10_synthetic_10000_0.01.output | 85 + ..._16_csr_10_10_10_synthetic_10000_0.05.json | 1 + ...6_csr_10_10_10_synthetic_10000_0.05.output | 85 + ...16_csr_10_10_10_synthetic_10000_1e-05.json | 1 + ..._csr_10_10_10_synthetic_10000_1e-05.output | 1900 +++++++++++++++++ ...6_csr_10_10_10_synthetic_500000_1e-05.json | 1 + ...csr_10_10_10_synthetic_500000_1e-05.output | 89 + ...6_csr_10_10_10_synthetic_50000_0.0001.json | 1 + ...csr_10_10_10_synthetic_50000_0.0001.output | 105 + ...16_csr_10_10_10_synthetic_50000_0.001.json | 1 + ..._csr_10_10_10_synthetic_50000_0.001.output | 85 + ...16_csr_10_10_10_synthetic_50000_1e-05.json | 1 + ..._csr_10_10_10_synthetic_50000_1e-05.output | 81 + ...6_csr_20_10_10_synthetic_30000_0.0001.json | 1 + ...csr_20_10_10_synthetic_30000_0.0001.output | 81 + ...16_csr_20_10_10_synthetic_30000_0.001.json | 0 ..._csr_20_10_10_synthetic_30000_0.001.output | 21 + ...16_csr_20_10_10_synthetic_30000_1e-05.json | 1 + ..._csr_20_10_10_synthetic_30000_1e-05.output | 81 + ..._csr_10_10_10_synthetic_100000_0.0001.json | 1 + ...sr_10_10_10_synthetic_100000_0.0001.output | 65 + ...6_csr_10_10_10_synthetic_100000_1e-05.json | 1 + ...csr_10_10_10_synthetic_100000_1e-05.output | 85 + ...6_csr_10_10_10_synthetic_10000_0.0001.json | 1 + ...csr_10_10_10_synthetic_10000_0.0001.output | 81 + ...16_csr_10_10_10_synthetic_10000_0.001.json | 1 + ..._csr_10_10_10_synthetic_10000_0.001.output | 85 + ..._16_csr_10_10_10_synthetic_10000_0.01.json | 1 + ...6_csr_10_10_10_synthetic_10000_0.01.output | 85 + ..._16_csr_10_10_10_synthetic_10000_0.05.json | 1 + ...6_csr_10_10_10_synthetic_10000_0.05.output | 65 + ...16_csr_10_10_10_synthetic_10000_1e-05.json | 1 + ..._csr_10_10_10_synthetic_10000_1e-05.output | 1521 +++++++++++++ ...6_csr_10_10_10_synthetic_500000_1e-05.json | 1 + ...csr_10_10_10_synthetic_500000_1e-05.output | 68 + ...6_csr_10_10_10_synthetic_50000_0.0001.json | 1 + ...csr_10_10_10_synthetic_50000_0.0001.output | 85 + ...16_csr_10_10_10_synthetic_50000_0.001.json | 1 + ..._csr_10_10_10_synthetic_50000_0.001.output | 65 + ...16_csr_10_10_10_synthetic_50000_1e-05.json | 1 + ..._csr_10_10_10_synthetic_50000_1e-05.output | 81 + ...6_csr_20_10_10_synthetic_30000_0.0001.json | 1 + ...csr_20_10_10_synthetic_30000_0.0001.output | 81 + ...16_csr_20_10_10_synthetic_30000_0.001.json | 0 ..._csr_20_10_10_synthetic_30000_0.001.output | 77 + ...16_csr_20_10_10_synthetic_30000_1e-05.json | 1 + ..._csr_20_10_10_synthetic_30000_1e-05.output | 81 + ..._csr_10_10_10_synthetic_100000_0.0001.json | 1 + ...sr_10_10_10_synthetic_100000_0.0001.output | 45 + ...1_csr_10_10_10_synthetic_100000_1e-05.json | 1 + ...csr_10_10_10_synthetic_100000_1e-05.output | 65 + ...1_csr_10_10_10_synthetic_10000_0.0001.json | 1 + ...csr_10_10_10_synthetic_10000_0.0001.output | 62 + ..._1_csr_10_10_10_synthetic_10000_0.001.json | 1 + ..._csr_10_10_10_synthetic_10000_0.001.output | 65 + ...a_1_csr_10_10_10_synthetic_10000_0.01.json | 1 + ...1_csr_10_10_10_synthetic_10000_0.01.output | 45 + ...a_1_csr_10_10_10_synthetic_10000_0.05.json | 1 + ...1_csr_10_10_10_synthetic_10000_0.05.output | 45 + ..._1_csr_10_10_10_synthetic_10000_1e-05.json | 1 + ..._csr_10_10_10_synthetic_10000_1e-05.output | 1521 +++++++++++++ ...1_csr_10_10_10_synthetic_500000_1e-05.json | 1 + ...csr_10_10_10_synthetic_500000_1e-05.output | 47 + ...1_csr_10_10_10_synthetic_50000_0.0001.json | 1 + ...csr_10_10_10_synthetic_50000_0.0001.output | 65 + ..._1_csr_10_10_10_synthetic_50000_0.001.json | 1 + ..._csr_10_10_10_synthetic_50000_0.001.output | 45 + ..._1_csr_10_10_10_synthetic_50000_1e-05.json | 1 + ..._csr_10_10_10_synthetic_50000_1e-05.output | 62 + ..._csr_10_10_10_synthetic_100000_0.0001.json | 1 + ...sr_10_10_10_synthetic_100000_0.0001.output | 65 + ...1_csr_10_10_10_synthetic_100000_1e-05.json | 1 + ...csr_10_10_10_synthetic_100000_1e-05.output | 65 + ...1_csr_10_10_10_synthetic_10000_0.0001.json | 1 + ...csr_10_10_10_synthetic_10000_0.0001.output | 81 + ..._1_csr_10_10_10_synthetic_10000_0.001.json | 1 + ..._csr_10_10_10_synthetic_10000_0.001.output | 85 + ...p_1_csr_10_10_10_synthetic_10000_0.01.json | 1 + ...1_csr_10_10_10_synthetic_10000_0.01.output | 65 + ...p_1_csr_10_10_10_synthetic_10000_0.05.json | 1 + ...1_csr_10_10_10_synthetic_10000_0.05.output | 65 + ..._1_csr_10_10_10_synthetic_10000_1e-05.json | 1 + ..._csr_10_10_10_synthetic_10000_1e-05.output | 1521 +++++++++++++ ...1_csr_10_10_10_synthetic_500000_1e-05.json | 1 + ...csr_10_10_10_synthetic_500000_1e-05.output | 68 + ...1_csr_10_10_10_synthetic_50000_0.0001.json | 1 + ...csr_10_10_10_synthetic_50000_0.0001.output | 65 + ..._1_csr_10_10_10_synthetic_50000_0.001.json | 1 + ..._csr_10_10_10_synthetic_50000_0.001.output | 65 + ..._1_csr_10_10_10_synthetic_50000_1e-05.json | 1 + ..._csr_10_10_10_synthetic_50000_1e-05.output | 81 + ..._csr_10_10_10_synthetic_100000_0.0001.json | 1 + ...sr_10_10_10_synthetic_100000_0.0001.output | 65 + ...1_csr_10_10_10_synthetic_100000_1e-05.json | 1 + ...csr_10_10_10_synthetic_100000_1e-05.output | 65 + ...1_csr_10_10_10_synthetic_10000_0.0001.json | 1 + ...csr_10_10_10_synthetic_10000_0.0001.output | 81 + ..._1_csr_10_10_10_synthetic_10000_0.001.json | 1 + ..._csr_10_10_10_synthetic_10000_0.001.output | 85 + ...6_1_csr_10_10_10_synthetic_10000_0.01.json | 1 + ...1_csr_10_10_10_synthetic_10000_0.01.output | 65 + ...6_1_csr_10_10_10_synthetic_10000_0.05.json | 1 + ...1_csr_10_10_10_synthetic_10000_0.05.output | 45 + ..._1_csr_10_10_10_synthetic_10000_1e-05.json | 1 + ..._csr_10_10_10_synthetic_10000_1e-05.output | 1521 +++++++++++++ ...1_csr_10_10_10_synthetic_500000_1e-05.json | 1 + ...csr_10_10_10_synthetic_500000_1e-05.output | 47 + ...1_csr_10_10_10_synthetic_50000_0.0001.json | 1 + ...csr_10_10_10_synthetic_50000_0.0001.output | 65 + ..._1_csr_10_10_10_synthetic_50000_0.001.json | 1 + ..._csr_10_10_10_synthetic_50000_0.001.output | 65 + ..._1_csr_10_10_10_synthetic_50000_1e-05.json | 1 + ..._csr_10_10_10_synthetic_50000_1e-05.output | 62 + ..._csr_20_10_10_synthetic_100000_0.0001.json | 1 + ...sr_20_10_10_synthetic_100000_0.0001.output | 45 + ..._csr_20_10_10_synthetic_100000_0.0005.json | 1 + ...sr_20_10_10_synthetic_100000_0.0005.output | 45 + ...1_csr_20_10_10_synthetic_100000_0.001.json | 1 + ...csr_20_10_10_synthetic_100000_0.001.output | 45 + ...1_csr_20_10_10_synthetic_100000_0.005.json | 1 + ...csr_20_10_10_synthetic_100000_0.005.output | 45 + ...1_csr_20_10_10_synthetic_100000_1e-05.json | 1 + ...csr_20_10_10_synthetic_100000_1e-05.output | 65 + ...1_csr_20_10_10_synthetic_300000_1e-05.json | 0 ...csr_20_10_10_synthetic_300000_1e-05.output | 1 + ...1_csr_20_10_10_synthetic_30000_0.0001.json | 1 + ...csr_20_10_10_synthetic_30000_0.0001.output | 62 + ...1_csr_20_10_10_synthetic_30000_0.0005.json | 1 + ...csr_20_10_10_synthetic_30000_0.0005.output | 65 + ..._1_csr_20_10_10_synthetic_30000_0.001.json | 1 + ..._csr_20_10_10_synthetic_30000_0.001.output | 65 + ..._1_csr_20_10_10_synthetic_30000_0.005.json | 1 + ..._csr_20_10_10_synthetic_30000_0.005.output | 45 + ...a_1_csr_20_10_10_synthetic_30000_0.01.json | 1 + ...1_csr_20_10_10_synthetic_30000_0.01.output | 45 + ...a_1_csr_20_10_10_synthetic_30000_0.05.json | 1 + ...1_csr_20_10_10_synthetic_30000_0.05.output | 45 + ...ra_1_csr_20_10_10_synthetic_30000_0.1.json | 1 + ..._1_csr_20_10_10_synthetic_30000_0.1.output | 45 + ..._1_csr_20_10_10_synthetic_30000_1e-05.json | 1 + ..._csr_20_10_10_synthetic_30000_1e-05.output | 62 + ...1_csr_20_10_10_synthetic_50000_0.0001.json | 1 + ...csr_20_10_10_synthetic_50000_0.0001.output | 66 + ...1_csr_20_10_10_synthetic_50000_0.0005.json | 1 + ...csr_20_10_10_synthetic_50000_0.0005.output | 45 + ..._1_csr_20_10_10_synthetic_50000_0.001.json | 1 + ..._csr_20_10_10_synthetic_50000_0.001.output | 45 + ..._1_csr_20_10_10_synthetic_50000_0.005.json | 1 + ..._csr_20_10_10_synthetic_50000_0.005.output | 45 + ...a_1_csr_20_10_10_synthetic_50000_0.01.json | 1 + ...1_csr_20_10_10_synthetic_50000_0.01.output | 45 + ..._1_csr_20_10_10_synthetic_50000_1e-05.json | 1 + ..._csr_20_10_10_synthetic_50000_1e-05.output | 62 + ..._csr_20_10_10_synthetic_1000000_1e-05.json | 1 + ...sr_20_10_10_synthetic_1000000_1e-05.output | 47 + ..._csr_20_10_10_synthetic_100000_0.0001.json | 1 + ...sr_20_10_10_synthetic_100000_0.0001.output | 66 + ..._csr_20_10_10_synthetic_100000_0.0005.json | 1 + ...sr_20_10_10_synthetic_100000_0.0005.output | 65 + ...1_csr_20_10_10_synthetic_100000_0.001.json | 1 + ...csr_20_10_10_synthetic_100000_0.001.output | 65 + ...1_csr_20_10_10_synthetic_100000_0.005.json | 1 + ...csr_20_10_10_synthetic_100000_0.005.output | 45 + ...1_csr_20_10_10_synthetic_100000_1e-05.json | 1 + ...csr_20_10_10_synthetic_100000_1e-05.output | 65 + ..._csr_20_10_10_synthetic_3000000_1e-05.json | 1 + ...sr_20_10_10_synthetic_3000000_1e-05.output | 51 + ..._csr_20_10_10_synthetic_300000_0.0001.json | 1 + ...sr_20_10_10_synthetic_300000_0.0001.output | 68 + ..._csr_20_10_10_synthetic_300000_0.0005.json | 1 + ...sr_20_10_10_synthetic_300000_0.0005.output | 47 + ...1_csr_20_10_10_synthetic_300000_0.001.json | 1 + ...csr_20_10_10_synthetic_300000_0.001.output | 47 + ...1_csr_20_10_10_synthetic_300000_1e-05.json | 1 + ...csr_20_10_10_synthetic_300000_1e-05.output | 68 + ...1_csr_20_10_10_synthetic_30000_0.0001.json | 1 + ...csr_20_10_10_synthetic_30000_0.0001.output | 62 + ...1_csr_20_10_10_synthetic_30000_0.0005.json | 1 + ...csr_20_10_10_synthetic_30000_0.0005.output | 65 + ..._1_csr_20_10_10_synthetic_30000_0.001.json | 1 + ..._csr_20_10_10_synthetic_30000_0.001.output | 65 + ..._1_csr_20_10_10_synthetic_30000_0.005.json | 1 + ..._csr_20_10_10_synthetic_30000_0.005.output | 65 + ...p_1_csr_20_10_10_synthetic_30000_0.01.json | 1 + ...1_csr_20_10_10_synthetic_30000_0.01.output | 65 + ...p_1_csr_20_10_10_synthetic_30000_0.05.json | 1 + ...1_csr_20_10_10_synthetic_30000_0.05.output | 45 + ...3p_1_csr_20_10_10_synthetic_30000_0.1.json | 1 + ..._1_csr_20_10_10_synthetic_30000_0.1.output | 45 + ..._1_csr_20_10_10_synthetic_30000_1e-05.json | 1 + ..._csr_20_10_10_synthetic_30000_1e-05.output | 81 + ..._csr_20_10_10_synthetic_500000_0.0001.json | 1 + ...sr_20_10_10_synthetic_500000_0.0001.output | 47 + ...1_csr_20_10_10_synthetic_500000_1e-05.json | 1 + ...csr_20_10_10_synthetic_500000_1e-05.output | 68 + ...1_csr_20_10_10_synthetic_50000_0.0001.json | 1 + ...csr_20_10_10_synthetic_50000_0.0001.output | 65 + ...1_csr_20_10_10_synthetic_50000_0.0005.json | 1 + ...csr_20_10_10_synthetic_50000_0.0005.output | 65 + ..._1_csr_20_10_10_synthetic_50000_0.001.json | 1 + ..._csr_20_10_10_synthetic_50000_0.001.output | 65 + ..._1_csr_20_10_10_synthetic_50000_0.005.json | 1 + ..._csr_20_10_10_synthetic_50000_0.005.output | 65 + ...p_1_csr_20_10_10_synthetic_50000_0.01.json | 1 + ...1_csr_20_10_10_synthetic_50000_0.01.output | 45 + ..._1_csr_20_10_10_synthetic_50000_1e-05.json | 1 + ..._csr_20_10_10_synthetic_50000_1e-05.output | 81 + ..._csr_20_10_10_synthetic_1000000_1e-05.json | 1 + ...sr_20_10_10_synthetic_1000000_1e-05.output | 47 + ..._csr_20_10_10_synthetic_100000_0.0001.json | 1 + ...sr_20_10_10_synthetic_100000_0.0001.output | 65 + ..._csr_20_10_10_synthetic_100000_0.0005.json | 1 + ...sr_20_10_10_synthetic_100000_0.0005.output | 65 + ...1_csr_20_10_10_synthetic_100000_0.001.json | 1 + ...csr_20_10_10_synthetic_100000_0.001.output | 45 + ...1_csr_20_10_10_synthetic_100000_0.005.json | 1 + ...csr_20_10_10_synthetic_100000_0.005.output | 45 + ...1_csr_20_10_10_synthetic_100000_1e-05.json | 1 + ...csr_20_10_10_synthetic_100000_1e-05.output | 65 + ..._csr_20_10_10_synthetic_3000000_1e-05.json | 0 ...sr_20_10_10_synthetic_3000000_1e-05.output | 10 + ..._csr_20_10_10_synthetic_300000_0.0001.json | 1 + ...sr_20_10_10_synthetic_300000_0.0001.output | 47 + ..._csr_20_10_10_synthetic_300000_0.0005.json | 1 + ...sr_20_10_10_synthetic_300000_0.0005.output | 47 + ...1_csr_20_10_10_synthetic_300000_0.001.json | 0 ...csr_20_10_10_synthetic_300000_0.001.output | 10 + ...1_csr_20_10_10_synthetic_300000_1e-05.json | 1 + ...csr_20_10_10_synthetic_300000_1e-05.output | 68 + ...1_csr_20_10_10_synthetic_30000_0.0001.json | 1 + ...csr_20_10_10_synthetic_30000_0.0001.output | 62 + ...1_csr_20_10_10_synthetic_30000_0.0005.json | 1 + ...csr_20_10_10_synthetic_30000_0.0005.output | 65 + ..._1_csr_20_10_10_synthetic_30000_0.001.json | 1 + ..._csr_20_10_10_synthetic_30000_0.001.output | 65 + ..._1_csr_20_10_10_synthetic_30000_0.005.json | 1 + ..._csr_20_10_10_synthetic_30000_0.005.output | 65 + ...6_1_csr_20_10_10_synthetic_30000_0.01.json | 1 + ...1_csr_20_10_10_synthetic_30000_0.01.output | 45 + ...6_1_csr_20_10_10_synthetic_30000_0.05.json | 0 ...1_csr_20_10_10_synthetic_30000_0.05.output | 10 + ...16_1_csr_20_10_10_synthetic_30000_0.1.json | 0 ..._1_csr_20_10_10_synthetic_30000_0.1.output | 10 + ..._1_csr_20_10_10_synthetic_30000_1e-05.json | 1 + ..._csr_20_10_10_synthetic_30000_1e-05.output | 81 + ..._csr_20_10_10_synthetic_500000_0.0001.json | 1 + ...sr_20_10_10_synthetic_500000_0.0001.output | 47 + ...1_csr_20_10_10_synthetic_500000_1e-05.json | 1 + ...csr_20_10_10_synthetic_500000_1e-05.output | 68 + ...1_csr_20_10_10_synthetic_50000_0.0001.json | 1 + ...csr_20_10_10_synthetic_50000_0.0001.output | 65 + ...1_csr_20_10_10_synthetic_50000_0.0005.json | 1 + ...csr_20_10_10_synthetic_50000_0.0005.output | 65 + ..._1_csr_20_10_10_synthetic_50000_0.001.json | 1 + ..._csr_20_10_10_synthetic_50000_0.001.output | 65 + ..._1_csr_20_10_10_synthetic_50000_0.005.json | 1 + ..._csr_20_10_10_synthetic_50000_0.005.output | 45 + ...6_1_csr_20_10_10_synthetic_50000_0.01.json | 1 + ...1_csr_20_10_10_synthetic_50000_0.01.output | 45 + ..._1_csr_20_10_10_synthetic_50000_1e-05.json | 1 + ..._csr_20_10_10_synthetic_50000_1e-05.output | 62 + ..._csr_10_10_10_synthetic_100000_0.0001.json | 1 + ...sr_10_10_10_synthetic_100000_0.0001.output | 45 + ...x_csr_10_10_10_synthetic_100000_1e-05.json | 1 + ...csr_10_10_10_synthetic_100000_1e-05.output | 85 + ...x_csr_10_10_10_synthetic_10000_0.0001.json | 1 + ...csr_10_10_10_synthetic_10000_0.0001.output | 62 + ...ax_csr_10_10_10_synthetic_10000_0.001.json | 1 + ..._csr_10_10_10_synthetic_10000_0.001.output | 65 + ...max_csr_10_10_10_synthetic_10000_0.01.json | 1 + ...x_csr_10_10_10_synthetic_10000_0.01.output | 45 + ...max_csr_10_10_10_synthetic_10000_0.05.json | 1 + ...x_csr_10_10_10_synthetic_10000_0.05.output | 45 + ...ax_csr_10_10_10_synthetic_10000_1e-05.json | 1 + ..._csr_10_10_10_synthetic_10000_1e-05.output | 1521 +++++++++++++ ...x_csr_10_10_10_synthetic_500000_1e-05.json | 1 + ...csr_10_10_10_synthetic_500000_1e-05.output | 47 + ...x_csr_10_10_10_synthetic_50000_0.0001.json | 1 + ...csr_10_10_10_synthetic_50000_0.0001.output | 65 + ...ax_csr_10_10_10_synthetic_50000_0.001.json | 1 + ..._csr_10_10_10_synthetic_50000_0.001.output | 45 + ...ax_csr_10_10_10_synthetic_50000_1e-05.json | 1 + ..._csr_10_10_10_synthetic_50000_1e-05.output | 81 + ..._csr_10_10_10_synthetic_100000_0.0001.json | 1 + ...sr_10_10_10_synthetic_100000_0.0001.output | 85 + ...x_csr_10_10_10_synthetic_100000_1e-05.json | 1 + ...csr_10_10_10_synthetic_100000_1e-05.output | 85 + ...x_csr_10_10_10_synthetic_10000_0.0001.json | 1 + ...csr_10_10_10_synthetic_10000_0.0001.output | 81 + ...ax_csr_10_10_10_synthetic_10000_0.001.json | 1 + ..._csr_10_10_10_synthetic_10000_0.001.output | 85 + ...max_csr_10_10_10_synthetic_10000_0.01.json | 1 + ...x_csr_10_10_10_synthetic_10000_0.01.output | 85 + ...max_csr_10_10_10_synthetic_10000_0.05.json | 1 + ...x_csr_10_10_10_synthetic_10000_0.05.output | 85 + ...ax_csr_10_10_10_synthetic_10000_1e-05.json | 1 + ..._csr_10_10_10_synthetic_10000_1e-05.output | 1414 ++++++++++++ ...x_csr_10_10_10_synthetic_500000_1e-05.json | 1 + ...csr_10_10_10_synthetic_500000_1e-05.output | 89 + ...x_csr_10_10_10_synthetic_50000_0.0001.json | 1 + ...csr_10_10_10_synthetic_50000_0.0001.output | 85 + ...ax_csr_10_10_10_synthetic_50000_0.001.json | 1 + ..._csr_10_10_10_synthetic_50000_0.001.output | 85 + ...ax_csr_10_10_10_synthetic_50000_1e-05.json | 1 + ..._csr_10_10_10_synthetic_50000_1e-05.output | 101 + ..._csr_10_10_10_synthetic_100000_0.0001.json | 1 + ...sr_10_10_10_synthetic_100000_0.0001.output | 65 + ...x_csr_10_10_10_synthetic_100000_1e-05.json | 1 + ...csr_10_10_10_synthetic_100000_1e-05.output | 85 + ...x_csr_10_10_10_synthetic_10000_0.0001.json | 1 + ...csr_10_10_10_synthetic_10000_0.0001.output | 81 + ...ax_csr_10_10_10_synthetic_10000_0.001.json | 1 + ..._csr_10_10_10_synthetic_10000_0.001.output | 85 + ...max_csr_10_10_10_synthetic_10000_0.01.json | 1 + ...x_csr_10_10_10_synthetic_10000_0.01.output | 85 + ...max_csr_10_10_10_synthetic_10000_0.05.json | 1 + ...x_csr_10_10_10_synthetic_10000_0.05.output | 65 + ...ax_csr_10_10_10_synthetic_10000_1e-05.json | 1 + ..._csr_10_10_10_synthetic_10000_1e-05.output | 1414 ++++++++++++ ...x_csr_10_10_10_synthetic_500000_1e-05.json | 1 + ...csr_10_10_10_synthetic_500000_1e-05.output | 68 + ...x_csr_10_10_10_synthetic_50000_0.0001.json | 1 + ...csr_10_10_10_synthetic_50000_0.0001.output | 85 + ...ax_csr_10_10_10_synthetic_50000_0.001.json | 1 + ..._csr_10_10_10_synthetic_50000_0.001.output | 65 + ...ax_csr_10_10_10_synthetic_50000_1e-05.json | 1 + ..._csr_10_10_10_synthetic_50000_1e-05.output | 81 + pytorch/synthetic_densities | 6 + pytorch/synthetic_sizes | 5 + 369 files changed, 24997 insertions(+), 1 deletion(-) create mode 100644 pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_100000_0.0001.json create mode 100644 pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_100000_0.0001.output create mode 100644 pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_100000_1e-05.json create mode 100644 pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_100000_1e-05.output create mode 100644 pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.0001.json create mode 100644 pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.0001.output create mode 100644 pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.001.json create mode 100644 pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.001.output create mode 100644 pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.01.json create mode 100644 pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.01.output create mode 100644 pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.05.json create mode 100644 pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.05.output create mode 100644 pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_1e-05.json create mode 100644 pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_1e-05.output create mode 100644 pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_500000_1e-05.json create mode 100644 pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_500000_1e-05.output create mode 100644 pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_50000_0.0001.json create mode 100644 pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_50000_0.0001.output create mode 100644 pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_50000_0.001.json create mode 100644 pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_50000_0.001.output create mode 100644 pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_50000_1e-05.json create mode 100644 pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_50000_1e-05.output create mode 100644 pytorch/output_synthetic_16core/altra_16_csr_20_10_10_synthetic_30000_0.0001.json create mode 100644 pytorch/output_synthetic_16core/altra_16_csr_20_10_10_synthetic_30000_0.0001.output create mode 100644 pytorch/output_synthetic_16core/altra_16_csr_20_10_10_synthetic_30000_0.001.json create mode 100644 pytorch/output_synthetic_16core/altra_16_csr_20_10_10_synthetic_30000_0.001.output create mode 100644 pytorch/output_synthetic_16core/altra_16_csr_20_10_10_synthetic_30000_0.01.json create mode 100644 pytorch/output_synthetic_16core/altra_16_csr_20_10_10_synthetic_30000_0.01.output create mode 100644 pytorch/output_synthetic_16core/altra_16_csr_20_10_10_synthetic_30000_1e-05.json create mode 100644 pytorch/output_synthetic_16core/altra_16_csr_20_10_10_synthetic_30000_1e-05.output create mode 100644 pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_100000_0.0001.json create mode 100644 pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_100000_0.0001.output create mode 100644 pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_100000_1e-05.json create mode 100644 pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_100000_1e-05.output create mode 100644 pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.0001.json create mode 100644 pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.0001.output create mode 100644 pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.001.json create mode 100644 pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.001.output create mode 100644 pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.01.json create mode 100644 pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.01.output create mode 100644 pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.05.json create mode 100644 pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.05.output create mode 100644 pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_1e-05.json create mode 100644 pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_1e-05.output create mode 100644 pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_500000_1e-05.json create mode 100644 pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_500000_1e-05.output create mode 100644 pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_50000_0.0001.json create mode 100644 pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_50000_0.0001.output create mode 100644 pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_50000_0.001.json create mode 100644 pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_50000_0.001.output create mode 100644 pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_50000_1e-05.json create mode 100644 pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_50000_1e-05.output create mode 100644 pytorch/output_synthetic_16core/epyc_7313p_16_csr_20_10_10_synthetic_30000_0.0001.json create mode 100644 pytorch/output_synthetic_16core/epyc_7313p_16_csr_20_10_10_synthetic_30000_0.0001.output create mode 100644 pytorch/output_synthetic_16core/epyc_7313p_16_csr_20_10_10_synthetic_30000_0.001.json create mode 100644 pytorch/output_synthetic_16core/epyc_7313p_16_csr_20_10_10_synthetic_30000_0.001.output create mode 100644 pytorch/output_synthetic_16core/epyc_7313p_16_csr_20_10_10_synthetic_30000_1e-05.json create mode 100644 pytorch/output_synthetic_16core/epyc_7313p_16_csr_20_10_10_synthetic_30000_1e-05.output create mode 100644 pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_100000_0.0001.json create mode 100644 pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_100000_0.0001.output create mode 100644 pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_100000_1e-05.json create mode 100644 pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_100000_1e-05.output create mode 100644 pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.0001.json create mode 100644 pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.0001.output create mode 100644 pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.001.json create mode 100644 pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.001.output create mode 100644 pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.01.json create mode 100644 pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.01.output create mode 100644 pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.05.json create mode 100644 pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.05.output create mode 100644 pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_1e-05.json create mode 100644 pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_1e-05.output create mode 100644 pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_500000_1e-05.json create mode 100644 pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_500000_1e-05.output create mode 100644 pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_50000_0.0001.json create mode 100644 pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_50000_0.0001.output create mode 100644 pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_50000_0.001.json create mode 100644 pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_50000_0.001.output create mode 100644 pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_50000_1e-05.json create mode 100644 pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_50000_1e-05.output create mode 100644 pytorch/output_synthetic_16core/xeon_4216_16_csr_20_10_10_synthetic_30000_0.0001.json create mode 100644 pytorch/output_synthetic_16core/xeon_4216_16_csr_20_10_10_synthetic_30000_0.0001.output create mode 100644 pytorch/output_synthetic_16core/xeon_4216_16_csr_20_10_10_synthetic_30000_0.001.json create mode 100644 pytorch/output_synthetic_16core/xeon_4216_16_csr_20_10_10_synthetic_30000_0.001.output create mode 100644 pytorch/output_synthetic_16core/xeon_4216_16_csr_20_10_10_synthetic_30000_1e-05.json create mode 100644 pytorch/output_synthetic_16core/xeon_4216_16_csr_20_10_10_synthetic_30000_1e-05.output create mode 100644 pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_100000_0.0001.json create mode 100644 pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_100000_0.0001.output create mode 100644 pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_100000_1e-05.json create mode 100644 pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_100000_1e-05.output create mode 100644 pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.0001.json create mode 100644 pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.0001.output create mode 100644 pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.001.json create mode 100644 pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.001.output create mode 100644 pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.01.json create mode 100644 pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.01.output create mode 100644 pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.05.json create mode 100644 pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.05.output create mode 100644 pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_1e-05.json create mode 100644 pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_1e-05.output create mode 100644 pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_500000_1e-05.json create mode 100644 pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_500000_1e-05.output create mode 100644 pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_50000_0.0001.json create mode 100644 pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_50000_0.0001.output create mode 100644 pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_50000_0.001.json create mode 100644 pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_50000_0.001.output create mode 100644 pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_50000_1e-05.json create mode 100644 pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_50000_1e-05.output create mode 100644 pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_100000_0.0001.json create mode 100644 pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_100000_0.0001.output create mode 100644 pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_100000_1e-05.json create mode 100644 pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_100000_1e-05.output create mode 100644 pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.0001.json create mode 100644 pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.0001.output create mode 100644 pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.001.json create mode 100644 pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.001.output create mode 100644 pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.01.json create mode 100644 pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.01.output create mode 100644 pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.05.json create mode 100644 pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.05.output create mode 100644 pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_1e-05.json create mode 100644 pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_1e-05.output create mode 100644 pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_500000_1e-05.json create mode 100644 pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_500000_1e-05.output create mode 100644 pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_50000_0.0001.json create mode 100644 pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_50000_0.0001.output create mode 100644 pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_50000_0.001.json create mode 100644 pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_50000_0.001.output create mode 100644 pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_50000_1e-05.json create mode 100644 pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_50000_1e-05.output create mode 100644 pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_100000_0.0001.json create mode 100644 pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_100000_0.0001.output create mode 100644 pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_100000_1e-05.json create mode 100644 pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_100000_1e-05.output create mode 100644 pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.0001.json create mode 100644 pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.0001.output create mode 100644 pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.001.json create mode 100644 pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.001.output create mode 100644 pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.01.json create mode 100644 pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.01.output create mode 100644 pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.05.json create mode 100644 pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.05.output create mode 100644 pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_1e-05.json create mode 100644 pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_1e-05.output create mode 100644 pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_500000_1e-05.json create mode 100644 pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_500000_1e-05.output create mode 100644 pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_50000_0.0001.json create mode 100644 pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_50000_0.0001.output create mode 100644 pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_50000_0.001.json create mode 100644 pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_50000_0.001.output create mode 100644 pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_50000_1e-05.json create mode 100644 pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_50000_1e-05.output create mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_0.0001.json create mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_0.0001.output create mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_0.0005.json create mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_0.0005.output create mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_0.001.json create mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_0.001.output create mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_0.005.json create mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_0.005.output create mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_1e-05.json create mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_1e-05.output create mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_300000_1e-05.json create mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_300000_1e-05.output create mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.0001.json create mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.0001.output create mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.0005.json create mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.0005.output create mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.001.json create mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.001.output create mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.005.json create mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.005.output create mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.01.json create mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.01.output create mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.05.json create mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.05.output create mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.1.json create mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.1.output create mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_1e-05.json create mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_1e-05.output create mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.0001.json create mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.0001.output create mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.0005.json create mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.0005.output create mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.001.json create mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.001.output create mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.005.json create mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.005.output create mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.01.json create mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.01.output create mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_1e-05.json create mode 100644 pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_1e-05.output create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_1000000_1e-05.json create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_1000000_1e-05.output create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_0.0001.json create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_0.0001.output create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_0.0005.json create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_0.0005.output create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_0.001.json create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_0.001.output create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_0.005.json create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_0.005.output create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_1e-05.json create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_1e-05.output create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_3000000_1e-05.json create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_3000000_1e-05.output create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_300000_0.0001.json create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_300000_0.0001.output create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_300000_0.0005.json create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_300000_0.0005.output create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_300000_0.001.json create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_300000_0.001.output create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_300000_1e-05.json create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_300000_1e-05.output create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.0001.json create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.0001.output create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.0005.json create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.0005.output create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.001.json create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.001.output create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.005.json create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.005.output create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.01.json create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.01.output create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.05.json create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.05.output create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.1.json create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.1.output create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_1e-05.json create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_1e-05.output create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_500000_0.0001.json create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_500000_0.0001.output create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_500000_1e-05.json create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_500000_1e-05.output create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.0001.json create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.0001.output create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.0005.json create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.0005.output create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.001.json create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.001.output create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.005.json create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.005.output create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.01.json create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.01.output create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_1e-05.json create mode 100644 pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_1e-05.output create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_1000000_1e-05.json create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_1000000_1e-05.output create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_0.0001.json create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_0.0001.output create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_0.0005.json create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_0.0005.output create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_0.001.json create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_0.001.output create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_0.005.json create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_0.005.output create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_1e-05.json create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_1e-05.output create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_3000000_1e-05.json create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_3000000_1e-05.output create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_300000_0.0001.json create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_300000_0.0001.output create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_300000_0.0005.json create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_300000_0.0005.output create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_300000_0.001.json create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_300000_0.001.output create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_300000_1e-05.json create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_300000_1e-05.output create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.0001.json create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.0001.output create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.0005.json create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.0005.output create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.001.json create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.001.output create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.005.json create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.005.output create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.01.json create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.01.output create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.05.json create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.05.output create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.1.json create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.1.output create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_1e-05.json create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_1e-05.output create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_500000_0.0001.json create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_500000_0.0001.output create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_500000_1e-05.json create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_500000_1e-05.output create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.0001.json create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.0001.output create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.0005.json create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.0005.output create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.001.json create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.001.output create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.005.json create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.005.output create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.01.json create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.01.output create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_1e-05.json create mode 100644 pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_1e-05.output create mode 100644 pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_100000_0.0001.json create mode 100644 pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_100000_0.0001.output create mode 100644 pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_100000_1e-05.json create mode 100644 pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_100000_1e-05.output create mode 100644 pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.0001.json create mode 100644 pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.0001.output create mode 100644 pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.001.json create mode 100644 pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.001.output create mode 100644 pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.01.json create mode 100644 pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.01.output create mode 100644 pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.05.json create mode 100644 pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.05.output create mode 100644 pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_1e-05.json create mode 100644 pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_1e-05.output create mode 100644 pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_500000_1e-05.json create mode 100644 pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_500000_1e-05.output create mode 100644 pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_50000_0.0001.json create mode 100644 pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_50000_0.0001.output create mode 100644 pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_50000_0.001.json create mode 100644 pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_50000_0.001.output create mode 100644 pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_50000_1e-05.json create mode 100644 pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_50000_1e-05.output create mode 100644 pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_100000_0.0001.json create mode 100644 pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_100000_0.0001.output create mode 100644 pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_100000_1e-05.json create mode 100644 pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_100000_1e-05.output create mode 100644 pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.0001.json create mode 100644 pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.0001.output create mode 100644 pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.001.json create mode 100644 pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.001.output create mode 100644 pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.01.json create mode 100644 pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.01.output create mode 100644 pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.05.json create mode 100644 pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.05.output create mode 100644 pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_1e-05.json create mode 100644 pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_1e-05.output create mode 100644 pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_500000_1e-05.json create mode 100644 pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_500000_1e-05.output create mode 100644 pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_50000_0.0001.json create mode 100644 pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_50000_0.0001.output create mode 100644 pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_50000_0.001.json create mode 100644 pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_50000_0.001.output create mode 100644 pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_50000_1e-05.json create mode 100644 pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_50000_1e-05.output create mode 100644 pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_100000_0.0001.json create mode 100644 pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_100000_0.0001.output create mode 100644 pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_100000_1e-05.json create mode 100644 pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_100000_1e-05.output create mode 100644 pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.0001.json create mode 100644 pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.0001.output create mode 100644 pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.001.json create mode 100644 pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.001.output create mode 100644 pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.01.json create mode 100644 pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.01.output create mode 100644 pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.05.json create mode 100644 pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.05.output create mode 100644 pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_1e-05.json create mode 100644 pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_1e-05.output create mode 100644 pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_500000_1e-05.json create mode 100644 pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_500000_1e-05.output create mode 100644 pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_50000_0.0001.json create mode 100644 pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_50000_0.0001.output create mode 100644 pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_50000_0.001.json create mode 100644 pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_50000_0.001.output create mode 100644 pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_50000_1e-05.json create mode 100644 pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_50000_1e-05.output create mode 100644 pytorch/synthetic_densities create mode 100644 pytorch/synthetic_sizes diff --git a/pytorch/batch.py b/pytorch/batch.py index 60d9a63..f391f3c 100644 --- a/pytorch/batch.py +++ b/pytorch/batch.py @@ -117,7 +117,7 @@ elif args.matrix_type == MatrixType.SYNTHETIC: parameter_list = enumerate([(size, density) for size in args.synthetic_size for density in args.synthetic_density - if size ** 2 * density < 100000000]) + if size ** 2 * density < 10000000]) #for i, matrix in enumerate(glob.glob(f'{args.matrix_dir.rstrip("/")}/*.mtx')): for i, parameter in parameter_list: diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_100000_0.0001.json b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_100000_0.0001.json new file mode 100644 index 0000000..8bab18f --- /dev/null +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_100000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 1770, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.45119595527649, "TIME_S_1KI": 5.904630483207056, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 518.2880183124543, "W": 35.449367856062224, "J_1KI": 292.81808944206455, "W_1KI": 20.027891444102952, "W_D": 16.922367856062227, "J_D": 247.4137349045278, "W_D_1KI": 9.560659805684875, "J_D_1KI": 5.401502715076201} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_100000_0.0001.output b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_100000_0.0001.output new file mode 100644 index 0000000..9bd0023 --- /dev/null +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_100000_0.0001.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 100000 -sd 0.0001 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 5.932083368301392} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 6, 10, ..., 999982, + 999993, 1000000]), + col_indices=tensor([37897, 46445, 60989, ..., 76977, 92294, 96477]), + values=tensor([0.9469, 0.5853, 0.3833, ..., 0.6631, 0.6410, 0.8148]), + size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.0925, 0.0591, 0.1895, ..., 0.1208, 0.2736, 0.9441]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 1000000 +Density: 0.0001 +Time: 5.932083368301392 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1770 -ss 100000 -sd 0.0001 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.45119595527649} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 6, 15, ..., 999984, + 999991, 1000000]), + col_indices=tensor([ 6148, 23043, 28153, ..., 62723, 86562, 96964]), + values=tensor([0.4836, 0.5090, 0.9509, ..., 0.7452, 0.4499, 0.9407]), + size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.2481, 0.7173, 0.6398, ..., 0.9063, 0.5779, 0.5048]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 1000000 +Density: 0.0001 +Time: 10.45119595527649 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 6, 15, ..., 999984, + 999991, 1000000]), + col_indices=tensor([ 6148, 23043, 28153, ..., 62723, 86562, 96964]), + values=tensor([0.4836, 0.5090, 0.9509, ..., 0.7452, 0.4499, 0.9407]), + size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.2481, 0.7173, 0.6398, ..., 0.9063, 0.5779, 0.5048]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 1000000 +Density: 0.0001 +Time: 10.45119595527649 seconds + +[20.2, 20.56, 20.52, 20.56, 20.56, 20.6, 20.4, 20.64, 20.8, 20.88] +[20.88, 21.44, 21.2, 22.44, 23.6, 27.28, 34.76, 40.76, 46.84, 51.32, 53.0, 52.92, 53.08, 52.84] +14.62051510810852 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1770, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.45119595527649, 'TIME_S_1KI': 5.904630483207056, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 518.2880183124543, 'W': 35.449367856062224} +[20.2, 20.56, 20.52, 20.56, 20.56, 20.6, 20.4, 20.64, 20.8, 20.88, 20.56, 20.52, 20.64, 20.64, 20.52, 20.52, 20.6, 20.68, 20.6, 20.72] +370.53999999999996 +18.526999999999997 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1770, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.45119595527649, 'TIME_S_1KI': 5.904630483207056, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 518.2880183124543, 'W': 35.449367856062224, 'J_1KI': 292.81808944206455, 'W_1KI': 20.027891444102952, 'W_D': 16.922367856062227, 'J_D': 247.4137349045278, 'W_D_1KI': 9.560659805684875, 'J_D_1KI': 5.401502715076201} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_100000_1e-05.json b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_100000_1e-05.json new file mode 100644 index 0000000..f3aace9 --- /dev/null +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_100000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 11801, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.278456687927246, "TIME_S_1KI": 0.8709818394989616, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 437.5742044067384, "W": 32.19958635623455, "J_1KI": 37.0794173719802, "W_1KI": 2.728547271945983, "W_D": 13.391586356234548, "J_D": 181.9841000671388, "W_D_1KI": 1.1347840315426274, "J_D_1KI": 0.09615998911470446} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_100000_1e-05.output b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_100000_1e-05.output new file mode 100644 index 0000000..d71dde9 --- /dev/null +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_100000_1e-05.output @@ -0,0 +1,85 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 100000 -sd 1e-05 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 1.063995361328125} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 1, ..., 99997, 99999, + 100000]), + col_indices=tensor([67343, 31299, 81155, ..., 33224, 88457, 24576]), + values=tensor([0.5842, 0.8218, 0.6188, ..., 0.3932, 0.6826, 0.0146]), + size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) +tensor([0.9733, 0.2979, 0.3395, ..., 0.2786, 0.7488, 0.6423]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 100000 +Density: 1e-05 +Time: 1.063995361328125 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 9868 -ss 100000 -sd 1e-05 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 8.779469966888428} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 4, 4, ..., 99997, 99999, + 100000]), + col_indices=tensor([14435, 22527, 43950, ..., 8583, 8872, 18967]), + values=tensor([0.6873, 0.0224, 0.4938, ..., 0.6581, 0.7037, 0.6316]), + size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) +tensor([0.2290, 0.1645, 0.1242, ..., 0.3445, 0.2954, 0.7059]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 100000 +Density: 1e-05 +Time: 8.779469966888428 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 11801 -ss 100000 -sd 1e-05 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.278456687927246} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 1, ..., 100000, 100000, + 100000]), + col_indices=tensor([88946, 66534, 50450, ..., 63020, 21924, 98776]), + values=tensor([0.0165, 0.3102, 0.5959, ..., 0.2885, 0.2555, 0.6064]), + size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) +tensor([0.1483, 0.9193, 0.9702, ..., 0.6151, 0.3023, 0.2526]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 100000 +Density: 1e-05 +Time: 10.278456687927246 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 1, ..., 100000, 100000, + 100000]), + col_indices=tensor([88946, 66534, 50450, ..., 63020, 21924, 98776]), + values=tensor([0.0165, 0.3102, 0.5959, ..., 0.2885, 0.2555, 0.6064]), + size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) +tensor([0.1483, 0.9193, 0.9702, ..., 0.6151, 0.3023, 0.2526]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 100000 +Density: 1e-05 +Time: 10.278456687927246 seconds + +[20.52, 20.48, 20.76, 20.96, 20.96, 21.16, 21.32, 21.28, 21.28, 21.2] +[21.36, 21.64, 21.64, 23.32, 23.96, 29.24, 34.28, 39.64, 43.16, 45.96, 45.88, 46.84, 47.12] +13.589435577392578 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 11801, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.278456687927246, 'TIME_S_1KI': 0.8709818394989616, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 437.5742044067384, 'W': 32.19958635623455} +[20.52, 20.48, 20.76, 20.96, 20.96, 21.16, 21.32, 21.28, 21.28, 21.2, 21.04, 20.92, 20.64, 20.52, 20.52, 20.4, 20.72, 20.96, 21.24, 21.32] +376.16 +18.808 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 11801, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.278456687927246, 'TIME_S_1KI': 0.8709818394989616, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 437.5742044067384, 'W': 32.19958635623455, 'J_1KI': 37.0794173719802, 'W_1KI': 2.728547271945983, 'W_D': 13.391586356234548, 'J_D': 181.9841000671388, 'W_D_1KI': 1.1347840315426274, 'J_D_1KI': 0.09615998911470446} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.0001.json b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.0001.json new file mode 100644 index 0000000..ddd2b32 --- /dev/null +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 33464, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.751937627792358, "TIME_S_1KI": 0.321298638172136, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 327.9264199829101, "W": 23.099563679174377, "J_1KI": 9.799379033675296, "W_1KI": 0.6902810088206544, "W_D": 4.345563679174376, "J_D": 61.690565237998875, "W_D_1KI": 0.12985786753449605, "J_D_1KI": 0.0038805243705025113} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.0001.output b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.0001.output new file mode 100644 index 0000000..c550e8c --- /dev/null +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.0001.output @@ -0,0 +1,81 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 10000 -sd 0.0001 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.358994722366333} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 1, ..., 9999, 9999, 10000]), + col_indices=tensor([4769, 2640, 4731, ..., 7727, 9096, 344]), + values=tensor([0.5549, 0.8764, 0.0270, ..., 0.0575, 0.5131, 0.9423]), + size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) +tensor([0.2724, 0.3491, 0.1026, ..., 0.4580, 0.8295, 0.5142]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000 +Density: 0.0001 +Time: 0.358994722366333 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 29248 -ss 10000 -sd 0.0001 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 9.177036046981812} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 1, ..., 9997, 9998, 10000]), + col_indices=tensor([8143, 7461, 5162, ..., 7740, 5053, 9684]), + values=tensor([0.7267, 0.3238, 0.0105, ..., 0.5150, 0.5465, 0.0983]), + size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) +tensor([0.8883, 0.6326, 0.2674, ..., 0.1564, 0.2088, 0.8392]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000 +Density: 0.0001 +Time: 9.177036046981812 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 33464 -ss 10000 -sd 0.0001 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.751937627792358} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 4, 5, ..., 9994, 9997, 10000]), + col_indices=tensor([1608, 4931, 8613, ..., 2107, 3637, 7054]), + values=tensor([0.4097, 0.1049, 0.8257, ..., 0.2263, 0.1754, 0.1229]), + size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) +tensor([0.9092, 0.1064, 0.7261, ..., 0.1695, 0.8231, 0.3389]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000 +Density: 0.0001 +Time: 10.751937627792358 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 4, 5, ..., 9994, 9997, 10000]), + col_indices=tensor([1608, 4931, 8613, ..., 2107, 3637, 7054]), + values=tensor([0.4097, 0.1049, 0.8257, ..., 0.2263, 0.1754, 0.1229]), + size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) +tensor([0.9092, 0.1064, 0.7261, ..., 0.1695, 0.8231, 0.3389]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000 +Density: 0.0001 +Time: 10.751937627792358 seconds + +[20.16, 20.16, 20.16, 20.32, 20.36, 20.88, 21.6, 22.28, 22.28, 22.28] +[21.52, 20.68, 23.48, 24.56, 27.0, 27.0, 27.6, 28.4, 25.44, 25.08, 23.88, 23.84, 23.72, 23.68] +14.196217060089111 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 33464, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.751937627792358, 'TIME_S_1KI': 0.321298638172136, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 327.9264199829101, 'W': 23.099563679174377} +[20.16, 20.16, 20.16, 20.32, 20.36, 20.88, 21.6, 22.28, 22.28, 22.28, 20.28, 20.68, 20.64, 20.84, 20.84, 20.88, 20.6, 20.6, 20.48, 20.24] +375.08000000000004 +18.754 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 33464, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.751937627792358, 'TIME_S_1KI': 0.321298638172136, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 327.9264199829101, 'W': 23.099563679174377, 'J_1KI': 9.799379033675296, 'W_1KI': 0.6902810088206544, 'W_D': 4.345563679174376, 'J_D': 61.690565237998875, 'W_D_1KI': 0.12985786753449605, 'J_D_1KI': 0.0038805243705025113} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.001.json b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.001.json new file mode 100644 index 0000000..91eebfb --- /dev/null +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.001.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 4693, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.608984231948853, "TIME_S_1KI": 2.260597535041307, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 333.61959093093867, "W": 23.443356307834602, "J_1KI": 71.08876857680346, "W_1KI": 4.995388090312082, "W_D": 4.929356307834599, "J_D": 70.14907820272437, "W_D_1KI": 1.0503635857307905, "J_D_1KI": 0.223814955408223} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.001.output b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.001.output new file mode 100644 index 0000000..bec4359 --- /dev/null +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.001.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 10000 -sd 0.001 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 2.2371175289154053} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 6, 13, ..., 99981, 99991, + 100000]), + col_indices=tensor([ 11, 880, 2486, ..., 7621, 8410, 9572]), + values=tensor([0.7919, 0.7111, 0.9252, ..., 0.0051, 0.9566, 0.6694]), + size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) +tensor([0.8227, 0.5043, 0.0669, ..., 0.5765, 0.9663, 0.4234]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 100000 +Density: 0.001 +Time: 2.2371175289154053 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 4693 -ss 10000 -sd 0.001 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.608984231948853} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 14, 27, ..., 99982, 99994, + 100000]), + col_indices=tensor([ 135, 2132, 2413, ..., 7244, 7277, 8789]), + values=tensor([0.8089, 0.0016, 0.7063, ..., 0.2204, 0.7876, 0.4440]), + size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) +tensor([0.2483, 0.7850, 0.0043, ..., 0.4009, 0.1492, 0.4510]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 100000 +Density: 0.001 +Time: 10.608984231948853 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 14, 27, ..., 99982, 99994, + 100000]), + col_indices=tensor([ 135, 2132, 2413, ..., 7244, 7277, 8789]), + values=tensor([0.8089, 0.0016, 0.7063, ..., 0.2204, 0.7876, 0.4440]), + size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) +tensor([0.2483, 0.7850, 0.0043, ..., 0.4009, 0.1492, 0.4510]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 100000 +Density: 0.001 +Time: 10.608984231948853 seconds + +[20.32, 20.32, 20.36, 20.6, 20.68, 20.44, 20.64, 20.8, 20.88, 20.84] +[20.84, 20.52, 23.32, 24.96, 27.48, 27.48, 28.36, 28.96, 25.92, 25.2, 24.36, 24.56, 24.48, 24.08] +14.23088002204895 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 4693, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.608984231948853, 'TIME_S_1KI': 2.260597535041307, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 333.61959093093867, 'W': 23.443356307834602} +[20.32, 20.32, 20.36, 20.6, 20.68, 20.44, 20.64, 20.8, 20.88, 20.84, 20.68, 20.8, 20.52, 20.64, 20.64, 20.68, 20.4, 20.48, 20.36, 20.24] +370.28000000000003 +18.514000000000003 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 4693, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.608984231948853, 'TIME_S_1KI': 2.260597535041307, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 333.61959093093867, 'W': 23.443356307834602, 'J_1KI': 71.08876857680346, 'W_1KI': 4.995388090312082, 'W_D': 4.929356307834599, 'J_D': 70.14907820272437, 'W_D_1KI': 1.0503635857307905, 'J_D_1KI': 0.223814955408223} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.01.json b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.01.json new file mode 100644 index 0000000..dd61d28 --- /dev/null +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.01.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 21.223905086517334, "TIME_S_1KI": 21.223905086517334, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 606.5871645927429, "W": 23.902485146880146, "J_1KI": 606.5871645927429, "W_1KI": 23.902485146880146, "W_D": 5.469485146880146, "J_D": 138.80228213262555, "W_D_1KI": 5.469485146880146, "J_D_1KI": 5.469485146880146} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.01.output b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.01.output new file mode 100644 index 0000000..dbf2821 --- /dev/null +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.01.output @@ -0,0 +1,45 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 10000 -sd 0.01 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 21.223905086517334} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 100, 193, ..., 999807, + 999898, 1000000]), + col_indices=tensor([ 45, 67, 78, ..., 9873, 9905, 9941]), + values=tensor([0.2793, 0.5501, 0.9236, ..., 0.0106, 0.8963, 0.7259]), + size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.2312, 0.2281, 0.2895, ..., 0.4123, 0.5947, 0.5960]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000000 +Density: 0.01 +Time: 21.223905086517334 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 100, 193, ..., 999807, + 999898, 1000000]), + col_indices=tensor([ 45, 67, 78, ..., 9873, 9905, 9941]), + values=tensor([0.2793, 0.5501, 0.9236, ..., 0.0106, 0.8963, 0.7259]), + size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.2312, 0.2281, 0.2895, ..., 0.4123, 0.5947, 0.5960]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000000 +Density: 0.01 +Time: 21.223905086517334 seconds + +[20.16, 20.16, 20.16, 20.04, 20.28, 20.72, 20.6, 20.64, 20.6, 20.44] +[20.44, 20.64, 23.68, 24.76, 27.96, 27.96, 29.28, 30.08, 27.32, 27.04, 23.96, 23.92, 23.72, 23.6, 23.72, 23.92, 24.08, 24.24, 24.24, 24.36, 24.24, 24.12, 24.4, 23.96, 24.12] +25.377577304840088 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 21.223905086517334, 'TIME_S_1KI': 21.223905086517334, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 606.5871645927429, 'W': 23.902485146880146} +[20.16, 20.16, 20.16, 20.04, 20.28, 20.72, 20.6, 20.64, 20.6, 20.44, 20.2, 20.32, 20.32, 20.52, 20.52, 20.8, 20.8, 20.72, 20.68, 20.76] +368.65999999999997 +18.433 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 21.223905086517334, 'TIME_S_1KI': 21.223905086517334, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 606.5871645927429, 'W': 23.902485146880146, 'J_1KI': 606.5871645927429, 'W_1KI': 23.902485146880146, 'W_D': 5.469485146880146, 'J_D': 138.80228213262555, 'W_D_1KI': 5.469485146880146, 'J_D_1KI': 5.469485146880146} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.05.json b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.05.json new file mode 100644 index 0000000..af8ffc0 --- /dev/null +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.05.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 112.2527105808258, "TIME_S_1KI": 112.2527105808258, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2847.1031341934195, "W": 24.02975891792854, "J_1KI": 2847.1031341934195, "W_1KI": 24.02975891792854, "W_D": 5.456758917928539, "J_D": 646.5298079283226, "W_D_1KI": 5.456758917928539, "J_D_1KI": 5.456758917928539} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.05.output b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.05.output new file mode 100644 index 0000000..d49413b --- /dev/null +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_0.05.output @@ -0,0 +1,45 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 10000 -sd 0.05 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 112.2527105808258} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 493, 999, ..., 4999078, + 4999538, 5000000]), + col_indices=tensor([ 9, 32, 79, ..., 9948, 9954, 9975]), + values=tensor([0.7230, 0.3394, 0.4856, ..., 0.5860, 0.3031, 0.1676]), + size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.5227, 0.7065, 0.1059, ..., 0.0574, 0.9985, 0.1783]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000000 +Density: 0.05 +Time: 112.2527105808258 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 493, 999, ..., 4999078, + 4999538, 5000000]), + col_indices=tensor([ 9, 32, 79, ..., 9948, 9954, 9975]), + values=tensor([0.7230, 0.3394, 0.4856, ..., 0.5860, 0.3031, 0.1676]), + size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.5227, 0.7065, 0.1059, ..., 0.0574, 0.9985, 0.1783]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000000 +Density: 0.05 +Time: 112.2527105808258 seconds + +[20.36, 20.76, 20.76, 20.64, 20.76, 20.64, 20.44, 20.2, 20.64, 20.52] +[20.84, 20.72, 21.32, 21.96, 24.12, 27.04, 27.04, 28.68, 28.56, 28.24, 25.72, 24.44, 24.36, 24.24, 24.24, 24.56, 24.28, 24.4, 24.4, 24.44, 24.56, 24.2, 24.24, 24.04, 24.28, 24.12, 24.12, 24.28, 24.32, 24.24, 24.56, 24.56, 24.6, 24.44, 24.6, 24.6, 24.44, 24.44, 24.44, 24.4, 24.36, 24.36, 24.28, 24.28, 24.32, 24.24, 24.28, 24.08, 24.04, 24.04, 24.2, 24.24, 24.32, 24.6, 24.68, 24.36, 24.36, 24.28, 24.24, 24.08, 24.24, 24.32, 24.36, 24.6, 24.6, 24.64, 24.68, 24.6, 24.6, 24.4, 24.28, 24.4, 24.4, 24.2, 24.32, 24.36, 24.4, 24.44, 24.56, 24.44, 24.44, 24.4, 24.28, 24.4, 24.56, 24.56, 24.64, 24.76, 24.68, 24.44, 24.44, 24.36, 24.32, 24.32, 24.16, 24.24, 24.2, 24.12, 23.8, 23.88, 23.88, 23.76, 24.08, 24.24, 24.4, 24.4, 24.6, 24.52, 24.4, 24.56, 24.48, 24.4, 24.68, 24.72, 24.68, 24.8, 24.8] +118.48238444328308 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 112.2527105808258, 'TIME_S_1KI': 112.2527105808258, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2847.1031341934195, 'W': 24.02975891792854} +[20.36, 20.76, 20.76, 20.64, 20.76, 20.64, 20.44, 20.2, 20.64, 20.52, 20.52, 20.56, 20.56, 20.56, 20.8, 20.88, 20.8, 20.8, 20.68, 20.56] +371.46000000000004 +18.573 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 112.2527105808258, 'TIME_S_1KI': 112.2527105808258, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2847.1031341934195, 'W': 24.02975891792854, 'J_1KI': 2847.1031341934195, 'W_1KI': 24.02975891792854, 'W_D': 5.456758917928539, 'J_D': 646.5298079283226, 'W_D_1KI': 5.456758917928539, 'J_D_1KI': 5.456758917928539} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_1e-05.json b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_1e-05.json new file mode 100644 index 0000000..b09b822 --- /dev/null +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 141369, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.808244943618774, "TIME_S_1KI": 0.0764541373541496, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 314.87872554779057, "W": 22.096174468711904, "J_1KI": 2.2273534194044706, "W_1KI": 0.15630141310125914, "W_D": 3.7551744687119033, "J_D": 53.51263643360139, "W_D_1KI": 0.02656292729461129, "J_D_1KI": 0.00018789782268114857} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_1e-05.output b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_1e-05.output new file mode 100644 index 0000000..ea3d934 --- /dev/null +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_10000_1e-05.output @@ -0,0 +1,1521 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 10000 -sd 1e-05 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.09768295288085938} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 1, ..., 1000, 1000, 1000]), + col_indices=tensor([9792, 3011, 8315, 6730, 9843, 4902, 9114, 233, 327, + 1077, 5110, 4341, 9618, 1148, 4296, 9363, 2120, 5266, + 1510, 7695, 5476, 9179, 3305, 25, 5170, 9334, 9520, + 18, 2410, 8122, 6722, 5458, 1189, 9940, 135, 139, + 2746, 4302, 817, 8119, 9183, 5557, 7078, 7532, 5204, + 9640, 2857, 2903, 8250, 2446, 4645, 4964, 6111, 2787, + 4305, 8541, 2087, 6834, 9039, 5610, 449, 6263, 9809, + 5478, 8383, 5854, 2328, 3230, 867, 3772, 2544, 739, + 5716, 4182, 7270, 9111, 2105, 2273, 7055, 6308, 4091, + 9837, 2327, 5713, 7469, 8593, 3004, 1329, 1982, 6739, + 2484, 7531, 861, 603, 3312, 9947, 2174, 8338, 554, + 5146, 610, 333, 2059, 2323, 8214, 7253, 520, 2440, + 6747, 6391, 6453, 8692, 6979, 9688, 8514, 2146, 5042, + 9573, 4252, 1574, 2537, 436, 6639, 6623, 2518, 4727, + 2296, 1644, 9804, 6277, 7729, 2049, 6367, 7493, 7667, + 9462, 9071, 774, 5867, 4293, 6321, 3828, 2008, 1939, + 2236, 1977, 7507, 5348, 3725, 219, 3205, 807, 73, + 2687, 7978, 8256, 1078, 4313, 7128, 6500, 6252, 2583, + 9745, 3139, 421, 464, 4788, 8521, 5551, 7352, 6138, + 2196, 1230, 8030, 6107, 9447, 1650, 9498, 3057, 208, + 6423, 791, 3773, 2437, 1425, 9123, 9688, 777, 6169, + 2978, 5480, 8386, 8675, 3317, 9250, 4808, 2626, 3836, + 6049, 7965, 4797, 144, 2153, 1800, 6876, 5900, 3203, + 8704, 2454, 5563, 7457, 5321, 988, 3129, 3035, 8288, + 7117, 7904, 1711, 8667, 7253, 9565, 9574, 6169, 1173, + 8859, 7821, 3367, 2539, 5401, 6150, 5503, 32, 4874, + 457, 7102, 6703, 9779, 6403, 6731, 8810, 7361, 3381, + 6421, 5956, 129, 1166, 5720, 7654, 159, 4181, 7055, + 1967, 8488, 1584, 1842, 8508, 2958, 8715, 3789, 8840, + 4377, 9219, 4638, 2619, 5440, 3657, 9925, 2551, 995, + 1723, 5389, 1404, 4574, 2739, 6959, 3058, 9080, 2031, + 8984, 5389, 1349, 5813, 7136, 480, 5283, 5584, 5761, + 5503, 9598, 4112, 9769, 1912, 284, 8557, 4577, 3598, + 7400, 6471, 9266, 7423, 181, 547, 1708, 2217, 3427, + 1505, 745, 7566, 5833, 867, 3999, 5022, 8690, 4305, + 5228, 1769, 3228, 1613, 4985, 3045, 8897, 3696, 4082, + 9166, 5733, 4104, 7168, 1873, 5017, 8961, 5996, 4553, + 7627, 2820, 2130, 305, 5545, 6465, 4590, 1371, 174, + 7873, 1810, 2887, 9649, 8279, 8772, 5892, 9213, 6586, + 1163, 3158, 5082, 8524, 1930, 9343, 8281, 3120, 8449, + 600, 5485, 4322, 6884, 7048, 7308, 2967, 3418, 7490, + 3344, 4257, 4605, 6323, 9225, 3126, 8896, 9886, 5796, + 3701, 2719, 576, 7498, 987, 2280, 6310, 8362, 3442, + 2965, 9718, 459, 4443, 2991, 8486, 7861, 8908, 1116, + 4841, 4004, 9555, 9381, 6796, 6359, 5653, 2399, 2081, + 2575, 4124, 3953, 9593, 7589, 862, 2954, 8958, 589, + 507, 9240, 654, 425, 2276, 1060, 8633, 3105, 5668, + 6724, 6621, 4197, 1395, 849, 8873, 2795, 3202, 9876, + 2380, 7308, 6598, 5463, 1709, 7572, 7856, 4938, 1903, + 8232, 6864, 7897, 7976, 1736, 7624, 8013, 9751, 7149, + 4196, 5898, 7155, 685, 364, 8901, 9453, 6582, 7252, + 7583, 7652, 2420, 8972, 6482, 7201, 5439, 1701, 1847, + 5836, 2240, 6342, 2219, 5265, 1208, 2534, 1558, 4291, + 3680, 5027, 1311, 2040, 6947, 4719, 1246, 951, 8331, + 7564, 6347, 5994, 7908, 4381, 1981, 7084, 5076, 820, + 532, 8025, 3913, 2032, 5169, 2410, 7896, 7049, 9219, + 5711, 1033, 8565, 3846, 6349, 4287, 7540, 4920, 4963, + 3446, 6484, 6451, 1467, 8264, 6937, 5901, 8223, 9585, + 4490, 5507, 7203, 2685, 991, 7965, 4245, 5602, 2069, + 5695, 2048, 6521, 7103, 8227, 6516, 2695, 9235, 7774, + 6047, 559, 8942, 9551, 4095, 8698, 3792, 3519, 2359, + 3892, 9316, 2312, 6774, 1199, 7746, 2618, 977, 7672, + 3233, 6589, 7440, 3930, 4748, 9563, 8782, 8551, 9592, + 3814, 9947, 1075, 4155, 6052, 5717, 9066, 9233, 1157, + 5807, 8233, 6011, 624, 2462, 9807, 736, 215, 8248, + 9819, 3680, 7728, 55, 2164, 9665, 3183, 1848, 729, + 6782, 7590, 6337, 4298, 4510, 6666, 3669, 6293, 5654, + 2318, 725, 1694, 1362, 7302, 8752, 3054, 3332, 7028, + 5237, 3699, 6029, 8375, 8434, 9757, 6148, 8202, 1722, + 6598, 3199, 9169, 6033, 5701, 9829, 7451, 8411, 3143, + 7522, 6223, 5724, 5941, 7257, 8868, 9886, 39, 4763, + 4659, 3979, 3194, 2323, 3625, 973, 915, 3241, 9855, + 2124, 7532, 3520, 7552, 9940, 406, 8413, 4149, 4550, + 5658, 5167, 6265, 537, 2240, 8481, 9237, 1792, 6383, + 1808, 2570, 4050, 4847, 1118, 2408, 5357, 9217, 3974, + 151, 7094, 5350, 8483, 1495, 6165, 1764, 1885, 1824, + 6881, 6330, 3399, 5651, 8902, 1965, 2801, 3106, 8217, + 3870, 4262, 1103, 4426, 2679, 4736, 4197, 5863, 289, + 2343, 8638, 4210, 9921, 8468, 5134, 5166, 6284, 9542, + 8873, 1416, 7584, 7692, 8709, 709, 3013, 7987, 654, + 6815, 6359, 2594, 3057, 8551, 8513, 6209, 8165, 1943, + 963, 353, 5470, 3721, 7993, 5445, 1706, 5676, 9475, + 4653, 2450, 6561, 9432, 4724, 1712, 1495, 3430, 2264, + 7169, 800, 1631, 6908, 7499, 4132, 8029, 3361, 6028, + 2851, 1274, 3508, 5503, 2181, 2084, 6075, 4239, 1043, + 7983, 1206, 4290, 6454, 5369, 6371, 5879, 218, 1023, + 7138, 3789, 3972, 4950, 5889, 5964, 6188, 9228, 1935, + 9415, 5432, 1587, 9707, 4273, 561, 1430, 6403, 4846, + 9851, 2683, 4111, 9233, 7351, 1007, 4230, 7573, 79, + 9864, 1783, 1443, 2854, 7700, 8361, 1243, 6687, 3788, + 5328, 5475, 2587, 9459, 9592, 7613, 7467, 2956, 434, + 8430, 3986, 2166, 7136, 447, 7701, 6188, 4461, 8389, + 7187, 5543, 3801, 5683, 8218, 399, 2950, 979, 9096, + 5137, 6796, 9561, 3087, 1350, 7324, 4053, 5054, 8338, + 664, 9029, 6677, 3083, 7254, 4695, 9209, 2044, 9443, + 2889, 9822, 1702, 2873, 8870, 9229, 3331, 7287, 3290, + 2283, 5005, 1781, 1272, 960, 3156, 3859, 7344, 885, + 8637, 9530, 7482, 4602, 7643, 6173, 2498, 8864, 1333, + 9807, 9951, 3844, 2909, 3820, 3605, 6719, 9851, 2231, + 3241, 3906, 506, 4076, 8442, 5136, 436, 1695, 5825, + 6880, 1789, 1695, 1173, 2308, 73, 9178, 5877, 2611, + 6726, 7452, 4378, 4740, 7284, 2326, 9891, 6929, 5663, + 4730, 4836, 4703, 5291, 4376, 2488, 3592, 8230, 70, + 6636, 9221, 7469, 3462, 7397, 7142, 1004, 439, 7250, + 2311, 2367, 560, 7078, 1776, 6717, 492, 8126, 2677, + 9360, 3347, 6411, 3110, 2090, 8563, 3489, 7076, 1570, + 6098, 5436, 2275, 5402, 616, 7329, 5797, 2841, 2717, + 1248, 8901, 4345, 8350, 7903, 7439, 2528, 7106, 7914, + 3688, 8886, 2805, 8909, 8270, 4288, 3971, 5797, 9215, + 3264, 3458, 1607, 3306, 9621, 7331, 2583, 6867, 4955, + 6286, 1957, 3296, 1735, 5395, 8367, 7828, 9915, 2192, + 5818]), + values=tensor([5.0866e-01, 8.2556e-01, 1.6629e-01, 1.0052e-01, + 4.5905e-01, 5.4702e-02, 5.8559e-01, 2.6495e-01, + 8.0871e-01, 1.0787e-01, 1.5014e-01, 5.3292e-01, + 9.7189e-02, 7.5456e-01, 8.9551e-01, 2.4969e-01, + 5.3115e-01, 6.2585e-01, 6.0336e-01, 9.9929e-02, + 1.4075e-01, 9.6756e-01, 3.0094e-01, 9.2389e-01, + 4.9818e-01, 7.2940e-01, 5.6649e-01, 4.3555e-01, + 1.5700e-01, 9.8102e-01, 1.3525e-01, 9.3621e-01, + 2.1936e-01, 5.9625e-01, 9.4311e-01, 4.8593e-01, + 1.0183e-01, 6.6274e-01, 6.7805e-01, 9.7841e-01, + 2.7797e-01, 5.0483e-01, 2.7985e-01, 3.9216e-01, + 6.0938e-01, 6.7832e-01, 9.2775e-04, 8.1516e-01, + 4.1971e-01, 5.8177e-01, 7.2538e-01, 6.6860e-01, + 8.0944e-01, 5.1846e-01, 5.4205e-01, 2.5958e-01, + 7.8766e-01, 8.5924e-01, 1.0336e-01, 2.2093e-01, + 8.3145e-01, 1.1984e-01, 3.5641e-01, 5.8313e-01, + 1.6736e-01, 9.6756e-01, 7.2470e-01, 6.9853e-01, + 9.6314e-01, 8.2263e-01, 2.6544e-01, 1.5832e-01, + 7.5669e-02, 5.3056e-01, 3.7433e-01, 3.1341e-01, + 5.3789e-01, 7.3083e-01, 2.4930e-01, 4.1952e-01, + 7.2981e-01, 4.9267e-01, 1.9040e-01, 1.1666e-02, + 3.2889e-01, 4.2285e-01, 5.5285e-01, 4.7618e-01, + 6.0516e-01, 6.2215e-01, 8.1222e-01, 7.2851e-01, + 8.3011e-01, 4.2525e-01, 3.1984e-01, 8.5776e-01, + 2.3910e-02, 4.5217e-02, 5.6497e-01, 9.4829e-01, + 5.4979e-01, 8.8479e-01, 4.1936e-01, 6.3043e-01, + 3.8277e-01, 7.5099e-01, 6.4383e-01, 2.7975e-01, + 7.0467e-01, 2.4416e-01, 9.5810e-01, 4.8403e-01, + 3.5209e-01, 8.9373e-01, 4.6621e-01, 2.1906e-01, + 1.6670e-01, 4.2479e-01, 5.8573e-01, 6.3110e-01, + 7.1519e-01, 2.1330e-01, 4.6183e-01, 1.4175e-02, + 5.4109e-01, 2.2325e-01, 5.0472e-01, 9.3804e-01, + 1.3084e-01, 6.2419e-01, 1.2081e-01, 9.9270e-01, + 7.4783e-01, 7.0881e-01, 5.7487e-01, 1.8171e-01, + 2.1590e-01, 7.0519e-01, 4.4461e-01, 7.1904e-01, + 1.4054e-01, 6.8365e-01, 9.7100e-01, 6.3651e-01, + 6.3905e-01, 4.9785e-01, 5.4655e-01, 5.9405e-01, + 6.1534e-01, 1.0836e-01, 4.0330e-01, 3.1521e-01, + 5.5032e-01, 5.8275e-01, 9.9974e-01, 5.7100e-01, + 6.5850e-01, 5.7537e-01, 1.7662e-01, 4.7591e-01, + 4.8121e-01, 4.0495e-01, 5.7726e-01, 1.6867e-02, + 3.7622e-01, 3.5971e-01, 4.6898e-01, 5.6387e-01, + 1.6728e-01, 9.0116e-01, 6.3449e-01, 9.9809e-01, + 1.4214e-01, 3.0622e-01, 4.9574e-01, 4.9483e-01, + 9.6863e-01, 9.4638e-01, 9.3132e-01, 2.0506e-01, + 4.4838e-01, 3.2563e-01, 7.2974e-01, 7.5064e-01, + 4.0405e-01, 4.3081e-01, 7.9137e-01, 2.1346e-01, + 1.5722e-01, 9.6333e-01, 9.5630e-01, 7.0044e-03, + 7.0105e-01, 6.4138e-01, 9.2876e-01, 4.0120e-01, + 8.2360e-01, 2.8059e-01, 5.3775e-01, 7.3213e-01, + 7.5753e-01, 3.3988e-01, 3.2106e-01, 8.4210e-01, + 1.2925e-01, 2.9320e-01, 5.0106e-01, 2.1539e-01, + 3.7391e-01, 2.4839e-01, 6.3459e-01, 4.5552e-01, + 5.3847e-01, 1.6613e-01, 2.5389e-01, 8.6420e-01, + 4.1393e-01, 4.6119e-01, 9.2260e-01, 3.4941e-01, + 4.2435e-01, 1.3605e-01, 3.5468e-01, 3.8841e-03, + 2.4690e-01, 9.9538e-01, 4.4802e-01, 3.7318e-01, + 6.2415e-01, 9.4994e-01, 8.0739e-01, 2.1057e-01, + 7.5328e-01, 2.6464e-02, 1.7875e-01, 9.4515e-01, + 5.9210e-01, 2.6184e-01, 5.6867e-01, 9.6811e-01, + 5.9111e-01, 9.1116e-01, 5.0053e-01, 2.9886e-01, + 5.8382e-01, 5.5693e-01, 1.0540e-01, 3.5342e-01, + 6.3057e-01, 8.5177e-01, 3.3499e-01, 3.6474e-01, + 4.7717e-01, 8.4171e-01, 6.7627e-01, 6.7387e-01, + 9.3284e-01, 2.7271e-01, 3.1644e-01, 4.1518e-01, + 4.3058e-01, 5.2266e-01, 3.6904e-01, 5.2653e-01, + 9.1266e-01, 1.8733e-01, 9.8092e-01, 4.6536e-01, + 3.3882e-01, 6.6167e-01, 3.5347e-01, 4.5748e-01, + 8.5251e-01, 8.7864e-01, 3.7154e-01, 3.8627e-01, + 9.8316e-01, 3.6417e-01, 6.7510e-01, 4.5295e-01, + 6.6285e-01, 6.2878e-01, 3.2265e-01, 2.0555e-01, + 2.6692e-01, 3.6414e-01, 5.9439e-01, 9.5623e-01, + 3.8654e-01, 6.3329e-01, 4.7536e-01, 5.2089e-01, + 1.0990e-03, 2.9105e-01, 3.8837e-02, 1.2199e-01, + 7.2737e-01, 4.1824e-01, 5.2942e-01, 1.9681e-01, + 9.6403e-02, 2.1935e-01, 1.7686e-01, 9.5863e-01, + 2.1975e-01, 4.7730e-01, 7.1014e-01, 2.4752e-01, + 7.5828e-01, 6.0542e-01, 2.5632e-01, 3.2592e-01, + 8.6553e-01, 5.6348e-01, 5.2667e-01, 6.6528e-01, + 2.7986e-01, 2.1659e-01, 3.3569e-01, 4.4905e-01, + 3.3948e-02, 5.1005e-01, 1.9515e-01, 8.3204e-01, + 8.4792e-01, 9.6641e-01, 4.9869e-01, 8.5809e-01, + 3.2585e-01, 8.5929e-01, 6.1749e-02, 3.0374e-01, + 9.0610e-01, 8.5386e-01, 4.5555e-01, 3.4826e-01, + 6.9432e-01, 2.4559e-01, 1.2175e-01, 9.5219e-01, + 8.1544e-01, 5.6712e-01, 7.4973e-01, 9.4891e-01, + 4.1636e-01, 9.8106e-01, 3.3842e-01, 6.9545e-01, + 8.2856e-01, 8.0420e-01, 8.1129e-01, 1.3312e-01, + 2.3955e-01, 9.0993e-01, 9.6615e-01, 3.8657e-03, + 5.5676e-01, 4.6897e-01, 2.6394e-01, 2.5401e-01, + 6.9164e-01, 7.0496e-01, 6.3311e-02, 7.3229e-01, + 7.5283e-01, 1.1448e-01, 5.6638e-01, 7.0333e-01, + 9.2664e-01, 2.3339e-01, 7.4089e-01, 7.0304e-01, + 7.9628e-01, 2.9566e-01, 4.8534e-01, 6.0286e-01, + 7.3051e-01, 8.6310e-01, 1.4003e-01, 7.8446e-01, + 9.0977e-02, 8.8491e-01, 8.0104e-02, 3.9759e-01, + 5.2958e-01, 1.2637e-02, 2.0035e-01, 4.7715e-01, + 2.9745e-01, 1.1113e-01, 1.7877e-01, 2.7845e-01, + 1.9844e-01, 1.9297e-01, 9.0864e-01, 1.8566e-02, + 5.7114e-01, 9.5857e-01, 9.2082e-01, 6.4832e-01, + 2.7882e-01, 3.3440e-01, 7.0682e-01, 6.5257e-01, + 4.4426e-01, 1.1208e-01, 5.0365e-01, 5.4993e-01, + 9.2901e-01, 2.2730e-01, 9.4328e-01, 9.6707e-01, + 3.6776e-01, 5.5635e-01, 3.9752e-01, 4.5092e-01, + 4.4951e-01, 7.0557e-01, 7.7244e-01, 3.3629e-01, + 8.4136e-01, 1.6438e-01, 6.6244e-01, 3.8877e-01, + 1.9699e-01, 4.9056e-01, 5.6961e-01, 8.0210e-01, + 6.8118e-01, 4.7812e-01, 6.7591e-01, 5.9523e-01, + 5.3971e-01, 7.8503e-01, 4.9642e-01, 5.4618e-01, + 6.6752e-01, 6.0840e-01, 8.8708e-01, 2.8901e-01, + 1.0109e-01, 9.8435e-01, 5.6153e-01, 5.9826e-01, + 7.9258e-01, 9.8853e-01, 7.5993e-01, 3.3438e-02, + 8.1340e-01, 8.0492e-01, 6.2120e-01, 5.8831e-01, + 5.2354e-01, 2.0958e-01, 4.5671e-01, 8.8901e-01, + 4.7891e-02, 8.4671e-01, 8.9188e-01, 2.7374e-01, + 5.5977e-01, 6.4122e-02, 2.5037e-01, 3.0519e-01, + 9.7643e-01, 9.9227e-01, 8.8279e-01, 9.3445e-01, + 2.4768e-01, 2.1275e-01, 4.8713e-01, 2.3223e-01, + 1.9760e-01, 2.1350e-01, 8.1167e-01, 1.7134e-01, + 9.6495e-01, 7.3397e-01, 3.8349e-01, 8.8222e-01, + 3.1653e-01, 8.1744e-01, 3.1919e-01, 5.2279e-01, + 3.9093e-02, 9.2027e-01, 2.6092e-01, 8.4092e-01, + 9.4656e-01, 2.7672e-01, 6.5653e-01, 5.1761e-01, + 1.8061e-01, 6.8235e-01, 8.6988e-01, 5.1257e-03, + 3.3197e-01, 7.5581e-01, 7.6118e-01, 8.9258e-01, + 8.9933e-01, 8.6342e-01, 3.4926e-01, 6.7870e-02, + 1.9108e-01, 7.3369e-01, 2.7109e-01, 9.9664e-01, + 5.3488e-01, 4.9100e-01, 9.8954e-01, 8.5699e-01, + 4.8594e-01, 9.0011e-01, 5.0181e-01, 1.7384e-01, + 6.6739e-02, 7.1934e-02, 9.9463e-03, 5.3093e-01, + 6.1666e-01, 4.3311e-01, 4.1180e-01, 4.6798e-01, + 6.4198e-01, 7.4021e-01, 3.2068e-01, 4.7200e-02, + 2.5494e-01, 1.7352e-01, 4.1876e-02, 2.4760e-01, + 5.0745e-01, 1.6498e-01, 1.6233e-01, 6.1837e-01, + 1.9993e-01, 6.5932e-02, 7.6349e-01, 9.0034e-01, + 5.5449e-01, 6.9665e-01, 1.2088e-01, 7.1465e-01, + 9.8968e-02, 9.0389e-01, 5.5304e-01, 7.9631e-01, + 9.7618e-01, 4.2147e-01, 8.1274e-01, 4.3836e-01, + 1.7630e-01, 3.5780e-01, 1.6038e-03, 7.1155e-01, + 9.1076e-01, 9.0818e-01, 1.7369e-01, 2.5602e-01, + 3.8217e-01, 6.9373e-01, 1.2674e-02, 5.3936e-01, + 2.1893e-01, 6.8960e-01, 9.1582e-01, 8.0365e-01, + 3.6548e-01, 3.9584e-01, 6.4044e-01, 8.6570e-01, + 8.8024e-01, 6.1342e-01, 5.1198e-01, 6.7976e-01, + 6.8666e-01, 7.5782e-01, 1.5631e-01, 8.9918e-01, + 9.7927e-02, 3.2673e-01, 5.7885e-01, 5.5851e-01, + 6.2305e-01, 3.5624e-01, 1.5707e-01, 6.1570e-01, + 3.5974e-01, 2.1360e-01, 7.1446e-01, 6.1801e-02, + 2.7151e-01, 5.4858e-01, 6.0721e-01, 1.0735e-01, + 8.6685e-01, 9.0807e-01, 9.6912e-01, 3.1961e-01, + 1.2832e-01, 6.0896e-01, 4.9966e-02, 4.9049e-01, + 6.7840e-01, 4.1456e-01, 6.2130e-01, 6.0786e-01, + 1.4460e-01, 5.3117e-01, 9.7206e-01, 3.8304e-01, + 6.8412e-01, 7.8141e-01, 8.2518e-01, 3.7590e-02, + 9.6749e-01, 4.7059e-01, 1.8641e-01, 8.9854e-01, + 2.1269e-01, 1.6522e-01, 8.8367e-01, 9.1815e-01, + 8.7968e-01, 5.9668e-01, 7.2915e-01, 9.8099e-01, + 8.8173e-01, 4.4891e-01, 2.6317e-01, 2.1249e-01, + 7.7492e-01, 4.8431e-01, 9.7658e-01, 4.3848e-01, + 3.1833e-02, 7.4527e-02, 8.9392e-01, 7.7900e-01, + 8.0593e-01, 9.5855e-01, 3.5727e-01, 2.6940e-01, + 3.5688e-01, 2.6632e-02, 4.0129e-01, 9.6528e-01, + 7.9687e-01, 1.9298e-01, 8.2016e-01, 9.1224e-01, + 2.4712e-01, 3.6894e-01, 9.6659e-01, 5.3756e-01, + 5.4794e-01, 3.1679e-01, 9.6897e-01, 4.4518e-01, + 6.5975e-01, 9.9334e-01, 7.1656e-01, 8.0277e-01, + 5.0648e-01, 7.3228e-01, 3.8058e-02, 9.3421e-01, + 7.9929e-02, 3.2158e-01, 1.5929e-01, 3.7949e-01, + 2.0829e-01, 6.5259e-01, 4.6825e-01, 2.7941e-01, + 1.9953e-01, 5.1897e-01, 3.8819e-01, 4.9336e-01, + 3.3069e-01, 8.4765e-01, 5.2211e-01, 4.9166e-01, + 6.9455e-01, 6.3768e-01, 6.2778e-01, 9.2101e-01, + 9.2626e-01, 5.9904e-01, 5.0311e-01, 8.3735e-01, + 4.4603e-01, 9.2262e-01, 4.4998e-01, 6.9776e-01, + 8.1877e-01, 7.8257e-01, 2.5050e-01, 7.2180e-01, + 1.1486e-01, 4.0817e-01, 5.2981e-01, 7.7343e-01, + 5.5123e-01, 8.6134e-01, 6.5969e-01, 4.8677e-01, + 8.8516e-01, 7.0775e-01, 3.3500e-01, 6.7549e-01, + 2.1351e-01, 6.0709e-01, 3.6218e-01, 5.1299e-01, + 7.4130e-01, 7.7677e-01, 6.3379e-01, 2.7527e-01, + 9.9887e-02, 2.2210e-01, 7.5276e-01, 4.4428e-01, + 1.6609e-01, 6.2936e-01, 5.3735e-01, 8.3225e-02, + 7.7063e-01, 1.3155e-01, 4.9738e-01, 1.0567e-01, + 1.4713e-01, 4.2368e-01, 6.6936e-02, 8.8321e-01, + 9.5339e-01, 5.7492e-01, 4.6441e-01, 4.4506e-01, + 9.9751e-01, 5.9347e-01, 6.4776e-01, 3.5639e-01, + 3.0012e-01, 6.0198e-01, 6.8924e-01, 4.4556e-01, + 1.8603e-01, 4.5480e-01, 6.5886e-01, 1.5843e-01, + 7.0337e-01, 8.9524e-01, 2.7304e-01, 3.6642e-01, + 3.5490e-01, 6.7636e-01, 4.7131e-01, 5.6626e-01, + 9.8272e-01, 9.2694e-01, 4.5864e-03, 8.8925e-01, + 9.5917e-01, 2.0832e-01, 4.9597e-01, 2.5278e-01, + 2.4852e-01, 3.1727e-01, 4.3312e-01, 9.6007e-01, + 8.8876e-02, 6.1221e-01, 3.9817e-01, 2.5411e-02, + 9.7648e-01, 9.8652e-01, 3.9766e-01, 8.8589e-01, + 1.1188e-01, 5.1689e-01, 6.4742e-02, 9.9407e-01, + 6.1552e-01, 7.3617e-01, 1.6003e-01, 1.6974e-01, + 8.4497e-01, 4.9609e-01, 9.8217e-02, 9.5291e-01, + 4.0326e-01, 6.3081e-01, 7.2652e-01, 5.7743e-01, + 2.2170e-01, 7.8272e-01, 7.3391e-01, 7.9808e-01, + 5.7786e-01, 8.0307e-01, 4.2660e-01, 1.3650e-01, + 2.7882e-02, 2.4102e-01, 2.0745e-01, 5.8123e-01, + 3.4352e-01, 2.1247e-01, 4.8279e-01, 3.7276e-01, + 9.4707e-01, 7.3718e-01, 9.1258e-01, 3.6274e-01, + 2.4102e-01, 9.9207e-01, 2.2145e-01, 2.6863e-01, + 2.5719e-01, 5.1020e-01, 4.0730e-01, 2.2349e-01, + 9.7510e-01, 8.2175e-01, 1.2219e-01, 6.2505e-01, + 8.9346e-01, 1.8482e-01, 8.7034e-01, 5.8396e-01, + 6.0211e-01, 7.7022e-02, 3.2938e-01, 2.7877e-01, + 3.0504e-01, 7.3242e-01, 8.6726e-01, 5.2525e-02, + 8.3949e-01, 9.2123e-01, 9.7969e-01, 5.8142e-01, + 5.2488e-01, 4.6433e-01, 2.2818e-01, 2.4717e-01, + 2.5460e-01, 8.5714e-02, 3.8831e-01, 9.0686e-01, + 4.6754e-01, 6.3993e-01, 8.5531e-01, 9.5916e-02, + 7.7458e-01, 5.4327e-01, 9.2559e-01, 1.9217e-01, + 4.6577e-01, 4.9623e-01, 8.9795e-01, 6.3356e-01, + 6.7837e-02, 8.4986e-01, 5.0801e-01, 2.5619e-01, + 9.5677e-01, 4.9628e-01, 9.3112e-01, 4.4714e-01, + 6.8936e-01, 8.0523e-01, 4.3303e-01, 1.8878e-02, + 6.4632e-01, 8.1886e-01, 3.3755e-01, 9.7814e-01, + 8.7620e-01, 5.8761e-02, 2.6465e-01, 6.2798e-01, + 8.9595e-01, 7.9580e-02, 8.0211e-01, 7.2755e-01, + 9.1035e-01, 8.4643e-01, 2.6957e-01, 3.9778e-01, + 5.5133e-01, 7.1369e-01, 3.6727e-01, 1.2819e-01, + 3.8548e-01, 4.9232e-01, 3.0467e-02, 3.2802e-01, + 1.0528e-01, 7.3630e-02, 9.3062e-01, 6.1493e-01, + 6.3887e-01, 7.4694e-02, 3.3923e-01, 2.0729e-01, + 4.4764e-02, 4.3261e-01, 5.5894e-01, 9.6581e-01, + 6.7662e-02, 9.2539e-01, 1.8783e-01, 8.1675e-01, + 8.4143e-01, 3.9923e-01, 2.2729e-01, 6.6154e-01, + 8.9653e-01, 4.0370e-01, 3.2538e-01, 1.5236e-01, + 5.5629e-01, 6.8462e-01, 7.7109e-01, 5.9567e-01, + 1.4903e-01, 5.3588e-01, 6.2758e-01, 7.5046e-01, + 8.0168e-01, 8.9376e-01, 2.0340e-01, 1.2453e-01, + 7.4704e-02, 5.3506e-01, 9.6637e-01, 9.7204e-01, + 5.7290e-01, 3.5230e-01, 9.9294e-01, 5.0129e-01, + 8.3881e-01, 7.2880e-01, 6.2694e-01, 5.8390e-01, + 3.0916e-01, 5.5307e-01, 1.1634e-01, 5.7508e-01, + 4.9841e-01, 9.4315e-02, 8.0570e-01, 3.7012e-02, + 9.4338e-01, 5.0504e-01, 3.3316e-01, 7.8524e-01, + 1.6928e-01, 7.2395e-01, 3.6104e-01, 1.6070e-01, + 8.9509e-01, 6.6490e-01, 3.2072e-01, 8.1494e-01, + 7.5298e-01, 8.8006e-01, 1.8608e-01, 6.6299e-01, + 3.0445e-01, 1.4084e-01, 9.1637e-02, 6.5827e-02, + 9.9326e-01, 6.6325e-01, 5.2357e-01, 5.2534e-01, + 7.0772e-01, 3.3604e-01, 6.0567e-01, 8.4960e-01, + 7.8662e-01, 8.5686e-01, 6.0279e-01, 7.7631e-01, + 5.7508e-01, 2.9735e-01, 6.3188e-01, 2.1348e-01, + 4.3258e-01, 2.2410e-01, 7.3643e-01, 3.4474e-01, + 7.8888e-01, 9.2573e-01, 2.1892e-01, 9.5993e-02]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.1182, 0.0531, 0.2619, ..., 0.1829, 0.3048, 0.7863]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 0.09768295288085938 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 107490 -ss 10000 -sd 1e-05 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 7.983633518218994} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 1, ..., 999, 1000, 1000]), + col_indices=tensor([9808, 7333, 2761, 6984, 2618, 1200, 1681, 6432, 1908, + 9155, 6399, 6173, 7686, 5356, 3993, 7981, 7425, 5593, + 4850, 5052, 8961, 8336, 7112, 619, 2135, 8626, 2607, + 2216, 9694, 4189, 2998, 8335, 3027, 1032, 6652, 9026, + 1450, 3086, 8168, 3872, 2284, 9839, 7872, 6967, 7777, + 5855, 4560, 4411, 6083, 1505, 2302, 7162, 8721, 8884, + 3749, 7643, 9696, 5850, 2249, 8244, 1919, 8048, 1342, + 7317, 2490, 6808, 7315, 7726, 4785, 4921, 9956, 4443, + 4480, 6691, 8417, 161, 5555, 404, 8581, 5792, 8301, + 5318, 292, 5134, 8928, 8066, 453, 7458, 9510, 289, + 5180, 4317, 3606, 3627, 1876, 624, 3722, 3159, 4377, + 5013, 9349, 2667, 1785, 8678, 5026, 4888, 9756, 9607, + 8469, 7716, 8606, 3083, 1563, 1434, 2738, 7289, 1978, + 700, 6478, 8190, 8761, 951, 2998, 6295, 902, 3253, + 3444, 4043, 9178, 1269, 234, 7089, 6174, 6600, 4669, + 6727, 8268, 2330, 1069, 1763, 2492, 8073, 1684, 2315, + 3710, 3248, 8510, 8590, 8239, 1284, 8170, 4171, 474, + 2875, 8352, 3218, 3963, 969, 7748, 2856, 3854, 2315, + 7277, 5531, 1405, 4598, 6522, 957, 9296, 6849, 5437, + 1686, 9191, 9673, 8090, 1533, 5462, 8520, 5159, 3304, + 7705, 4342, 5443, 2284, 1194, 7594, 748, 9040, 2456, + 7669, 4061, 7047, 555, 2824, 7363, 3913, 9178, 7150, + 7304, 2499, 9256, 552, 8778, 8063, 6520, 4688, 7574, + 2145, 8518, 8603, 8669, 6546, 5623, 1957, 2338, 2425, + 1112, 2970, 9986, 9949, 6076, 9046, 7321, 9872, 754, + 3352, 3275, 9499, 116, 7035, 5380, 8743, 1703, 5751, + 5299, 3130, 7670, 5872, 5834, 7007, 9147, 2184, 8860, + 4428, 598, 4836, 8058, 4558, 5288, 7504, 8853, 2238, + 8861, 2578, 5091, 5013, 2037, 8928, 3857, 5077, 6931, + 8757, 6859, 8189, 3924, 4087, 9231, 3593, 6492, 4448, + 87, 6203, 9319, 8208, 1249, 351, 8796, 620, 924, + 9101, 8105, 2830, 1713, 7787, 888, 9020, 9481, 2139, + 7730, 8329, 4873, 2487, 7048, 7353, 4885, 8148, 1247, + 667, 849, 7914, 4689, 8303, 1722, 231, 6860, 8507, + 9888, 8475, 1032, 1630, 8070, 9540, 9112, 5168, 3062, + 9507, 879, 4850, 3483, 3940, 9319, 4881, 7856, 228, + 9287, 5989, 58, 749, 4343, 9901, 6928, 2389, 3972, + 8526, 481, 5624, 5755, 6275, 9280, 6597, 5060, 7191, + 4693, 4177, 2321, 1787, 1673, 5562, 4239, 2030, 1583, + 7898, 771, 4040, 3220, 1377, 4508, 5059, 3845, 7290, + 1003, 9599, 9375, 6692, 6090, 9952, 2176, 4210, 6030, + 2198, 8853, 2655, 1483, 8885, 9276, 8505, 4213, 6753, + 5450, 4850, 4204, 4416, 4704, 8418, 4907, 2331, 3960, + 7498, 3669, 9792, 5499, 8914, 8203, 7657, 3426, 7234, + 2486, 1235, 2469, 9660, 2367, 1370, 7799, 9145, 9171, + 2736, 6254, 3512, 3261, 9520, 8438, 7170, 6908, 3469, + 8590, 9937, 2564, 3019, 9524, 6717, 2986, 9309, 264, + 3, 9829, 4495, 3573, 190, 2981, 6208, 6585, 1371, + 2195, 5581, 2342, 9476, 5382, 8440, 4103, 3864, 5632, + 6269, 1712, 9749, 3061, 4897, 9774, 3008, 6163, 3407, + 1145, 4120, 29, 4912, 6169, 9479, 4251, 9076, 3330, + 2063, 775, 8392, 4609, 1933, 5138, 5664, 5906, 2726, + 6425, 3088, 1715, 4040, 9093, 1647, 1795, 7607, 3501, + 8477, 4093, 2038, 5013, 774, 7713, 8152, 4781, 3609, + 1098, 4881, 2038, 9274, 9741, 6209, 8115, 876, 5316, + 1613, 382, 2542, 8582, 3431, 391, 7187, 366, 3166, + 4017, 4198, 2725, 659, 934, 987, 196, 1864, 1644, + 1271, 2647, 5151, 3918, 3463, 6377, 7, 8878, 7976, + 3957, 8156, 2529, 258, 1623, 4604, 881, 692, 8112, + 4946, 7796, 4095, 3143, 8572, 7876, 1750, 4527, 7144, + 3583, 7056, 5316, 5348, 8997, 8809, 3142, 7991, 9464, + 6933, 7646, 9651, 2698, 4859, 8117, 3369, 6615, 3985, + 2317, 230, 1836, 5945, 3071, 154, 1226, 4860, 4637, + 6267, 5399, 3074, 7683, 1282, 3705, 8563, 9956, 8750, + 9574, 8335, 6491, 8329, 7853, 8857, 349, 7580, 9293, + 9709, 2126, 8982, 308, 4510, 4560, 475, 9704, 399, + 3060, 7736, 4629, 9546, 2561, 3034, 5116, 8728, 8805, + 3398, 8513, 8777, 2599, 3253, 5225, 5290, 2408, 6085, + 9068, 9069, 173, 2472, 6402, 2120, 4261, 2224, 826, + 3243, 3739, 6217, 6811, 5731, 219, 5472, 6849, 5110, + 5831, 3791, 6232, 2917, 6783, 6607, 4071, 1451, 6567, + 9736, 6402, 9995, 6552, 6542, 4482, 6282, 4291, 5913, + 4071, 5198, 4988, 695, 2806, 1386, 2173, 7790, 316, + 6649, 9, 1579, 9572, 3275, 3154, 2359, 5140, 653, + 8937, 9332, 1630, 4207, 5937, 8428, 2322, 4503, 5299, + 3901, 6823, 6228, 9657, 7140, 6477, 3755, 9688, 676, + 3349, 1162, 8482, 8395, 2504, 1528, 8242, 9826, 3556, + 6575, 5375, 2647, 4974, 6849, 8024, 7591, 9516, 2365, + 748, 1345, 9720, 6772, 5774, 5530, 5391, 1856, 3765, + 2657, 4498, 4984, 6901, 1395, 8475, 1819, 6925, 2421, + 1761, 7259, 1051, 265, 1590, 9384, 5894, 4762, 8506, + 7174, 6840, 1763, 4913, 2019, 5885, 2325, 3202, 4757, + 5428, 6422, 8241, 2695, 7858, 2699, 3893, 5719, 1839, + 3316, 9200, 7439, 3744, 1776, 9919, 8571, 3243, 3848, + 3477, 8382, 1436, 290, 1253, 960, 2876, 2388, 8662, + 6915, 4562, 1155, 3778, 5964, 385, 5156, 1243, 4937, + 2606, 2225, 7292, 9389, 1956, 492, 7736, 1955, 6506, + 766, 1105, 3864, 8934, 7960, 5641, 9655, 8776, 133, + 6666, 9610, 4929, 4719, 5264, 8382, 1947, 8666, 9300, + 4329, 2170, 7897, 4303, 882, 5936, 9116, 7064, 4599, + 2528, 5838, 7510, 2443, 1992, 7678, 2673, 5092, 1492, + 2387, 9934, 3869, 165, 9084, 8178, 1861, 4201, 2324, + 7567, 1793, 5834, 6476, 2076, 4845, 6644, 2639, 2822, + 9050, 252, 7942, 886, 5983, 1279, 4983, 8042, 9622, + 346, 3605, 2132, 9414, 2359, 283, 9534, 4029, 5072, + 6128, 7142, 6327, 4027, 1093, 7747, 8385, 885, 313, + 8859, 574, 6879, 3745, 3282, 2757, 8169, 5936, 5076, + 1137, 6613, 1076, 8073, 3513, 1306, 5080, 9110, 5604, + 7545, 4340, 1845, 4275, 5591, 4936, 9991, 892, 4674, + 6064, 8565, 6710, 8039, 7982, 3922, 275, 6066, 8905, + 6973, 2794, 1061, 7385, 7988, 8340, 2191, 2929, 2548, + 7557, 4165, 8338, 1716, 9924, 7462, 3608, 7958, 4156, + 6958, 6595, 6394, 1820, 4962, 5366, 4438, 5246, 4512, + 3255, 8226, 3630, 6120, 6332, 3099, 7741, 8936, 5999, + 9486, 6251, 5915, 3122, 7469, 8734, 1782, 2410, 4709, + 7347, 1254, 5365, 8659, 5942, 9828, 9706, 379, 7662, + 2198, 6628, 7945, 7413, 7327, 1345, 9039, 2421, 2619, + 2712, 9886, 7954, 4568, 6691, 9240, 2570, 4800, 2524, + 3422, 3750, 6113, 4241, 4013, 877, 1775, 579, 2634, + 1090, 7457, 7667, 2031, 9665, 144, 9204, 2579, 5962, + 1526, 1550, 9817, 4972, 1128, 9270, 6872, 5852, 7388, + 2994]), + values=tensor([7.8719e-01, 2.7798e-01, 6.8950e-02, 5.0472e-02, + 5.8545e-01, 1.1991e-01, 4.7623e-01, 5.7694e-01, + 1.5237e-01, 3.3055e-01, 5.1293e-01, 9.7978e-01, + 2.7608e-01, 6.7192e-01, 7.0951e-01, 5.1327e-01, + 8.1335e-01, 6.8963e-01, 5.5314e-01, 8.9263e-01, + 9.6576e-01, 9.0869e-01, 2.7184e-01, 1.9471e-01, + 9.7766e-01, 2.0095e-01, 9.3843e-01, 7.2126e-01, + 5.1714e-01, 6.0175e-01, 3.1801e-01, 7.7627e-01, + 3.4605e-01, 1.8040e-01, 3.0458e-01, 4.0278e-01, + 6.2776e-01, 9.3467e-01, 1.2351e-01, 5.6160e-02, + 1.1205e-01, 9.1760e-01, 2.4199e-01, 3.0944e-01, + 6.4413e-01, 3.6915e-01, 9.3294e-01, 7.5980e-01, + 3.3654e-02, 6.9582e-01, 6.7700e-01, 5.8286e-01, + 2.3073e-01, 5.6347e-01, 2.6682e-01, 2.2342e-01, + 4.0573e-01, 3.8100e-01, 1.8280e-01, 1.6569e-01, + 4.1207e-01, 3.0585e-01, 7.7921e-01, 4.5860e-01, + 7.1391e-01, 2.3078e-01, 1.1214e-01, 7.7082e-01, + 4.6340e-01, 7.6066e-01, 6.5596e-01, 2.2872e-01, + 5.6436e-02, 1.3893e-01, 3.0936e-01, 5.7445e-01, + 7.6112e-01, 6.8930e-01, 8.2550e-01, 8.7976e-01, + 6.3483e-01, 9.1301e-01, 1.6942e-01, 1.2039e-01, + 9.7139e-02, 1.7948e-01, 9.9856e-01, 7.3699e-01, + 7.4922e-01, 8.4417e-01, 3.9216e-01, 9.2979e-01, + 8.2247e-01, 4.3216e-01, 3.5842e-02, 9.0960e-01, + 4.6872e-01, 1.6075e-01, 7.0489e-01, 9.6429e-01, + 5.6028e-01, 2.2107e-01, 6.4836e-01, 2.6848e-01, + 4.6565e-01, 2.2203e-01, 9.1292e-01, 5.6801e-01, + 7.2532e-01, 3.9663e-01, 8.0242e-01, 8.5245e-01, + 4.4302e-01, 4.0458e-01, 1.5184e-01, 8.2485e-01, + 8.1878e-01, 3.5508e-01, 7.8907e-01, 6.1319e-01, + 4.0473e-01, 4.6310e-01, 9.9879e-01, 1.2625e-01, + 2.4641e-02, 4.4344e-01, 4.8008e-02, 7.1063e-01, + 3.8831e-01, 2.3756e-01, 8.9818e-01, 8.6457e-01, + 7.0548e-01, 8.7014e-01, 1.9525e-01, 3.8171e-01, + 8.9444e-01, 9.4533e-01, 9.3144e-01, 6.0240e-02, + 6.8551e-01, 5.6690e-01, 7.8262e-02, 4.4040e-01, + 9.2140e-01, 1.6390e-01, 1.7777e-02, 1.4404e-01, + 4.6732e-01, 1.9153e-01, 3.6275e-02, 2.7146e-01, + 1.5116e-01, 1.5619e-01, 8.4771e-01, 3.3031e-01, + 5.1292e-02, 3.4658e-01, 9.1107e-01, 7.5262e-01, + 4.4692e-01, 1.4474e-01, 3.6373e-01, 9.9651e-01, + 4.4502e-01, 7.7684e-01, 8.0853e-01, 2.2562e-01, + 6.2217e-01, 2.5839e-01, 7.3547e-01, 7.1796e-01, + 5.6419e-01, 6.7965e-02, 6.0161e-01, 6.8031e-01, + 1.3480e-01, 1.4008e-01, 2.1305e-01, 5.2230e-01, + 4.5845e-01, 7.8971e-01, 7.9544e-01, 6.9803e-01, + 7.6802e-01, 7.6155e-01, 3.1134e-01, 1.7799e-02, + 3.1824e-01, 5.2685e-01, 4.4170e-01, 8.3736e-01, + 1.9274e-01, 8.1668e-01, 2.4841e-01, 3.7080e-01, + 1.6220e-01, 7.9875e-01, 7.6216e-01, 7.2031e-01, + 7.6464e-01, 7.7670e-01, 3.3173e-01, 5.2319e-01, + 9.5119e-01, 4.1244e-01, 1.4600e-01, 1.4505e-01, + 5.9267e-01, 2.0373e-01, 9.9514e-01, 5.9135e-01, + 7.6637e-01, 9.8143e-01, 7.9584e-01, 1.2516e-01, + 9.5711e-01, 2.6995e-01, 1.9205e-01, 7.1691e-01, + 6.9453e-01, 5.9303e-01, 8.8441e-01, 3.9595e-01, + 8.2666e-01, 7.9076e-01, 4.5555e-01, 7.9378e-01, + 9.5976e-02, 3.8183e-01, 9.6509e-01, 4.4705e-01, + 9.2095e-01, 5.7548e-01, 7.4201e-01, 3.9286e-01, + 5.8219e-03, 3.5363e-01, 6.5290e-01, 3.9337e-01, + 2.9446e-01, 6.2985e-01, 5.9237e-01, 4.9532e-01, + 6.6808e-01, 1.4858e-01, 5.4063e-01, 6.5766e-01, + 7.8465e-01, 7.9338e-01, 3.4194e-01, 6.0330e-01, + 4.3091e-01, 4.2764e-01, 3.7078e-01, 9.4024e-01, + 9.4501e-01, 7.7417e-01, 2.0476e-01, 1.9499e-01, + 6.6973e-01, 6.4596e-01, 2.3835e-02, 7.6092e-01, + 2.4395e-02, 2.7034e-01, 6.6430e-01, 6.0325e-01, + 8.5135e-01, 4.5832e-02, 9.0873e-01, 5.6750e-01, + 2.4190e-01, 2.2314e-01, 4.8360e-01, 2.6715e-01, + 8.4999e-01, 3.6109e-01, 6.5628e-01, 7.2648e-01, + 3.7849e-01, 6.8336e-01, 1.6475e-01, 4.2428e-02, + 5.0039e-01, 4.0955e-01, 1.8601e-01, 6.9763e-02, + 4.1478e-01, 7.0105e-01, 1.4472e-02, 5.7295e-01, + 3.8123e-01, 4.2816e-01, 9.9610e-01, 1.8482e-01, + 6.0352e-01, 9.1170e-01, 3.9121e-01, 7.9080e-02, + 3.5268e-01, 6.4831e-01, 4.8081e-01, 1.9639e-01, + 3.8233e-02, 2.5478e-01, 5.6272e-01, 8.5128e-01, + 1.7658e-01, 1.0461e-01, 7.5971e-01, 2.0058e-01, + 2.0759e-02, 2.0159e-02, 9.3880e-01, 9.4331e-01, + 1.6540e-01, 2.7014e-01, 4.5377e-01, 7.5522e-01, + 7.4617e-01, 5.3126e-01, 4.2780e-01, 6.8393e-01, + 9.3150e-01, 5.5857e-01, 6.7215e-01, 7.0823e-01, + 3.2565e-01, 3.7222e-03, 6.8742e-01, 9.5403e-01, + 9.1592e-02, 7.2967e-01, 9.5884e-01, 6.3427e-01, + 2.5742e-01, 5.6475e-01, 2.7925e-01, 6.2923e-01, + 3.6718e-01, 9.5934e-01, 9.5815e-01, 4.9009e-01, + 7.1807e-02, 2.2681e-01, 1.2454e-01, 1.0542e-01, + 1.4174e-01, 9.8255e-01, 4.6236e-01, 6.6987e-01, + 4.8816e-01, 8.6746e-01, 9.3157e-02, 6.5768e-01, + 3.9811e-01, 7.8455e-01, 4.3119e-01, 9.2868e-01, + 8.9857e-01, 3.0392e-01, 2.2633e-01, 6.1545e-01, + 7.9614e-01, 5.2919e-01, 2.1834e-01, 8.0309e-02, + 9.7126e-01, 9.9745e-01, 4.1070e-01, 2.1148e-01, + 1.8361e-01, 3.6869e-01, 6.5944e-02, 1.1064e-01, + 6.3485e-01, 3.2604e-01, 8.9872e-01, 7.2092e-01, + 5.7428e-01, 4.5882e-01, 3.9850e-01, 4.0102e-01, + 8.2621e-01, 5.5455e-01, 3.1238e-02, 5.2826e-01, + 7.8630e-01, 9.8409e-02, 7.6561e-01, 3.9927e-01, + 6.1406e-01, 9.4480e-01, 1.4254e-01, 9.5086e-01, + 7.0821e-01, 8.4899e-01, 2.1804e-01, 2.5812e-01, + 2.0835e-01, 9.1140e-01, 8.5765e-01, 9.9032e-01, + 8.5393e-01, 4.9833e-01, 4.7477e-01, 3.2389e-01, + 5.7445e-03, 9.7329e-01, 7.2375e-01, 9.9966e-02, + 1.5025e-01, 7.4453e-01, 6.8332e-02, 1.6645e-01, + 9.6335e-01, 7.5026e-01, 5.3293e-01, 3.6223e-01, + 6.7385e-01, 6.4139e-01, 3.0444e-01, 5.2345e-01, + 1.2761e-01, 7.1742e-01, 7.8477e-01, 1.5626e-01, + 5.9381e-01, 6.4963e-02, 7.9896e-01, 3.1336e-01, + 3.7107e-01, 7.1857e-01, 9.1579e-01, 6.6099e-01, + 2.6809e-01, 1.7068e-01, 4.1313e-01, 7.3119e-01, + 1.4408e-01, 7.5105e-01, 7.0813e-01, 1.9223e-01, + 3.5761e-01, 5.1226e-01, 5.1808e-01, 1.2472e-01, + 7.7220e-01, 4.4079e-01, 8.6666e-01, 5.5199e-01, + 6.0896e-01, 9.1606e-01, 8.6291e-01, 8.7001e-01, + 8.8110e-01, 9.2673e-02, 7.5635e-01, 4.9880e-01, + 4.7058e-01, 4.4095e-01, 2.6035e-01, 4.4612e-01, + 7.7199e-01, 9.7001e-01, 7.9381e-01, 3.7973e-01, + 1.4628e-01, 3.0004e-01, 7.9967e-01, 2.3445e-01, + 2.8214e-01, 1.4505e-01, 2.9738e-02, 8.2369e-01, + 5.6563e-01, 6.1549e-01, 2.0430e-01, 6.7317e-01, + 8.8399e-01, 6.1068e-01, 2.3116e-01, 6.3362e-01, + 1.9280e-01, 3.6545e-01, 8.8520e-01, 8.2935e-01, + 5.4700e-01, 6.6788e-01, 1.0258e-01, 7.3352e-01, + 1.2764e-01, 7.6745e-01, 1.0823e-01, 7.7672e-01, + 7.0088e-01, 1.4280e-01, 2.7547e-01, 8.7632e-02, + 3.9206e-01, 8.0911e-01, 1.6979e-01, 4.7676e-01, + 6.5288e-01, 3.8342e-01, 8.8230e-01, 7.7932e-01, + 4.8290e-01, 9.7744e-01, 6.0052e-01, 2.9355e-01, + 5.7912e-01, 9.9443e-01, 5.3301e-01, 1.2536e-01, + 1.5214e-01, 6.8526e-01, 9.4258e-01, 3.6434e-01, + 8.7558e-01, 5.2552e-01, 7.7302e-01, 7.2297e-01, + 5.5616e-01, 9.7155e-01, 6.1762e-01, 3.9333e-01, + 9.4142e-01, 5.0394e-01, 5.3126e-01, 7.3120e-03, + 3.5779e-02, 1.3613e-01, 2.4848e-01, 5.4232e-01, + 7.8793e-01, 7.7360e-01, 8.0010e-01, 7.9171e-01, + 7.8279e-01, 2.7648e-01, 7.1536e-04, 1.6891e-01, + 6.9407e-01, 4.4307e-01, 8.8731e-01, 2.9828e-01, + 8.1246e-01, 9.2402e-01, 2.1079e-01, 2.7887e-01, + 4.6669e-01, 6.8159e-03, 8.8241e-01, 2.7337e-01, + 8.2022e-01, 2.7429e-01, 9.1030e-01, 8.1649e-01, + 5.5752e-01, 5.0382e-01, 2.3178e-02, 2.5625e-01, + 3.9271e-01, 7.4277e-01, 3.2581e-01, 6.5264e-01, + 1.4044e-01, 2.9504e-01, 1.0800e-02, 4.1264e-01, + 9.9371e-01, 6.5700e-01, 7.7452e-02, 6.0746e-01, + 2.2437e-01, 5.4157e-01, 1.1871e-02, 6.3941e-02, + 8.2036e-01, 9.6199e-01, 9.8448e-01, 8.2488e-01, + 5.6750e-01, 4.0211e-01, 6.1530e-01, 9.6152e-01, + 4.5253e-01, 4.5920e-01, 5.5935e-01, 5.0592e-01, + 8.3342e-01, 2.3467e-01, 5.6447e-03, 5.1410e-01, + 7.9746e-01, 1.6737e-01, 4.1857e-01, 1.2179e-01, + 4.5782e-01, 4.8415e-01, 1.2565e-01, 2.5572e-01, + 2.9466e-01, 3.9214e-01, 8.6572e-02, 8.6940e-01, + 7.5536e-01, 9.5322e-01, 7.9797e-03, 7.7378e-01, + 2.9158e-01, 1.5556e-01, 9.9596e-01, 8.0676e-01, + 4.9137e-01, 8.3342e-02, 9.6135e-03, 2.5928e-01, + 5.1709e-01, 7.9696e-01, 1.1237e-01, 4.6299e-03, + 9.6805e-01, 8.2316e-01, 3.3193e-01, 8.2257e-01, + 8.3508e-01, 1.2269e-01, 3.9215e-02, 2.7379e-01, + 6.9489e-01, 1.9759e-02, 1.1280e-01, 2.7342e-03, + 4.2183e-01, 1.0518e-01, 8.5223e-01, 5.6563e-01, + 3.8697e-01, 1.1785e-01, 3.7871e-01, 6.0490e-02, + 2.4291e-01, 6.4616e-01, 7.7271e-01, 2.2149e-01, + 4.9094e-01, 8.5007e-01, 7.8797e-01, 3.6982e-01, + 5.4627e-02, 6.5672e-01, 4.2979e-01, 5.1761e-01, + 5.2562e-01, 6.8937e-01, 5.5624e-01, 4.8477e-01, + 4.4277e-01, 8.7025e-01, 4.6938e-01, 9.9017e-02, + 2.3540e-01, 8.8826e-01, 8.4750e-01, 6.9361e-02, + 5.3295e-01, 6.3838e-01, 5.1882e-01, 6.1343e-01, + 3.3235e-01, 5.2842e-01, 9.6416e-01, 6.8030e-01, + 8.5786e-01, 5.9575e-01, 5.2750e-01, 4.2578e-01, + 8.1605e-01, 2.4509e-01, 4.6667e-01, 3.5601e-01, + 3.0833e-01, 2.9087e-01, 5.4065e-01, 5.5053e-01, + 5.3639e-01, 5.2394e-01, 7.3707e-01, 4.4853e-01, + 9.2411e-01, 9.4107e-01, 7.4106e-01, 5.0656e-01, + 1.9467e-01, 7.5185e-01, 8.5122e-01, 8.2702e-01, + 9.0613e-02, 5.8673e-03, 3.1343e-01, 3.5174e-01, + 3.7292e-01, 3.3097e-01, 6.8196e-01, 7.5472e-01, + 9.6424e-01, 5.1046e-01, 1.4638e-01, 2.3684e-01, + 7.8786e-01, 5.4429e-01, 5.7574e-01, 2.1532e-01, + 1.5684e-01, 5.4566e-01, 9.4138e-01, 3.2838e-01, + 4.8040e-01, 5.4414e-01, 1.9367e-02, 3.9706e-01, + 2.0430e-01, 1.9660e-01, 6.2466e-01, 8.6084e-01, + 8.0228e-02, 3.9186e-01, 8.9576e-01, 4.9514e-02, + 2.2106e-01, 9.2999e-01, 6.5310e-01, 4.3007e-01, + 6.5822e-01, 6.6603e-01, 9.8669e-01, 9.8824e-01, + 8.2168e-01, 6.8459e-01, 3.9156e-01, 1.1132e-02, + 2.2370e-01, 9.6903e-01, 2.7306e-01, 9.2415e-01, + 7.1639e-02, 3.3931e-01, 8.5008e-01, 6.4232e-01, + 7.2111e-02, 9.9499e-01, 9.1080e-01, 2.0324e-01, + 5.5506e-01, 6.1251e-01, 4.3318e-01, 6.4264e-01, + 1.7591e-01, 4.3507e-01, 1.0488e-01, 7.2339e-02, + 5.2835e-01, 5.6667e-01, 2.9372e-01, 2.4415e-01, + 3.9410e-01, 1.0101e-01, 1.8441e-01, 7.1626e-01, + 6.1243e-01, 3.6314e-01, 9.2150e-01, 9.7278e-02, + 7.2977e-01, 9.0747e-01, 3.1597e-01, 8.4171e-01, + 6.7253e-01, 9.4853e-01, 1.2906e-01, 2.7355e-01, + 1.4409e-01, 2.5160e-01, 5.9372e-01, 6.2295e-01, + 4.6559e-01, 1.0182e-01, 9.9182e-01, 1.0837e-01, + 1.4328e-01, 3.7837e-01, 5.9957e-01, 5.6506e-01, + 2.7237e-01, 2.9218e-01, 9.0535e-01, 7.7321e-01, + 5.1514e-01, 3.2557e-03, 1.1352e-02, 3.5446e-01, + 8.9878e-01, 6.8849e-01, 2.1011e-01, 6.8286e-01, + 9.5425e-01, 5.6617e-01, 6.4023e-01, 7.0185e-01, + 9.9854e-01, 3.9273e-02, 9.0494e-01, 4.1552e-01, + 1.7585e-01, 3.0999e-02, 2.5590e-01, 9.8308e-01, + 9.9331e-01, 2.9050e-01, 8.3045e-01, 5.8265e-01, + 2.6416e-01, 8.8248e-01, 8.8451e-01, 7.1606e-01, + 7.7418e-01, 9.1509e-01, 3.3493e-01, 4.0022e-01, + 8.9266e-01, 9.8437e-01, 3.7543e-01, 7.7526e-01, + 7.8948e-01, 5.7629e-01, 7.0095e-01, 5.4200e-01, + 2.7128e-01, 2.5999e-01, 5.5865e-02, 2.9070e-01, + 4.3462e-01, 6.1735e-01, 7.5223e-01, 6.9592e-01, + 1.2204e-01, 9.2739e-01, 5.8123e-01, 1.2222e-01, + 7.8177e-01, 4.1364e-01, 2.5832e-01, 1.6744e-01, + 2.5223e-01, 6.0992e-01, 2.7721e-01, 9.3869e-01, + 9.8241e-01, 7.1822e-02, 8.0650e-01, 5.1973e-01, + 6.0070e-01, 6.0370e-01, 2.2224e-01, 2.1113e-01, + 9.2031e-01, 4.0777e-01, 5.4750e-01, 1.7712e-01, + 3.5411e-01, 2.4928e-01, 3.2929e-01, 7.3402e-01, + 6.6194e-01, 9.8667e-02, 8.4750e-01, 9.6597e-01, + 1.6766e-02, 5.7657e-01, 5.0813e-01, 7.2302e-01, + 7.9038e-01, 9.2692e-01, 7.5721e-01, 4.2435e-01, + 4.4147e-01, 1.4234e-01, 2.4352e-01, 9.2361e-01, + 5.6001e-01, 8.2192e-01, 1.5664e-01, 4.4392e-01, + 5.5010e-01, 3.1554e-01, 1.4607e-01, 7.0739e-02, + 5.0825e-01, 2.4566e-01, 9.4402e-02, 9.2503e-01, + 6.4014e-02, 5.0204e-01, 5.3551e-01, 6.5074e-01, + 9.9401e-01, 5.7726e-01, 4.0971e-01, 7.4098e-01, + 3.0006e-01, 7.8090e-01, 4.6809e-01, 2.6276e-01, + 1.3399e-01, 8.1362e-01, 3.4512e-01, 8.9697e-01, + 7.4544e-01, 7.9488e-01, 6.8908e-01, 4.3181e-01, + 2.5480e-01, 2.1212e-01, 7.5625e-01, 5.2526e-01, + 9.5233e-01, 9.4755e-01, 7.1677e-01, 1.1347e-01, + 8.0781e-02, 1.4180e-01, 8.9249e-01, 2.8516e-01, + 7.7798e-01, 6.4198e-01, 3.8783e-01, 4.7671e-01, + 2.3407e-02, 4.6669e-01, 7.8425e-01, 9.5864e-01, + 3.7504e-01, 8.6204e-01, 3.1679e-01, 8.8901e-01, + 3.7300e-01, 2.5242e-01, 9.6592e-01, 6.0299e-01, + 5.1251e-01, 2.2772e-01, 3.9972e-01, 6.5961e-01, + 9.5451e-01, 9.7991e-01, 4.5724e-01, 9.3034e-01, + 4.3354e-01, 3.2771e-01, 1.7238e-01, 5.7435e-01, + 4.4729e-02, 1.1177e-01, 9.3390e-02, 7.0157e-01, + 9.8350e-01, 2.2812e-01, 6.8480e-01, 3.7276e-01, + 8.6972e-01, 7.1125e-01, 2.9051e-01, 2.8034e-01, + 7.3300e-01, 1.8556e-01, 8.8325e-01, 5.4715e-02, + 3.3904e-01, 7.4426e-01, 7.5334e-01, 9.7634e-01, + 2.1530e-01, 3.0424e-01, 5.5628e-01, 8.2914e-01, + 8.4980e-01, 5.3636e-01, 5.5424e-01, 3.7605e-01, + 2.6903e-01, 4.0124e-01, 9.2905e-01, 5.0572e-02, + 7.3581e-01, 7.8623e-01, 2.7676e-01, 6.2277e-01]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.8535, 0.9437, 0.0129, ..., 0.9247, 0.1049, 0.8510]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 7.983633518218994 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 141369 -ss 10000 -sd 1e-05 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.808244943618774} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), + col_indices=tensor([7315, 1858, 1670, 5364, 1184, 3689, 9574, 1136, 5558, + 3491, 589, 9091, 159, 766, 502, 9929, 4846, 9650, + 2563, 3405, 2322, 3115, 8463, 8330, 9642, 7938, 1757, + 7149, 4012, 8129, 197, 2039, 5706, 3549, 7371, 2993, + 1668, 5510, 7702, 9196, 8429, 6070, 2662, 4013, 9415, + 6857, 7829, 189, 1980, 6763, 6718, 1267, 4257, 3542, + 1839, 9352, 3880, 4065, 5790, 6525, 9847, 6167, 4814, + 6341, 2068, 662, 5058, 1944, 658, 6063, 9056, 9925, + 2964, 8244, 282, 3473, 7406, 8810, 4236, 886, 9762, + 8425, 8800, 4778, 5281, 3283, 4118, 9078, 3169, 8457, + 9924, 2720, 1304, 4941, 3743, 4847, 8299, 4889, 214, + 6275, 5734, 2313, 2745, 5305, 3623, 13, 2937, 2995, + 6172, 9968, 1311, 5504, 8279, 7545, 3069, 7648, 5567, + 8268, 1055, 3660, 335, 7062, 8121, 8983, 7622, 6715, + 5283, 420, 1742, 3498, 1745, 3085, 6189, 2380, 1283, + 9795, 8106, 1945, 1678, 538, 5640, 7420, 194, 9011, + 3294, 2932, 2411, 2645, 8021, 5019, 4361, 3489, 1910, + 9620, 4481, 9616, 1602, 3695, 472, 2841, 8751, 2255, + 3889, 4605, 7873, 655, 6214, 3156, 256, 9963, 5581, + 8680, 717, 5063, 1404, 9442, 2228, 7492, 7160, 3856, + 6002, 9242, 9133, 2725, 317, 7326, 4324, 8318, 9240, + 9476, 4557, 5973, 4304, 8345, 1060, 987, 4937, 7346, + 7026, 4522, 1707, 1886, 1437, 9931, 6068, 6434, 2480, + 5992, 9055, 9136, 8322, 9905, 2782, 196, 693, 1688, + 8926, 3768, 8472, 207, 7495, 2196, 9726, 8814, 7453, + 1485, 5440, 3418, 8856, 743, 8967, 7230, 7965, 5970, + 15, 4482, 7568, 1808, 6735, 4024, 7824, 7515, 8144, + 3912, 8719, 4629, 8161, 3936, 4716, 2525, 783, 5222, + 9876, 8442, 8428, 7355, 3144, 4428, 6522, 132, 3790, + 5300, 9557, 7676, 9228, 8283, 5149, 2325, 9115, 1687, + 4272, 5763, 8908, 5886, 1669, 7453, 1796, 8835, 7278, + 6225, 9225, 6087, 903, 1728, 1580, 3725, 7730, 3836, + 8521, 8698, 4270, 4031, 2371, 8499, 521, 7387, 7743, + 8947, 886, 3479, 4527, 8226, 9051, 6009, 5379, 5768, + 439, 2600, 4801, 8794, 9610, 3561, 1577, 9097, 9975, + 1103, 6673, 9445, 1441, 7688, 2124, 2728, 4023, 4610, + 9118, 4314, 7265, 578, 8603, 197, 5840, 6120, 5539, + 9564, 8200, 5375, 7108, 5160, 476, 3824, 2379, 87, + 1194, 5282, 4975, 7693, 2868, 5155, 7376, 7424, 5181, + 4696, 4912, 8460, 4137, 3270, 9635, 9590, 6124, 1068, + 6534, 3173, 3896, 8453, 8316, 291, 1519, 8246, 4691, + 1751, 2308, 3396, 2423, 5215, 2970, 6752, 2916, 7921, + 8802, 4661, 9102, 3770, 6158, 7914, 1489, 4152, 1612, + 5823, 1936, 6852, 1976, 2146, 3405, 5451, 6120, 4413, + 8917, 3721, 1057, 4268, 9757, 761, 1140, 545, 6502, + 1749, 9777, 5713, 4612, 1378, 6061, 5135, 7937, 4403, + 5066, 6373, 9197, 7808, 4204, 644, 8672, 2203, 2426, + 896, 6965, 8169, 1801, 9071, 4317, 3597, 8597, 2047, + 1880, 5444, 8242, 6448, 7450, 4122, 6833, 5968, 2231, + 7351, 4384, 833, 7891, 8348, 765, 3059, 7905, 8630, + 7013, 9479, 6195, 7212, 3271, 1293, 3311, 3855, 1964, + 4641, 7448, 4226, 8995, 7274, 5191, 6567, 9407, 1526, + 9480, 8548, 5872, 8769, 2698, 7864, 8038, 56, 27, + 7763, 2188, 9491, 2878, 9318, 4526, 7193, 5303, 5124, + 9708, 2338, 8366, 9823, 9154, 6091, 9581, 2937, 8906, + 5848, 2687, 7340, 8708, 1010, 6399, 3045, 4615, 8826, + 3568, 7285, 6031, 6734, 6933, 6578, 5862, 9558, 6554, + 5089, 3113, 4603, 7009, 7343, 4267, 19, 9919, 9366, + 2933, 9750, 5505, 6090, 1142, 7058, 5172, 8599, 4136, + 5547, 157, 7341, 831, 3008, 927, 5993, 8607, 171, + 8862, 6810, 2856, 5723, 7936, 8843, 3881, 1692, 6638, + 2904, 7697, 5025, 5714, 7530, 9817, 833, 9236, 7396, + 9254, 912, 7384, 3775, 1170, 3977, 7524, 4813, 9008, + 7620, 7005, 3844, 204, 3517, 5068, 7264, 4011, 9098, + 8578, 2006, 5773, 9227, 5847, 5858, 2895, 2892, 6076, + 8741, 3340, 3921, 2744, 56, 4494, 5968, 89, 4026, + 7255, 8544, 840, 5863, 6302, 414, 2922, 3740, 955, + 8218, 5362, 5266, 5026, 8483, 5082, 7417, 7810, 644, + 1190, 6997, 8587, 3940, 7419, 7679, 3419, 2050, 1375, + 547, 8244, 8381, 3833, 6045, 5426, 8943, 8778, 9260, + 207, 4853, 1852, 1589, 1656, 6333, 1916, 7763, 2953, + 9839, 3533, 7621, 5586, 4408, 8103, 2442, 8516, 9148, + 3506, 9770, 571, 3215, 8121, 6287, 599, 7936, 8894, + 9182, 1185, 7298, 5238, 2435, 606, 6619, 1717, 9123, + 3804, 6744, 1688, 8115, 3519, 8007, 9191, 5309, 7085, + 4342, 899, 8048, 923, 5544, 6203, 2126, 6246, 100, + 7840, 564, 2942, 3285, 2333, 5463, 7923, 2151, 8056, + 5768, 3098, 9031, 3120, 4324, 2617, 2542, 2600, 8238, + 4487, 7446, 3440, 5653, 3220, 3177, 9241, 8081, 5102, + 9646, 8885, 6699, 8756, 5519, 9452, 259, 2677, 8794, + 1460, 8411, 5716, 9458, 8155, 644, 8341, 1450, 5540, + 518, 3426, 4607, 7955, 4148, 7168, 7044, 6505, 1269, + 2346, 3090, 5416, 1512, 4209, 5899, 7202, 6013, 8728, + 3813, 6142, 82, 1211, 5513, 137, 7986, 7640, 888, + 9985, 5099, 3271, 6013, 3559, 7646, 1436, 3067, 5359, + 155, 1728, 9824, 1779, 491, 233, 3754, 1015, 9765, + 298, 9547, 5517, 4342, 1582, 1949, 2482, 7321, 4988, + 2411, 5519, 4219, 6830, 5793, 9214, 4820, 3125, 8890, + 466, 8599, 508, 8339, 851, 3777, 1734, 9674, 8942, + 1427, 9500, 6588, 1605, 2007, 4551, 8625, 2609, 8688, + 2327, 4631, 6062, 4470, 4072, 4614, 1416, 705, 8243, + 2076, 1478, 9585, 1950, 8913, 3473, 2513, 5641, 9515, + 7648, 6244, 9436, 7192, 4031, 1160, 9508, 6308, 1862, + 2152, 8421, 2090, 4057, 9596, 5353, 4301, 5906, 3596, + 9384, 3132, 7647, 7603, 1913, 5032, 9088, 8117, 9096, + 9354, 6494, 1087, 8680, 5407, 3221, 1552, 3920, 5378, + 593, 2113, 3230, 2673, 9118, 6677, 9772, 8594, 9788, + 9478, 4593, 1005, 3282, 8204, 3936, 3443, 4355, 7243, + 1487, 2444, 8503, 9638, 7593, 7545, 129, 8918, 133, + 421, 8917, 4830, 3557, 8606, 3066, 6016, 3080, 4558, + 3544, 5859, 5233, 2394, 2434, 6421, 5504, 8413, 9470, + 5364, 6135, 5632, 3434, 1674, 4946, 63, 7706, 4456, + 2533, 4194, 7919, 3231, 3967, 8180, 3312, 3496, 3610, + 5542, 2929, 7279, 7446, 892, 2424, 6796, 4557, 3766, + 7918, 6363, 3300, 1258, 5530, 8133, 8383, 8851, 5621, + 3759, 3195, 4313, 9020, 9093, 9589, 8220, 8240, 8511, + 5075, 193, 2620, 5513, 2863, 9274, 8566, 2237, 3704, + 640, 7685, 9689, 8300, 5197, 3833, 6912, 7500, 4822, + 3780, 3582, 1367, 3318, 8493, 5378, 9890, 7159, 2910, + 7302, 2202, 4682, 1371, 3870, 8991, 7769, 4570, 5127, + 1421, 4645, 6754, 8030, 2942, 1562, 421, 1755, 6122, + 877]), + values=tensor([4.5503e-01, 5.5236e-01, 7.4946e-01, 7.5932e-01, + 9.8952e-01, 3.1557e-01, 9.1443e-01, 1.4281e-01, + 4.6438e-01, 9.2065e-01, 9.5281e-01, 9.8289e-01, + 4.9044e-01, 6.6880e-01, 9.5273e-01, 8.2119e-01, + 7.2789e-01, 1.0208e-02, 8.4355e-01, 1.4450e-01, + 6.3411e-01, 1.6232e-01, 7.1788e-01, 9.8785e-01, + 4.0314e-01, 3.0270e-01, 4.8394e-02, 3.4055e-01, + 7.6103e-01, 4.4991e-01, 5.0957e-01, 4.1284e-01, + 4.0828e-01, 2.3054e-01, 5.1885e-01, 4.2268e-01, + 6.4354e-01, 3.8568e-01, 8.9900e-01, 8.8779e-01, + 9.9151e-01, 6.9879e-02, 3.0729e-01, 4.2140e-01, + 7.0114e-01, 6.7449e-01, 8.3811e-01, 8.3634e-02, + 8.5457e-01, 5.9364e-01, 5.6239e-01, 5.3730e-01, + 2.8704e-01, 3.3603e-01, 7.3587e-02, 6.1617e-01, + 7.7568e-01, 1.0129e-01, 4.9434e-01, 4.4292e-01, + 7.5922e-01, 9.8988e-01, 2.8604e-01, 8.3362e-01, + 6.9002e-02, 5.9701e-01, 2.6577e-01, 3.9077e-01, + 8.7670e-02, 7.3042e-01, 1.5991e-01, 4.9806e-01, + 5.8198e-01, 8.9984e-01, 8.0160e-01, 3.3965e-01, + 3.7423e-02, 6.4093e-01, 2.2178e-01, 1.7177e-01, + 3.3041e-01, 4.0645e-01, 4.5012e-01, 5.2065e-01, + 7.1438e-01, 7.7746e-01, 6.9993e-01, 8.4247e-01, + 3.3459e-01, 2.4600e-01, 5.9346e-01, 7.0913e-01, + 2.5832e-01, 7.7024e-01, 2.6469e-01, 2.7663e-01, + 6.2902e-02, 9.4403e-01, 6.6746e-02, 3.0041e-01, + 9.3610e-01, 2.6778e-01, 3.7705e-01, 8.4692e-03, + 8.8453e-01, 2.0632e-01, 4.4988e-01, 1.6894e-01, + 1.2438e-02, 5.8381e-01, 7.1115e-01, 4.4251e-01, + 6.7595e-01, 6.3083e-02, 1.5459e-01, 7.7248e-01, + 1.6884e-01, 4.5854e-01, 9.8097e-03, 2.8779e-01, + 9.4221e-01, 1.7999e-01, 9.6697e-01, 2.1248e-01, + 3.7740e-01, 4.0096e-01, 5.1385e-01, 9.8130e-01, + 6.5753e-01, 6.0122e-02, 1.9068e-01, 3.6002e-01, + 9.0231e-01, 1.9831e-01, 8.9445e-01, 6.5688e-02, + 4.5744e-01, 2.4531e-01, 8.5433e-03, 4.4037e-01, + 8.6668e-01, 6.9154e-01, 9.6479e-01, 9.5443e-01, + 1.2512e-01, 1.3133e-01, 8.0802e-01, 7.8380e-01, + 1.7089e-01, 2.1042e-01, 7.9960e-01, 5.8428e-01, + 4.6539e-01, 8.5401e-01, 5.1112e-01, 4.7769e-01, + 5.4050e-01, 9.3609e-01, 2.8009e-01, 6.6015e-02, + 5.1141e-01, 7.8915e-01, 8.6880e-01, 6.1754e-01, + 9.4843e-01, 1.1650e-01, 1.5677e-01, 1.7600e-01, + 9.5041e-01, 2.2249e-01, 9.7408e-01, 3.4262e-01, + 6.7159e-01, 6.4447e-01, 8.9288e-01, 2.9729e-01, + 7.2744e-01, 6.1960e-01, 9.0982e-01, 9.4766e-01, + 9.2741e-01, 1.8050e-01, 7.5777e-01, 8.4737e-01, + 5.2974e-01, 1.3975e-02, 3.2218e-01, 7.5728e-01, + 3.0380e-01, 9.5599e-01, 7.4789e-01, 3.7504e-01, + 9.6520e-01, 7.6303e-01, 3.9696e-01, 1.0401e-01, + 4.0982e-01, 6.3316e-01, 9.2327e-02, 1.9405e-02, + 4.7989e-01, 9.4566e-01, 6.9287e-01, 1.9453e-01, + 2.1253e-01, 4.4926e-01, 5.8619e-02, 7.0350e-01, + 3.3919e-01, 7.5556e-01, 9.4463e-01, 3.1611e-01, + 4.7702e-01, 3.3843e-01, 7.1410e-01, 6.7562e-01, + 5.5025e-01, 8.2715e-01, 9.1478e-01, 4.7040e-01, + 6.8418e-01, 1.3297e-01, 1.3643e-02, 8.3963e-01, + 9.4038e-01, 3.8012e-01, 6.6480e-01, 4.3203e-01, + 1.1632e-01, 2.1166e-01, 1.0880e-01, 5.0712e-02, + 6.8131e-01, 1.0832e-01, 8.7495e-01, 9.2336e-01, + 4.1149e-01, 8.0381e-01, 6.7670e-01, 6.4943e-01, + 2.4712e-01, 6.0406e-01, 8.7765e-02, 8.2406e-01, + 9.0938e-01, 1.8784e-01, 5.9111e-01, 8.8462e-01, + 3.7481e-01, 9.9173e-01, 1.7508e-01, 9.1699e-01, + 7.0613e-03, 1.6038e-01, 3.2955e-01, 7.4587e-02, + 8.9881e-01, 8.5470e-01, 7.3684e-01, 6.1175e-01, + 3.0823e-02, 7.5970e-01, 1.9162e-01, 7.2898e-01, + 3.5928e-01, 5.5114e-01, 9.5006e-01, 2.0655e-01, + 3.8569e-01, 1.7515e-01, 8.3360e-01, 6.9865e-01, + 9.2797e-01, 6.5322e-02, 9.3365e-01, 8.5821e-01, + 6.8687e-01, 5.4796e-01, 7.4582e-01, 3.8030e-01, + 5.9283e-01, 1.5694e-02, 1.0339e-01, 1.3704e-01, + 1.5233e-01, 8.2752e-01, 6.5473e-01, 1.7110e-01, + 4.4237e-01, 8.6223e-01, 8.4772e-01, 3.8298e-01, + 9.6728e-01, 6.0198e-01, 7.9223e-01, 8.2339e-01, + 7.4017e-01, 3.3245e-01, 4.3901e-01, 8.2795e-01, + 4.8074e-01, 9.4428e-01, 8.4482e-01, 6.9114e-01, + 4.6154e-01, 5.3893e-01, 3.2994e-01, 1.1555e-01, + 5.1914e-01, 4.7741e-01, 4.9269e-02, 4.4184e-01, + 7.6289e-01, 4.9858e-01, 6.7587e-01, 1.5299e-01, + 8.6362e-01, 5.8084e-01, 4.7783e-01, 4.9700e-01, + 4.2540e-01, 1.0162e-01, 7.5272e-01, 1.8767e-01, + 9.9168e-01, 4.0597e-01, 9.5217e-01, 6.5442e-01, + 5.2756e-01, 4.4262e-01, 5.8423e-01, 6.3144e-01, + 2.4769e-01, 8.0175e-01, 6.4149e-01, 5.8141e-01, + 9.1916e-01, 5.2628e-01, 7.8845e-01, 9.0944e-01, + 6.8864e-01, 8.1878e-01, 7.2157e-01, 4.5334e-03, + 3.0805e-02, 9.5355e-01, 7.2954e-01, 8.3027e-01, + 4.9064e-01, 2.4970e-01, 2.3865e-01, 2.4121e-01, + 1.1834e-01, 6.6075e-01, 6.5268e-01, 3.8776e-01, + 2.7396e-01, 2.4684e-01, 2.4196e-01, 7.7938e-01, + 1.4070e-01, 9.9002e-01, 1.5260e-01, 1.4167e-01, + 7.9548e-02, 7.9584e-01, 8.7139e-01, 2.7498e-01, + 5.3075e-01, 4.1591e-01, 3.0671e-01, 8.1041e-01, + 1.0275e-01, 5.7758e-01, 3.1594e-01, 4.8286e-01, + 1.9194e-01, 3.1282e-01, 7.1670e-01, 3.2051e-01, + 5.2841e-02, 1.4067e-01, 9.1088e-01, 6.3668e-01, + 7.9115e-01, 2.4379e-01, 1.5462e-01, 4.2311e-02, + 7.5394e-01, 3.3252e-01, 2.4049e-01, 9.8577e-02, + 4.3073e-01, 6.5555e-01, 5.7805e-01, 4.9998e-01, + 4.3272e-01, 7.7004e-01, 1.1628e-01, 4.2535e-02, + 6.9726e-02, 1.5280e-01, 3.4529e-01, 4.6590e-01, + 5.8611e-02, 1.2878e-01, 7.4846e-01, 9.6319e-01, + 6.8051e-01, 7.1943e-01, 3.5870e-01, 5.7262e-01, + 3.2620e-01, 2.8076e-01, 8.7010e-02, 2.6366e-01, + 6.3187e-01, 1.4391e-01, 2.4884e-01, 3.5726e-01, + 3.9396e-01, 6.6159e-02, 3.5599e-01, 7.5055e-03, + 4.3583e-01, 4.5588e-02, 5.9369e-01, 1.2518e-01, + 6.8146e-01, 2.5843e-01, 5.1872e-01, 2.2847e-02, + 6.7753e-01, 2.2119e-01, 7.0221e-01, 7.7854e-01, + 3.8901e-01, 4.8029e-01, 8.7054e-01, 9.2905e-01, + 9.2144e-01, 6.6123e-01, 5.6375e-01, 9.4639e-01, + 6.2517e-01, 1.1648e-01, 8.8688e-01, 1.4300e-01, + 4.5617e-01, 7.1688e-01, 6.7259e-01, 1.8324e-01, + 3.7338e-01, 3.3730e-01, 4.3106e-01, 6.3842e-01, + 9.3775e-01, 7.9491e-01, 3.1424e-01, 2.5864e-02, + 4.7776e-01, 5.9028e-01, 9.3268e-01, 6.6511e-02, + 9.6948e-01, 8.4139e-01, 8.5390e-02, 5.1637e-01, + 9.5302e-01, 5.1624e-01, 1.6779e-01, 9.5432e-01, + 5.5960e-01, 5.8557e-01, 5.4894e-01, 9.4951e-01, + 7.7562e-03, 5.5602e-01, 1.5450e-03, 7.9207e-01, + 1.2908e-01, 4.7199e-01, 8.2021e-01, 2.9632e-01, + 4.7542e-01, 8.7852e-01, 8.6382e-01, 4.6447e-01, + 2.8956e-01, 3.2381e-01, 5.1671e-01, 4.2590e-01, + 3.5379e-01, 8.3501e-01, 9.9986e-01, 3.4206e-01, + 9.3903e-01, 2.7332e-01, 1.1633e-01, 3.1837e-01, + 4.9135e-01, 4.8891e-02, 5.8062e-01, 6.1981e-01, + 2.2126e-01, 7.9590e-01, 5.5608e-02, 2.9418e-01, + 6.1269e-01, 1.9812e-01, 6.3875e-01, 9.0929e-01, + 4.0284e-01, 3.2515e-01, 1.6248e-01, 3.7453e-01, + 4.3202e-01, 2.2840e-01, 3.2111e-02, 4.3723e-01, + 9.3748e-01, 7.7104e-01, 5.2249e-01, 3.4964e-01, + 4.8542e-01, 4.1877e-03, 7.9705e-01, 9.7778e-02, + 7.5475e-01, 2.3129e-01, 3.2430e-01, 5.1361e-01, + 1.8085e-01, 2.4295e-01, 6.1813e-01, 5.6771e-02, + 8.8849e-01, 1.6365e-01, 3.5850e-01, 1.2620e-01, + 8.2022e-01, 8.4712e-01, 2.9485e-01, 2.3532e-01, + 4.3311e-01, 2.0140e-01, 8.9178e-02, 8.6381e-01, + 3.1238e-01, 7.5215e-01, 5.5682e-01, 7.5471e-01, + 6.9133e-01, 2.2126e-01, 3.9228e-01, 4.3043e-01, + 3.7625e-02, 5.6012e-01, 5.1315e-01, 4.1442e-01, + 5.9861e-01, 9.3922e-01, 9.5372e-01, 2.4100e-01, + 5.6126e-01, 5.9819e-01, 9.4024e-01, 3.3099e-01, + 9.4664e-01, 7.0020e-01, 9.6989e-01, 2.8081e-01, + 2.1666e-01, 6.3859e-01, 7.5331e-01, 7.9288e-01, + 6.5633e-01, 6.7730e-01, 5.3757e-01, 8.5381e-01, + 2.7089e-02, 8.9615e-01, 5.8202e-01, 1.4598e-01, + 9.2770e-01, 1.8855e-01, 6.7041e-01, 8.6578e-01, + 4.2881e-01, 7.9922e-01, 2.4112e-01, 4.0255e-02, + 8.6471e-01, 8.6429e-02, 7.2325e-02, 2.4991e-01, + 5.2937e-01, 2.8655e-01, 1.5239e-02, 1.8351e-01, + 5.4877e-01, 5.2668e-01, 1.9444e-01, 5.9319e-01, + 6.0559e-01, 7.6015e-01, 1.0539e-01, 3.3917e-01, + 2.1990e-01, 2.2539e-01, 4.5181e-01, 3.4579e-01, + 9.4857e-01, 6.1781e-01, 7.9405e-01, 7.7832e-01, + 2.5284e-01, 9.8874e-01, 5.6116e-02, 8.6901e-01, + 4.8905e-01, 8.0060e-01, 6.9558e-01, 7.3432e-01, + 7.0246e-01, 9.7403e-01, 9.1121e-01, 9.0764e-02, + 1.3506e-03, 1.8463e-01, 6.4957e-01, 1.7816e-01, + 5.2229e-02, 8.8521e-01, 5.1552e-01, 7.3362e-01, + 3.7973e-01, 7.0862e-04, 7.8281e-01, 9.0549e-01, + 8.8415e-01, 6.1763e-01, 5.1671e-01, 7.1547e-01, + 5.0531e-01, 5.8740e-01, 9.1102e-01, 2.1919e-01, + 4.6771e-01, 3.6478e-01, 7.6398e-01, 9.1139e-01, + 9.4153e-01, 9.2249e-01, 2.2911e-01, 2.7885e-01, + 4.3889e-01, 1.4626e-01, 6.3367e-01, 3.9236e-01, + 9.8093e-01, 6.6512e-01, 9.1751e-01, 5.0031e-01, + 9.7081e-01, 8.7499e-01, 2.7757e-01, 8.8382e-01, + 2.9761e-01, 2.0972e-01, 3.4652e-01, 2.4990e-01, + 8.4359e-01, 5.6919e-02, 3.4057e-01, 3.8347e-01, + 1.6333e-01, 1.4571e-01, 1.0638e-01, 5.5718e-01, + 9.0663e-01, 4.6886e-01, 6.8587e-01, 7.3991e-01, + 7.9950e-01, 3.8327e-01, 1.5761e-01, 6.6038e-01, + 5.7231e-01, 6.3222e-01, 9.3553e-01, 4.0591e-01, + 4.2525e-01, 5.9767e-01, 2.2326e-01, 6.5176e-01, + 8.9346e-01, 4.4515e-01, 1.0019e-01, 3.7373e-01, + 2.4146e-01, 4.1742e-02, 6.5142e-01, 6.4001e-01, + 5.2382e-01, 7.2723e-01, 8.1684e-01, 5.1471e-01, + 4.1147e-01, 1.1515e-01, 4.6097e-01, 6.7416e-01, + 9.8748e-01, 9.0707e-01, 1.8568e-01, 1.1411e-01, + 5.2570e-01, 2.7178e-01, 7.4673e-01, 2.5094e-01, + 8.4486e-01, 5.5279e-01, 8.5037e-01, 2.4211e-01, + 2.3279e-02, 7.4591e-01, 7.8880e-01, 4.9236e-01, + 1.5544e-01, 5.8410e-01, 7.0916e-01, 2.1707e-01, + 5.3791e-01, 1.3857e-01, 2.8669e-01, 6.3323e-01, + 6.9263e-01, 3.5406e-01, 5.5079e-01, 6.6306e-01, + 2.7546e-01, 9.6607e-01, 5.8201e-01, 5.4173e-01, + 3.2975e-01, 4.5753e-01, 6.9765e-01, 3.3836e-01, + 9.7130e-01, 5.7396e-01, 5.9263e-01, 9.6322e-01, + 2.0223e-01, 1.7166e-01, 9.5551e-01, 2.1967e-01, + 4.6969e-01, 5.8877e-01, 7.4059e-01, 4.7956e-01, + 5.1271e-01, 2.2219e-01, 1.5212e-01, 9.8482e-01, + 4.7918e-01, 9.7424e-01, 6.1901e-01, 5.8213e-01, + 9.8916e-01, 8.7395e-01, 1.1881e-01, 1.4496e-01, + 7.9770e-01, 8.8556e-01, 6.3267e-01, 1.3114e-01, + 2.4220e-01, 9.3859e-01, 4.8235e-01, 2.6558e-01, + 7.2715e-01, 3.5161e-01, 7.2675e-01, 3.3797e-01, + 3.1692e-01, 8.7654e-01, 9.2532e-01, 3.3535e-01, + 3.8120e-01, 7.8279e-02, 6.3613e-01, 1.8321e-02, + 8.3910e-01, 8.3030e-01, 2.7475e-01, 5.6181e-01, + 7.5287e-01, 9.3822e-01, 1.3700e-01, 1.0742e-01, + 2.0008e-01, 5.8382e-01, 9.8849e-01, 1.6606e-01, + 7.1002e-01, 6.1730e-01, 3.4926e-01, 2.1845e-01, + 1.6840e-01, 9.6172e-01, 4.0727e-01, 3.6296e-02, + 9.1858e-01, 2.5370e-02, 7.0144e-01, 7.1196e-01, + 7.8953e-01, 1.2248e-02, 7.7101e-01, 2.2163e-01, + 2.7998e-01, 5.7485e-01, 5.9607e-01, 3.8870e-01, + 6.0031e-01, 8.3227e-01, 6.9437e-02, 5.5109e-01, + 4.4409e-01, 7.9516e-01, 2.8411e-01, 7.2349e-01, + 9.4898e-01, 7.4032e-01, 6.0055e-02, 2.9516e-01, + 1.5857e-01, 6.6885e-01, 2.2852e-01, 6.8544e-01, + 1.1209e-01, 7.6688e-01, 3.3589e-01, 5.7460e-01, + 5.0186e-01, 5.7458e-01, 2.7537e-01, 2.3220e-01, + 9.9519e-01, 3.4429e-01, 1.5667e-01, 1.6299e-01, + 8.1033e-01, 9.3481e-01, 6.2915e-01, 5.8154e-01, + 2.0061e-01, 2.2781e-01, 9.0755e-01, 4.0108e-01, + 3.4687e-01, 7.8445e-01, 4.8250e-02, 7.3426e-01, + 7.6138e-01, 4.4409e-01, 8.3863e-01, 7.6788e-01, + 4.2313e-01, 5.3538e-01, 1.2980e-01, 8.6170e-01, + 3.1408e-01, 5.4734e-01, 1.7495e-01, 1.1843e-01, + 3.7798e-01, 7.5427e-01, 3.1385e-01, 8.9977e-01, + 4.5864e-01, 2.3028e-01, 2.2634e-01, 9.9183e-01, + 2.2514e-01, 4.1228e-01, 5.1544e-01, 4.3390e-01, + 4.0426e-01, 3.9971e-01, 7.6463e-01, 2.0155e-03, + 7.5372e-01, 2.2893e-01, 2.9849e-02, 7.6110e-02, + 3.3857e-01, 2.2407e-02, 7.0282e-01, 1.4713e-01, + 6.2629e-01, 6.8243e-01, 9.9627e-01, 5.1013e-01, + 8.0536e-02, 9.8552e-01, 6.6502e-01, 6.8200e-02, + 8.5999e-02, 5.8414e-01, 8.9296e-01, 3.6543e-01, + 6.5870e-01, 7.9749e-01, 1.3448e-01, 7.5013e-01, + 2.0267e-01, 4.7561e-01, 3.3676e-01, 8.5537e-01, + 2.8565e-01, 3.5750e-01, 6.0110e-01, 4.8385e-01, + 6.7175e-01, 2.8373e-02, 2.9667e-01, 1.5980e-01, + 6.0663e-01, 5.6893e-01, 8.6187e-01, 3.8426e-01, + 9.4313e-01, 1.5700e-01, 6.4374e-01, 6.7882e-01, + 8.1698e-02, 8.7238e-01, 6.1915e-01, 2.4451e-01, + 8.6242e-01, 6.4213e-01, 9.1978e-01, 5.7440e-01, + 6.5066e-02, 1.3295e-01, 6.8781e-01, 6.0675e-01, + 2.5313e-01, 2.2555e-02, 1.8691e-01, 8.1480e-01, + 8.6104e-01, 2.0666e-01, 2.1914e-01, 6.0359e-01, + 5.1611e-01, 5.6270e-01, 2.2858e-01, 7.0563e-02, + 7.3900e-02, 9.0084e-01, 4.8907e-01, 2.6475e-01, + 7.2082e-01, 6.8751e-01, 1.3829e-01, 9.7521e-02, + 9.9126e-01, 6.0189e-01, 7.9516e-01, 2.1625e-01, + 5.7626e-01, 1.6852e-01, 9.5043e-01, 3.1655e-01, + 2.5323e-01, 5.6154e-01, 5.6857e-01, 5.2077e-01, + 9.3389e-01, 8.0069e-01, 1.4968e-01, 8.4212e-01, + 3.1001e-01, 2.2924e-01, 6.2681e-01, 2.6673e-01, + 9.8161e-01, 4.5832e-01, 3.3629e-01, 6.6850e-01, + 7.7463e-01, 6.5327e-02, 8.0080e-01, 4.1266e-01, + 7.2843e-01, 9.0381e-02, 5.7561e-01, 7.3344e-01]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.0651, 0.6329, 0.6141, ..., 0.3243, 0.1158, 0.5219]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 10.808244943618774 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), + col_indices=tensor([7315, 1858, 1670, 5364, 1184, 3689, 9574, 1136, 5558, + 3491, 589, 9091, 159, 766, 502, 9929, 4846, 9650, + 2563, 3405, 2322, 3115, 8463, 8330, 9642, 7938, 1757, + 7149, 4012, 8129, 197, 2039, 5706, 3549, 7371, 2993, + 1668, 5510, 7702, 9196, 8429, 6070, 2662, 4013, 9415, + 6857, 7829, 189, 1980, 6763, 6718, 1267, 4257, 3542, + 1839, 9352, 3880, 4065, 5790, 6525, 9847, 6167, 4814, + 6341, 2068, 662, 5058, 1944, 658, 6063, 9056, 9925, + 2964, 8244, 282, 3473, 7406, 8810, 4236, 886, 9762, + 8425, 8800, 4778, 5281, 3283, 4118, 9078, 3169, 8457, + 9924, 2720, 1304, 4941, 3743, 4847, 8299, 4889, 214, + 6275, 5734, 2313, 2745, 5305, 3623, 13, 2937, 2995, + 6172, 9968, 1311, 5504, 8279, 7545, 3069, 7648, 5567, + 8268, 1055, 3660, 335, 7062, 8121, 8983, 7622, 6715, + 5283, 420, 1742, 3498, 1745, 3085, 6189, 2380, 1283, + 9795, 8106, 1945, 1678, 538, 5640, 7420, 194, 9011, + 3294, 2932, 2411, 2645, 8021, 5019, 4361, 3489, 1910, + 9620, 4481, 9616, 1602, 3695, 472, 2841, 8751, 2255, + 3889, 4605, 7873, 655, 6214, 3156, 256, 9963, 5581, + 8680, 717, 5063, 1404, 9442, 2228, 7492, 7160, 3856, + 6002, 9242, 9133, 2725, 317, 7326, 4324, 8318, 9240, + 9476, 4557, 5973, 4304, 8345, 1060, 987, 4937, 7346, + 7026, 4522, 1707, 1886, 1437, 9931, 6068, 6434, 2480, + 5992, 9055, 9136, 8322, 9905, 2782, 196, 693, 1688, + 8926, 3768, 8472, 207, 7495, 2196, 9726, 8814, 7453, + 1485, 5440, 3418, 8856, 743, 8967, 7230, 7965, 5970, + 15, 4482, 7568, 1808, 6735, 4024, 7824, 7515, 8144, + 3912, 8719, 4629, 8161, 3936, 4716, 2525, 783, 5222, + 9876, 8442, 8428, 7355, 3144, 4428, 6522, 132, 3790, + 5300, 9557, 7676, 9228, 8283, 5149, 2325, 9115, 1687, + 4272, 5763, 8908, 5886, 1669, 7453, 1796, 8835, 7278, + 6225, 9225, 6087, 903, 1728, 1580, 3725, 7730, 3836, + 8521, 8698, 4270, 4031, 2371, 8499, 521, 7387, 7743, + 8947, 886, 3479, 4527, 8226, 9051, 6009, 5379, 5768, + 439, 2600, 4801, 8794, 9610, 3561, 1577, 9097, 9975, + 1103, 6673, 9445, 1441, 7688, 2124, 2728, 4023, 4610, + 9118, 4314, 7265, 578, 8603, 197, 5840, 6120, 5539, + 9564, 8200, 5375, 7108, 5160, 476, 3824, 2379, 87, + 1194, 5282, 4975, 7693, 2868, 5155, 7376, 7424, 5181, + 4696, 4912, 8460, 4137, 3270, 9635, 9590, 6124, 1068, + 6534, 3173, 3896, 8453, 8316, 291, 1519, 8246, 4691, + 1751, 2308, 3396, 2423, 5215, 2970, 6752, 2916, 7921, + 8802, 4661, 9102, 3770, 6158, 7914, 1489, 4152, 1612, + 5823, 1936, 6852, 1976, 2146, 3405, 5451, 6120, 4413, + 8917, 3721, 1057, 4268, 9757, 761, 1140, 545, 6502, + 1749, 9777, 5713, 4612, 1378, 6061, 5135, 7937, 4403, + 5066, 6373, 9197, 7808, 4204, 644, 8672, 2203, 2426, + 896, 6965, 8169, 1801, 9071, 4317, 3597, 8597, 2047, + 1880, 5444, 8242, 6448, 7450, 4122, 6833, 5968, 2231, + 7351, 4384, 833, 7891, 8348, 765, 3059, 7905, 8630, + 7013, 9479, 6195, 7212, 3271, 1293, 3311, 3855, 1964, + 4641, 7448, 4226, 8995, 7274, 5191, 6567, 9407, 1526, + 9480, 8548, 5872, 8769, 2698, 7864, 8038, 56, 27, + 7763, 2188, 9491, 2878, 9318, 4526, 7193, 5303, 5124, + 9708, 2338, 8366, 9823, 9154, 6091, 9581, 2937, 8906, + 5848, 2687, 7340, 8708, 1010, 6399, 3045, 4615, 8826, + 3568, 7285, 6031, 6734, 6933, 6578, 5862, 9558, 6554, + 5089, 3113, 4603, 7009, 7343, 4267, 19, 9919, 9366, + 2933, 9750, 5505, 6090, 1142, 7058, 5172, 8599, 4136, + 5547, 157, 7341, 831, 3008, 927, 5993, 8607, 171, + 8862, 6810, 2856, 5723, 7936, 8843, 3881, 1692, 6638, + 2904, 7697, 5025, 5714, 7530, 9817, 833, 9236, 7396, + 9254, 912, 7384, 3775, 1170, 3977, 7524, 4813, 9008, + 7620, 7005, 3844, 204, 3517, 5068, 7264, 4011, 9098, + 8578, 2006, 5773, 9227, 5847, 5858, 2895, 2892, 6076, + 8741, 3340, 3921, 2744, 56, 4494, 5968, 89, 4026, + 7255, 8544, 840, 5863, 6302, 414, 2922, 3740, 955, + 8218, 5362, 5266, 5026, 8483, 5082, 7417, 7810, 644, + 1190, 6997, 8587, 3940, 7419, 7679, 3419, 2050, 1375, + 547, 8244, 8381, 3833, 6045, 5426, 8943, 8778, 9260, + 207, 4853, 1852, 1589, 1656, 6333, 1916, 7763, 2953, + 9839, 3533, 7621, 5586, 4408, 8103, 2442, 8516, 9148, + 3506, 9770, 571, 3215, 8121, 6287, 599, 7936, 8894, + 9182, 1185, 7298, 5238, 2435, 606, 6619, 1717, 9123, + 3804, 6744, 1688, 8115, 3519, 8007, 9191, 5309, 7085, + 4342, 899, 8048, 923, 5544, 6203, 2126, 6246, 100, + 7840, 564, 2942, 3285, 2333, 5463, 7923, 2151, 8056, + 5768, 3098, 9031, 3120, 4324, 2617, 2542, 2600, 8238, + 4487, 7446, 3440, 5653, 3220, 3177, 9241, 8081, 5102, + 9646, 8885, 6699, 8756, 5519, 9452, 259, 2677, 8794, + 1460, 8411, 5716, 9458, 8155, 644, 8341, 1450, 5540, + 518, 3426, 4607, 7955, 4148, 7168, 7044, 6505, 1269, + 2346, 3090, 5416, 1512, 4209, 5899, 7202, 6013, 8728, + 3813, 6142, 82, 1211, 5513, 137, 7986, 7640, 888, + 9985, 5099, 3271, 6013, 3559, 7646, 1436, 3067, 5359, + 155, 1728, 9824, 1779, 491, 233, 3754, 1015, 9765, + 298, 9547, 5517, 4342, 1582, 1949, 2482, 7321, 4988, + 2411, 5519, 4219, 6830, 5793, 9214, 4820, 3125, 8890, + 466, 8599, 508, 8339, 851, 3777, 1734, 9674, 8942, + 1427, 9500, 6588, 1605, 2007, 4551, 8625, 2609, 8688, + 2327, 4631, 6062, 4470, 4072, 4614, 1416, 705, 8243, + 2076, 1478, 9585, 1950, 8913, 3473, 2513, 5641, 9515, + 7648, 6244, 9436, 7192, 4031, 1160, 9508, 6308, 1862, + 2152, 8421, 2090, 4057, 9596, 5353, 4301, 5906, 3596, + 9384, 3132, 7647, 7603, 1913, 5032, 9088, 8117, 9096, + 9354, 6494, 1087, 8680, 5407, 3221, 1552, 3920, 5378, + 593, 2113, 3230, 2673, 9118, 6677, 9772, 8594, 9788, + 9478, 4593, 1005, 3282, 8204, 3936, 3443, 4355, 7243, + 1487, 2444, 8503, 9638, 7593, 7545, 129, 8918, 133, + 421, 8917, 4830, 3557, 8606, 3066, 6016, 3080, 4558, + 3544, 5859, 5233, 2394, 2434, 6421, 5504, 8413, 9470, + 5364, 6135, 5632, 3434, 1674, 4946, 63, 7706, 4456, + 2533, 4194, 7919, 3231, 3967, 8180, 3312, 3496, 3610, + 5542, 2929, 7279, 7446, 892, 2424, 6796, 4557, 3766, + 7918, 6363, 3300, 1258, 5530, 8133, 8383, 8851, 5621, + 3759, 3195, 4313, 9020, 9093, 9589, 8220, 8240, 8511, + 5075, 193, 2620, 5513, 2863, 9274, 8566, 2237, 3704, + 640, 7685, 9689, 8300, 5197, 3833, 6912, 7500, 4822, + 3780, 3582, 1367, 3318, 8493, 5378, 9890, 7159, 2910, + 7302, 2202, 4682, 1371, 3870, 8991, 7769, 4570, 5127, + 1421, 4645, 6754, 8030, 2942, 1562, 421, 1755, 6122, + 877]), + values=tensor([4.5503e-01, 5.5236e-01, 7.4946e-01, 7.5932e-01, + 9.8952e-01, 3.1557e-01, 9.1443e-01, 1.4281e-01, + 4.6438e-01, 9.2065e-01, 9.5281e-01, 9.8289e-01, + 4.9044e-01, 6.6880e-01, 9.5273e-01, 8.2119e-01, + 7.2789e-01, 1.0208e-02, 8.4355e-01, 1.4450e-01, + 6.3411e-01, 1.6232e-01, 7.1788e-01, 9.8785e-01, + 4.0314e-01, 3.0270e-01, 4.8394e-02, 3.4055e-01, + 7.6103e-01, 4.4991e-01, 5.0957e-01, 4.1284e-01, + 4.0828e-01, 2.3054e-01, 5.1885e-01, 4.2268e-01, + 6.4354e-01, 3.8568e-01, 8.9900e-01, 8.8779e-01, + 9.9151e-01, 6.9879e-02, 3.0729e-01, 4.2140e-01, + 7.0114e-01, 6.7449e-01, 8.3811e-01, 8.3634e-02, + 8.5457e-01, 5.9364e-01, 5.6239e-01, 5.3730e-01, + 2.8704e-01, 3.3603e-01, 7.3587e-02, 6.1617e-01, + 7.7568e-01, 1.0129e-01, 4.9434e-01, 4.4292e-01, + 7.5922e-01, 9.8988e-01, 2.8604e-01, 8.3362e-01, + 6.9002e-02, 5.9701e-01, 2.6577e-01, 3.9077e-01, + 8.7670e-02, 7.3042e-01, 1.5991e-01, 4.9806e-01, + 5.8198e-01, 8.9984e-01, 8.0160e-01, 3.3965e-01, + 3.7423e-02, 6.4093e-01, 2.2178e-01, 1.7177e-01, + 3.3041e-01, 4.0645e-01, 4.5012e-01, 5.2065e-01, + 7.1438e-01, 7.7746e-01, 6.9993e-01, 8.4247e-01, + 3.3459e-01, 2.4600e-01, 5.9346e-01, 7.0913e-01, + 2.5832e-01, 7.7024e-01, 2.6469e-01, 2.7663e-01, + 6.2902e-02, 9.4403e-01, 6.6746e-02, 3.0041e-01, + 9.3610e-01, 2.6778e-01, 3.7705e-01, 8.4692e-03, + 8.8453e-01, 2.0632e-01, 4.4988e-01, 1.6894e-01, + 1.2438e-02, 5.8381e-01, 7.1115e-01, 4.4251e-01, + 6.7595e-01, 6.3083e-02, 1.5459e-01, 7.7248e-01, + 1.6884e-01, 4.5854e-01, 9.8097e-03, 2.8779e-01, + 9.4221e-01, 1.7999e-01, 9.6697e-01, 2.1248e-01, + 3.7740e-01, 4.0096e-01, 5.1385e-01, 9.8130e-01, + 6.5753e-01, 6.0122e-02, 1.9068e-01, 3.6002e-01, + 9.0231e-01, 1.9831e-01, 8.9445e-01, 6.5688e-02, + 4.5744e-01, 2.4531e-01, 8.5433e-03, 4.4037e-01, + 8.6668e-01, 6.9154e-01, 9.6479e-01, 9.5443e-01, + 1.2512e-01, 1.3133e-01, 8.0802e-01, 7.8380e-01, + 1.7089e-01, 2.1042e-01, 7.9960e-01, 5.8428e-01, + 4.6539e-01, 8.5401e-01, 5.1112e-01, 4.7769e-01, + 5.4050e-01, 9.3609e-01, 2.8009e-01, 6.6015e-02, + 5.1141e-01, 7.8915e-01, 8.6880e-01, 6.1754e-01, + 9.4843e-01, 1.1650e-01, 1.5677e-01, 1.7600e-01, + 9.5041e-01, 2.2249e-01, 9.7408e-01, 3.4262e-01, + 6.7159e-01, 6.4447e-01, 8.9288e-01, 2.9729e-01, + 7.2744e-01, 6.1960e-01, 9.0982e-01, 9.4766e-01, + 9.2741e-01, 1.8050e-01, 7.5777e-01, 8.4737e-01, + 5.2974e-01, 1.3975e-02, 3.2218e-01, 7.5728e-01, + 3.0380e-01, 9.5599e-01, 7.4789e-01, 3.7504e-01, + 9.6520e-01, 7.6303e-01, 3.9696e-01, 1.0401e-01, + 4.0982e-01, 6.3316e-01, 9.2327e-02, 1.9405e-02, + 4.7989e-01, 9.4566e-01, 6.9287e-01, 1.9453e-01, + 2.1253e-01, 4.4926e-01, 5.8619e-02, 7.0350e-01, + 3.3919e-01, 7.5556e-01, 9.4463e-01, 3.1611e-01, + 4.7702e-01, 3.3843e-01, 7.1410e-01, 6.7562e-01, + 5.5025e-01, 8.2715e-01, 9.1478e-01, 4.7040e-01, + 6.8418e-01, 1.3297e-01, 1.3643e-02, 8.3963e-01, + 9.4038e-01, 3.8012e-01, 6.6480e-01, 4.3203e-01, + 1.1632e-01, 2.1166e-01, 1.0880e-01, 5.0712e-02, + 6.8131e-01, 1.0832e-01, 8.7495e-01, 9.2336e-01, + 4.1149e-01, 8.0381e-01, 6.7670e-01, 6.4943e-01, + 2.4712e-01, 6.0406e-01, 8.7765e-02, 8.2406e-01, + 9.0938e-01, 1.8784e-01, 5.9111e-01, 8.8462e-01, + 3.7481e-01, 9.9173e-01, 1.7508e-01, 9.1699e-01, + 7.0613e-03, 1.6038e-01, 3.2955e-01, 7.4587e-02, + 8.9881e-01, 8.5470e-01, 7.3684e-01, 6.1175e-01, + 3.0823e-02, 7.5970e-01, 1.9162e-01, 7.2898e-01, + 3.5928e-01, 5.5114e-01, 9.5006e-01, 2.0655e-01, + 3.8569e-01, 1.7515e-01, 8.3360e-01, 6.9865e-01, + 9.2797e-01, 6.5322e-02, 9.3365e-01, 8.5821e-01, + 6.8687e-01, 5.4796e-01, 7.4582e-01, 3.8030e-01, + 5.9283e-01, 1.5694e-02, 1.0339e-01, 1.3704e-01, + 1.5233e-01, 8.2752e-01, 6.5473e-01, 1.7110e-01, + 4.4237e-01, 8.6223e-01, 8.4772e-01, 3.8298e-01, + 9.6728e-01, 6.0198e-01, 7.9223e-01, 8.2339e-01, + 7.4017e-01, 3.3245e-01, 4.3901e-01, 8.2795e-01, + 4.8074e-01, 9.4428e-01, 8.4482e-01, 6.9114e-01, + 4.6154e-01, 5.3893e-01, 3.2994e-01, 1.1555e-01, + 5.1914e-01, 4.7741e-01, 4.9269e-02, 4.4184e-01, + 7.6289e-01, 4.9858e-01, 6.7587e-01, 1.5299e-01, + 8.6362e-01, 5.8084e-01, 4.7783e-01, 4.9700e-01, + 4.2540e-01, 1.0162e-01, 7.5272e-01, 1.8767e-01, + 9.9168e-01, 4.0597e-01, 9.5217e-01, 6.5442e-01, + 5.2756e-01, 4.4262e-01, 5.8423e-01, 6.3144e-01, + 2.4769e-01, 8.0175e-01, 6.4149e-01, 5.8141e-01, + 9.1916e-01, 5.2628e-01, 7.8845e-01, 9.0944e-01, + 6.8864e-01, 8.1878e-01, 7.2157e-01, 4.5334e-03, + 3.0805e-02, 9.5355e-01, 7.2954e-01, 8.3027e-01, + 4.9064e-01, 2.4970e-01, 2.3865e-01, 2.4121e-01, + 1.1834e-01, 6.6075e-01, 6.5268e-01, 3.8776e-01, + 2.7396e-01, 2.4684e-01, 2.4196e-01, 7.7938e-01, + 1.4070e-01, 9.9002e-01, 1.5260e-01, 1.4167e-01, + 7.9548e-02, 7.9584e-01, 8.7139e-01, 2.7498e-01, + 5.3075e-01, 4.1591e-01, 3.0671e-01, 8.1041e-01, + 1.0275e-01, 5.7758e-01, 3.1594e-01, 4.8286e-01, + 1.9194e-01, 3.1282e-01, 7.1670e-01, 3.2051e-01, + 5.2841e-02, 1.4067e-01, 9.1088e-01, 6.3668e-01, + 7.9115e-01, 2.4379e-01, 1.5462e-01, 4.2311e-02, + 7.5394e-01, 3.3252e-01, 2.4049e-01, 9.8577e-02, + 4.3073e-01, 6.5555e-01, 5.7805e-01, 4.9998e-01, + 4.3272e-01, 7.7004e-01, 1.1628e-01, 4.2535e-02, + 6.9726e-02, 1.5280e-01, 3.4529e-01, 4.6590e-01, + 5.8611e-02, 1.2878e-01, 7.4846e-01, 9.6319e-01, + 6.8051e-01, 7.1943e-01, 3.5870e-01, 5.7262e-01, + 3.2620e-01, 2.8076e-01, 8.7010e-02, 2.6366e-01, + 6.3187e-01, 1.4391e-01, 2.4884e-01, 3.5726e-01, + 3.9396e-01, 6.6159e-02, 3.5599e-01, 7.5055e-03, + 4.3583e-01, 4.5588e-02, 5.9369e-01, 1.2518e-01, + 6.8146e-01, 2.5843e-01, 5.1872e-01, 2.2847e-02, + 6.7753e-01, 2.2119e-01, 7.0221e-01, 7.7854e-01, + 3.8901e-01, 4.8029e-01, 8.7054e-01, 9.2905e-01, + 9.2144e-01, 6.6123e-01, 5.6375e-01, 9.4639e-01, + 6.2517e-01, 1.1648e-01, 8.8688e-01, 1.4300e-01, + 4.5617e-01, 7.1688e-01, 6.7259e-01, 1.8324e-01, + 3.7338e-01, 3.3730e-01, 4.3106e-01, 6.3842e-01, + 9.3775e-01, 7.9491e-01, 3.1424e-01, 2.5864e-02, + 4.7776e-01, 5.9028e-01, 9.3268e-01, 6.6511e-02, + 9.6948e-01, 8.4139e-01, 8.5390e-02, 5.1637e-01, + 9.5302e-01, 5.1624e-01, 1.6779e-01, 9.5432e-01, + 5.5960e-01, 5.8557e-01, 5.4894e-01, 9.4951e-01, + 7.7562e-03, 5.5602e-01, 1.5450e-03, 7.9207e-01, + 1.2908e-01, 4.7199e-01, 8.2021e-01, 2.9632e-01, + 4.7542e-01, 8.7852e-01, 8.6382e-01, 4.6447e-01, + 2.8956e-01, 3.2381e-01, 5.1671e-01, 4.2590e-01, + 3.5379e-01, 8.3501e-01, 9.9986e-01, 3.4206e-01, + 9.3903e-01, 2.7332e-01, 1.1633e-01, 3.1837e-01, + 4.9135e-01, 4.8891e-02, 5.8062e-01, 6.1981e-01, + 2.2126e-01, 7.9590e-01, 5.5608e-02, 2.9418e-01, + 6.1269e-01, 1.9812e-01, 6.3875e-01, 9.0929e-01, + 4.0284e-01, 3.2515e-01, 1.6248e-01, 3.7453e-01, + 4.3202e-01, 2.2840e-01, 3.2111e-02, 4.3723e-01, + 9.3748e-01, 7.7104e-01, 5.2249e-01, 3.4964e-01, + 4.8542e-01, 4.1877e-03, 7.9705e-01, 9.7778e-02, + 7.5475e-01, 2.3129e-01, 3.2430e-01, 5.1361e-01, + 1.8085e-01, 2.4295e-01, 6.1813e-01, 5.6771e-02, + 8.8849e-01, 1.6365e-01, 3.5850e-01, 1.2620e-01, + 8.2022e-01, 8.4712e-01, 2.9485e-01, 2.3532e-01, + 4.3311e-01, 2.0140e-01, 8.9178e-02, 8.6381e-01, + 3.1238e-01, 7.5215e-01, 5.5682e-01, 7.5471e-01, + 6.9133e-01, 2.2126e-01, 3.9228e-01, 4.3043e-01, + 3.7625e-02, 5.6012e-01, 5.1315e-01, 4.1442e-01, + 5.9861e-01, 9.3922e-01, 9.5372e-01, 2.4100e-01, + 5.6126e-01, 5.9819e-01, 9.4024e-01, 3.3099e-01, + 9.4664e-01, 7.0020e-01, 9.6989e-01, 2.8081e-01, + 2.1666e-01, 6.3859e-01, 7.5331e-01, 7.9288e-01, + 6.5633e-01, 6.7730e-01, 5.3757e-01, 8.5381e-01, + 2.7089e-02, 8.9615e-01, 5.8202e-01, 1.4598e-01, + 9.2770e-01, 1.8855e-01, 6.7041e-01, 8.6578e-01, + 4.2881e-01, 7.9922e-01, 2.4112e-01, 4.0255e-02, + 8.6471e-01, 8.6429e-02, 7.2325e-02, 2.4991e-01, + 5.2937e-01, 2.8655e-01, 1.5239e-02, 1.8351e-01, + 5.4877e-01, 5.2668e-01, 1.9444e-01, 5.9319e-01, + 6.0559e-01, 7.6015e-01, 1.0539e-01, 3.3917e-01, + 2.1990e-01, 2.2539e-01, 4.5181e-01, 3.4579e-01, + 9.4857e-01, 6.1781e-01, 7.9405e-01, 7.7832e-01, + 2.5284e-01, 9.8874e-01, 5.6116e-02, 8.6901e-01, + 4.8905e-01, 8.0060e-01, 6.9558e-01, 7.3432e-01, + 7.0246e-01, 9.7403e-01, 9.1121e-01, 9.0764e-02, + 1.3506e-03, 1.8463e-01, 6.4957e-01, 1.7816e-01, + 5.2229e-02, 8.8521e-01, 5.1552e-01, 7.3362e-01, + 3.7973e-01, 7.0862e-04, 7.8281e-01, 9.0549e-01, + 8.8415e-01, 6.1763e-01, 5.1671e-01, 7.1547e-01, + 5.0531e-01, 5.8740e-01, 9.1102e-01, 2.1919e-01, + 4.6771e-01, 3.6478e-01, 7.6398e-01, 9.1139e-01, + 9.4153e-01, 9.2249e-01, 2.2911e-01, 2.7885e-01, + 4.3889e-01, 1.4626e-01, 6.3367e-01, 3.9236e-01, + 9.8093e-01, 6.6512e-01, 9.1751e-01, 5.0031e-01, + 9.7081e-01, 8.7499e-01, 2.7757e-01, 8.8382e-01, + 2.9761e-01, 2.0972e-01, 3.4652e-01, 2.4990e-01, + 8.4359e-01, 5.6919e-02, 3.4057e-01, 3.8347e-01, + 1.6333e-01, 1.4571e-01, 1.0638e-01, 5.5718e-01, + 9.0663e-01, 4.6886e-01, 6.8587e-01, 7.3991e-01, + 7.9950e-01, 3.8327e-01, 1.5761e-01, 6.6038e-01, + 5.7231e-01, 6.3222e-01, 9.3553e-01, 4.0591e-01, + 4.2525e-01, 5.9767e-01, 2.2326e-01, 6.5176e-01, + 8.9346e-01, 4.4515e-01, 1.0019e-01, 3.7373e-01, + 2.4146e-01, 4.1742e-02, 6.5142e-01, 6.4001e-01, + 5.2382e-01, 7.2723e-01, 8.1684e-01, 5.1471e-01, + 4.1147e-01, 1.1515e-01, 4.6097e-01, 6.7416e-01, + 9.8748e-01, 9.0707e-01, 1.8568e-01, 1.1411e-01, + 5.2570e-01, 2.7178e-01, 7.4673e-01, 2.5094e-01, + 8.4486e-01, 5.5279e-01, 8.5037e-01, 2.4211e-01, + 2.3279e-02, 7.4591e-01, 7.8880e-01, 4.9236e-01, + 1.5544e-01, 5.8410e-01, 7.0916e-01, 2.1707e-01, + 5.3791e-01, 1.3857e-01, 2.8669e-01, 6.3323e-01, + 6.9263e-01, 3.5406e-01, 5.5079e-01, 6.6306e-01, + 2.7546e-01, 9.6607e-01, 5.8201e-01, 5.4173e-01, + 3.2975e-01, 4.5753e-01, 6.9765e-01, 3.3836e-01, + 9.7130e-01, 5.7396e-01, 5.9263e-01, 9.6322e-01, + 2.0223e-01, 1.7166e-01, 9.5551e-01, 2.1967e-01, + 4.6969e-01, 5.8877e-01, 7.4059e-01, 4.7956e-01, + 5.1271e-01, 2.2219e-01, 1.5212e-01, 9.8482e-01, + 4.7918e-01, 9.7424e-01, 6.1901e-01, 5.8213e-01, + 9.8916e-01, 8.7395e-01, 1.1881e-01, 1.4496e-01, + 7.9770e-01, 8.8556e-01, 6.3267e-01, 1.3114e-01, + 2.4220e-01, 9.3859e-01, 4.8235e-01, 2.6558e-01, + 7.2715e-01, 3.5161e-01, 7.2675e-01, 3.3797e-01, + 3.1692e-01, 8.7654e-01, 9.2532e-01, 3.3535e-01, + 3.8120e-01, 7.8279e-02, 6.3613e-01, 1.8321e-02, + 8.3910e-01, 8.3030e-01, 2.7475e-01, 5.6181e-01, + 7.5287e-01, 9.3822e-01, 1.3700e-01, 1.0742e-01, + 2.0008e-01, 5.8382e-01, 9.8849e-01, 1.6606e-01, + 7.1002e-01, 6.1730e-01, 3.4926e-01, 2.1845e-01, + 1.6840e-01, 9.6172e-01, 4.0727e-01, 3.6296e-02, + 9.1858e-01, 2.5370e-02, 7.0144e-01, 7.1196e-01, + 7.8953e-01, 1.2248e-02, 7.7101e-01, 2.2163e-01, + 2.7998e-01, 5.7485e-01, 5.9607e-01, 3.8870e-01, + 6.0031e-01, 8.3227e-01, 6.9437e-02, 5.5109e-01, + 4.4409e-01, 7.9516e-01, 2.8411e-01, 7.2349e-01, + 9.4898e-01, 7.4032e-01, 6.0055e-02, 2.9516e-01, + 1.5857e-01, 6.6885e-01, 2.2852e-01, 6.8544e-01, + 1.1209e-01, 7.6688e-01, 3.3589e-01, 5.7460e-01, + 5.0186e-01, 5.7458e-01, 2.7537e-01, 2.3220e-01, + 9.9519e-01, 3.4429e-01, 1.5667e-01, 1.6299e-01, + 8.1033e-01, 9.3481e-01, 6.2915e-01, 5.8154e-01, + 2.0061e-01, 2.2781e-01, 9.0755e-01, 4.0108e-01, + 3.4687e-01, 7.8445e-01, 4.8250e-02, 7.3426e-01, + 7.6138e-01, 4.4409e-01, 8.3863e-01, 7.6788e-01, + 4.2313e-01, 5.3538e-01, 1.2980e-01, 8.6170e-01, + 3.1408e-01, 5.4734e-01, 1.7495e-01, 1.1843e-01, + 3.7798e-01, 7.5427e-01, 3.1385e-01, 8.9977e-01, + 4.5864e-01, 2.3028e-01, 2.2634e-01, 9.9183e-01, + 2.2514e-01, 4.1228e-01, 5.1544e-01, 4.3390e-01, + 4.0426e-01, 3.9971e-01, 7.6463e-01, 2.0155e-03, + 7.5372e-01, 2.2893e-01, 2.9849e-02, 7.6110e-02, + 3.3857e-01, 2.2407e-02, 7.0282e-01, 1.4713e-01, + 6.2629e-01, 6.8243e-01, 9.9627e-01, 5.1013e-01, + 8.0536e-02, 9.8552e-01, 6.6502e-01, 6.8200e-02, + 8.5999e-02, 5.8414e-01, 8.9296e-01, 3.6543e-01, + 6.5870e-01, 7.9749e-01, 1.3448e-01, 7.5013e-01, + 2.0267e-01, 4.7561e-01, 3.3676e-01, 8.5537e-01, + 2.8565e-01, 3.5750e-01, 6.0110e-01, 4.8385e-01, + 6.7175e-01, 2.8373e-02, 2.9667e-01, 1.5980e-01, + 6.0663e-01, 5.6893e-01, 8.6187e-01, 3.8426e-01, + 9.4313e-01, 1.5700e-01, 6.4374e-01, 6.7882e-01, + 8.1698e-02, 8.7238e-01, 6.1915e-01, 2.4451e-01, + 8.6242e-01, 6.4213e-01, 9.1978e-01, 5.7440e-01, + 6.5066e-02, 1.3295e-01, 6.8781e-01, 6.0675e-01, + 2.5313e-01, 2.2555e-02, 1.8691e-01, 8.1480e-01, + 8.6104e-01, 2.0666e-01, 2.1914e-01, 6.0359e-01, + 5.1611e-01, 5.6270e-01, 2.2858e-01, 7.0563e-02, + 7.3900e-02, 9.0084e-01, 4.8907e-01, 2.6475e-01, + 7.2082e-01, 6.8751e-01, 1.3829e-01, 9.7521e-02, + 9.9126e-01, 6.0189e-01, 7.9516e-01, 2.1625e-01, + 5.7626e-01, 1.6852e-01, 9.5043e-01, 3.1655e-01, + 2.5323e-01, 5.6154e-01, 5.6857e-01, 5.2077e-01, + 9.3389e-01, 8.0069e-01, 1.4968e-01, 8.4212e-01, + 3.1001e-01, 2.2924e-01, 6.2681e-01, 2.6673e-01, + 9.8161e-01, 4.5832e-01, 3.3629e-01, 6.6850e-01, + 7.7463e-01, 6.5327e-02, 8.0080e-01, 4.1266e-01, + 7.2843e-01, 9.0381e-02, 5.7561e-01, 7.3344e-01]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.0651, 0.6329, 0.6141, ..., 0.3243, 0.1158, 0.5219]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 10.808244943618774 seconds + +[20.16, 20.24, 20.2, 20.4, 20.4, 20.4, 20.44, 20.32, 20.16, 20.08] +[20.0, 19.96, 20.64, 22.76, 24.36, 26.04, 26.44, 25.96, 25.96, 24.84, 23.4, 23.52, 23.44, 23.4] +14.250372886657715 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 141369, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.808244943618774, 'TIME_S_1KI': 0.0764541373541496, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 314.87872554779057, 'W': 22.096174468711904} +[20.16, 20.24, 20.2, 20.4, 20.4, 20.4, 20.44, 20.32, 20.16, 20.08, 20.64, 20.44, 20.4, 20.6, 20.64, 20.48, 20.36, 20.32, 20.32, 20.52] +366.82000000000005 +18.341 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 141369, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.808244943618774, 'TIME_S_1KI': 0.0764541373541496, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 314.87872554779057, 'W': 22.096174468711904, 'J_1KI': 2.2273534194044706, 'W_1KI': 0.15630141310125914, 'W_D': 3.7551744687119033, 'J_D': 53.51263643360139, 'W_D_1KI': 0.02656292729461129, 'J_D_1KI': 0.00018789782268114857} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_500000_1e-05.json b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_500000_1e-05.json new file mode 100644 index 0000000..3cf2612 --- /dev/null +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_500000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 1458, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.73922610282898, "TIME_S_1KI": 7.365724350362812, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 524.544666223526, "W": 35.90986855086994, "J_1KI": 359.77000426853635, "W_1KI": 24.629539472475955, "W_D": 17.579868550869936, "J_D": 256.7936518120765, "W_D_1KI": 12.0575230115706, "J_D_1KI": 8.269906043601233} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_500000_1e-05.output b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_500000_1e-05.output new file mode 100644 index 0000000..ac4d6c8 --- /dev/null +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_500000_1e-05.output @@ -0,0 +1,68 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 500000 -sd 1e-05 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 7.201478004455566} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 3, 6, ..., 2499994, + 2499998, 2500000]), + col_indices=tensor([111852, 327751, 365150, ..., 493517, 11445, + 207886]), + values=tensor([0.9407, 0.2669, 0.8671, ..., 0.7942, 0.4760, 0.2816]), + size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.4423, 0.4635, 0.1741, ..., 0.0346, 0.7600, 0.4318]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 2500000 +Density: 1e-05 +Time: 7.201478004455566 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1458 -ss 500000 -sd 1e-05 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.73922610282898} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2, 4, ..., 2499994, + 2500000, 2500000]), + col_indices=tensor([198857, 399888, 193187, ..., 179513, 216653, + 450880]), + values=tensor([0.4554, 0.7901, 0.7135, ..., 0.0158, 0.9399, 0.2709]), + size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.8645, 0.3649, 0.9819, ..., 0.4118, 0.2155, 0.1417]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 2500000 +Density: 1e-05 +Time: 10.73922610282898 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2, 4, ..., 2499994, + 2500000, 2500000]), + col_indices=tensor([198857, 399888, 193187, ..., 179513, 216653, + 450880]), + values=tensor([0.4554, 0.7901, 0.7135, ..., 0.0158, 0.9399, 0.2709]), + size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.8645, 0.3649, 0.9819, ..., 0.4118, 0.2155, 0.1417]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 2500000 +Density: 1e-05 +Time: 10.73922610282898 seconds + +[20.76, 20.72, 20.4, 20.4, 20.36, 20.36, 20.12, 20.36, 20.28, 20.32] +[20.56, 20.48, 21.52, 22.84, 24.72, 30.76, 37.24, 43.6, 43.6, 49.32, 53.6, 53.68, 53.6, 53.56] +14.607256650924683 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1458, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.73922610282898, 'TIME_S_1KI': 7.365724350362812, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 524.544666223526, 'W': 35.90986855086994} +[20.76, 20.72, 20.4, 20.4, 20.36, 20.36, 20.12, 20.36, 20.28, 20.32, 20.48, 20.4, 20.32, 20.04, 20.2, 20.4, 20.36, 20.36, 20.48, 20.52] +366.6 +18.330000000000002 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1458, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.73922610282898, 'TIME_S_1KI': 7.365724350362812, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 524.544666223526, 'W': 35.90986855086994, 'J_1KI': 359.77000426853635, 'W_1KI': 24.629539472475955, 'W_D': 17.579868550869936, 'J_D': 256.7936518120765, 'W_D_1KI': 12.0575230115706, 'J_D_1KI': 8.269906043601233} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_50000_0.0001.json b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_50000_0.0001.json new file mode 100644 index 0000000..36f1dbe --- /dev/null +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_50000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 3515, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.52223539352417, "TIME_S_1KI": 2.9935235827949276, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 470.9832169723511, "W": 32.170385708153674, "J_1KI": 133.99238036197755, "W_1KI": 9.15231456846477, "W_D": 13.629385708153674, "J_D": 199.53792237424858, "W_D_1KI": 3.8774923778531076, "J_D_1KI": 1.1031272767718656} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_50000_0.0001.output b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_50000_0.0001.output new file mode 100644 index 0000000..60bafaf --- /dev/null +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_50000_0.0001.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 50000 -sd 0.0001 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 2.9865975379943848} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 6, 13, ..., 249989, 249995, + 250000]), + col_indices=tensor([12071, 16957, 24871, ..., 32088, 41674, 47752]), + values=tensor([0.0278, 0.4403, 0.7542, ..., 0.8727, 0.3256, 0.0294]), + size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) +tensor([0.9906, 0.0790, 0.7013, ..., 0.2118, 0.2385, 0.3873]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 250000 +Density: 0.0001 +Time: 2.9865975379943848 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 3515 -ss 50000 -sd 0.0001 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.52223539352417} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 7, 10, ..., 249992, 249995, + 250000]), + col_indices=tensor([ 9701, 11138, 26862, ..., 20273, 37187, 48197]), + values=tensor([0.8537, 0.5403, 0.1220, ..., 0.0155, 0.7712, 0.8752]), + size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) +tensor([0.5658, 0.7328, 0.9479, ..., 0.1014, 0.1582, 0.5663]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 250000 +Density: 0.0001 +Time: 10.52223539352417 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 7, 10, ..., 249992, 249995, + 250000]), + col_indices=tensor([ 9701, 11138, 26862, ..., 20273, 37187, 48197]), + values=tensor([0.8537, 0.5403, 0.1220, ..., 0.0155, 0.7712, 0.8752]), + size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) +tensor([0.5658, 0.7328, 0.9479, ..., 0.1014, 0.1582, 0.5663]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 250000 +Density: 0.0001 +Time: 10.52223539352417 seconds + +[20.72, 20.68, 20.52, 20.64, 20.64, 20.68, 20.68, 20.72, 20.72, 20.72] +[20.64, 20.72, 21.28, 22.68, 24.8, 29.24, 34.6, 38.2, 42.72, 43.84, 43.84, 44.32, 44.16, 44.08] +14.640272617340088 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 3515, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.52223539352417, 'TIME_S_1KI': 2.9935235827949276, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 470.9832169723511, 'W': 32.170385708153674} +[20.72, 20.68, 20.52, 20.64, 20.64, 20.68, 20.68, 20.72, 20.72, 20.72, 20.32, 20.24, 20.44, 20.32, 20.48, 20.64, 20.52, 20.64, 20.96, 20.84] +370.82 +18.541 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 3515, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.52223539352417, 'TIME_S_1KI': 2.9935235827949276, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 470.9832169723511, 'W': 32.170385708153674, 'J_1KI': 133.99238036197755, 'W_1KI': 9.15231456846477, 'W_D': 13.629385708153674, 'J_D': 199.53792237424858, 'W_D_1KI': 3.8774923778531076, 'J_D_1KI': 1.1031272767718656} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_50000_0.001.json b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_50000_0.001.json new file mode 100644 index 0000000..091be62 --- /dev/null +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_50000_0.001.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 27.268765687942505, "TIME_S_1KI": 27.268765687942505, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1234.21608165741, "W": 36.82999610504039, "J_1KI": 1234.21608165741, "W_1KI": 36.82999610504039, "W_D": 18.278996105040388, "J_D": 612.5504571070677, "W_D_1KI": 18.278996105040388, "J_D_1KI": 18.278996105040388} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_50000_0.001.output b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_50000_0.001.output new file mode 100644 index 0000000..9980b68 --- /dev/null +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_50000_0.001.output @@ -0,0 +1,45 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 50000 -sd 0.001 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 27.268765687942505} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 46, 102, ..., 2499892, + 2499945, 2500000]), + col_indices=tensor([ 987, 1836, 5791, ..., 47187, 47558, 49789]), + values=tensor([0.1085, 0.8855, 0.3536, ..., 0.4174, 0.4340, 0.6085]), + size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.6397, 0.2759, 0.9232, ..., 0.5725, 0.2810, 0.6127]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 2500000 +Density: 0.001 +Time: 27.268765687942505 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 46, 102, ..., 2499892, + 2499945, 2500000]), + col_indices=tensor([ 987, 1836, 5791, ..., 47187, 47558, 49789]), + values=tensor([0.1085, 0.8855, 0.3536, ..., 0.4174, 0.4340, 0.6085]), + size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.6397, 0.2759, 0.9232, ..., 0.5725, 0.2810, 0.6127]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 2500000 +Density: 0.001 +Time: 27.268765687942505 seconds + +[20.68, 20.56, 20.48, 20.12, 20.08, 20.28, 20.44, 20.68, 20.96, 20.96] +[20.84, 20.76, 20.6, 24.92, 26.28, 30.48, 35.16, 37.64, 40.0, 42.72, 43.28, 43.52, 43.36, 43.36, 43.52, 42.92, 43.08, 42.76, 42.76, 42.52, 42.68, 42.8, 42.88, 43.04, 43.16, 42.96, 42.88, 42.76, 42.52, 42.72, 42.64, 42.64] +33.511165142059326 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 27.268765687942505, 'TIME_S_1KI': 27.268765687942505, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1234.21608165741, 'W': 36.82999610504039} +[20.68, 20.56, 20.48, 20.12, 20.08, 20.28, 20.44, 20.68, 20.96, 20.96, 20.44, 20.76, 20.8, 20.8, 20.72, 20.84, 20.84, 20.56, 20.68, 20.76] +371.02 +18.551 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 27.268765687942505, 'TIME_S_1KI': 27.268765687942505, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1234.21608165741, 'W': 36.82999610504039, 'J_1KI': 1234.21608165741, 'W_1KI': 36.82999610504039, 'W_D': 18.278996105040388, 'J_D': 612.5504571070677, 'W_D_1KI': 18.278996105040388, 'J_D_1KI': 18.278996105040388} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_50000_1e-05.json b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_50000_1e-05.json new file mode 100644 index 0000000..02be475 --- /dev/null +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_50000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 19539, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.163734436035156, "TIME_S_1KI": 0.5201767969719615, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 495.2794138240814, "W": 33.936722825817846, "J_1KI": 25.348247803064712, "W_1KI": 1.7368710182618274, "W_D": 13.302722825817849, "J_D": 194.14263413858416, "W_D_1KI": 0.6808292556332386, "J_D_1KI": 0.03484463153862729} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_50000_1e-05.output b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_50000_1e-05.output new file mode 100644 index 0000000..4c99396 --- /dev/null +++ b/pytorch/output_synthetic_16core/altra_16_csr_10_10_10_synthetic_50000_1e-05.output @@ -0,0 +1,62 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 50000 -sd 1e-05 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.5373842716217041} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 1, ..., 24999, 25000, 25000]), + col_indices=tensor([13933, 723, 18387, ..., 22194, 38514, 2158]), + values=tensor([0.9124, 0.6353, 0.3193, ..., 0.0372, 0.2371, 0.8076]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.6534, 0.7497, 0.2436, ..., 0.0965, 0.5741, 0.5754]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 0.5373842716217041 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 19539 -ss 50000 -sd 1e-05 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.163734436035156} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 24996, 24998, 25000]), + col_indices=tensor([44723, 48345, 32100, ..., 22467, 28064, 29572]), + values=tensor([0.7283, 0.2640, 0.9583, ..., 0.2460, 0.4237, 0.5300]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.7754, 0.9311, 0.4703, ..., 0.3816, 0.8788, 0.3934]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 10.163734436035156 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 24996, 24998, 25000]), + col_indices=tensor([44723, 48345, 32100, ..., 22467, 28064, 29572]), + values=tensor([0.7283, 0.2640, 0.9583, ..., 0.2460, 0.4237, 0.5300]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.7754, 0.9311, 0.4703, ..., 0.3816, 0.8788, 0.3934]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 10.163734436035156 seconds + +[25.08, 25.2, 25.2, 25.4, 25.08, 25.4, 25.12, 25.0, 25.28, 25.36] +[25.56, 25.6, 26.0, 26.32, 28.76, 32.48, 32.48, 37.24, 41.24, 45.24, 45.88, 45.72, 45.6, 45.64] +14.594202756881714 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 19539, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.163734436035156, 'TIME_S_1KI': 0.5201767969719615, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 495.2794138240814, 'W': 33.936722825817846} +[25.08, 25.2, 25.2, 25.4, 25.08, 25.4, 25.12, 25.0, 25.28, 25.36, 20.68, 20.68, 20.6, 20.6, 20.52, 20.72, 20.52, 20.72, 20.72, 20.72] +412.67999999999995 +20.633999999999997 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 19539, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.163734436035156, 'TIME_S_1KI': 0.5201767969719615, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 495.2794138240814, 'W': 33.936722825817846, 'J_1KI': 25.348247803064712, 'W_1KI': 1.7368710182618274, 'W_D': 13.302722825817849, 'J_D': 194.14263413858416, 'W_D_1KI': 0.6808292556332386, 'J_D_1KI': 0.03484463153862729} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_20_10_10_synthetic_30000_0.0001.json b/pytorch/output_synthetic_16core/altra_16_csr_20_10_10_synthetic_30000_0.0001.json new file mode 100644 index 0000000..d8def16 --- /dev/null +++ b/pytorch/output_synthetic_16core/altra_16_csr_20_10_10_synthetic_30000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 9519, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 90000, "MATRIX_DENSITY": 0.0001, "TIME_S": 21.79372525215149, "TIME_S_1KI": 2.2894973476364626, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 607.9340667724609, "W": 24.009013571692563, "J_1KI": 63.86532900225454, "W_1KI": 2.5222201462015508, "W_D": 5.522013571692561, "J_D": 139.82332749271384, "W_D_1KI": 0.5801043777384768, "J_D_1KI": 0.06094173523883567} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_20_10_10_synthetic_30000_0.0001.output b/pytorch/output_synthetic_16core/altra_16_csr_20_10_10_synthetic_30000_0.0001.output new file mode 100644 index 0000000..91dd9e3 --- /dev/null +++ b/pytorch/output_synthetic_16core/altra_16_csr_20_10_10_synthetic_30000_0.0001.output @@ -0,0 +1,62 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 30000 -sd 0.0001 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 90000, "MATRIX_DENSITY": 0.0001, "TIME_S": 2.2060210704803467} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 6, 6, ..., 89996, 89998, 90000]), + col_indices=tensor([ 2876, 4713, 6957, ..., 29701, 15647, 23288]), + values=tensor([0.6297, 0.3832, 0.4268, ..., 0.4020, 0.1713, 0.6526]), + size=(30000, 30000), nnz=90000, layout=torch.sparse_csr) +tensor([0.2297, 0.3740, 0.0656, ..., 0.6156, 0.3028, 0.9303]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 90000 +Density: 0.0001 +Time: 2.2060210704803467 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 9519 -ss 30000 -sd 0.0001 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 90000, "MATRIX_DENSITY": 0.0001, "TIME_S": 21.79372525215149} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2, 3, ..., 89997, 89999, 90000]), + col_indices=tensor([15244, 15936, 9998, ..., 16898, 18863, 20836]), + values=tensor([0.4356, 0.9410, 0.0325, ..., 0.8568, 0.9195, 0.8628]), + size=(30000, 30000), nnz=90000, layout=torch.sparse_csr) +tensor([0.3669, 0.2405, 0.0914, ..., 0.8449, 0.6451, 0.3598]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 90000 +Density: 0.0001 +Time: 21.79372525215149 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2, 3, ..., 89997, 89999, 90000]), + col_indices=tensor([15244, 15936, 9998, ..., 16898, 18863, 20836]), + values=tensor([0.4356, 0.9410, 0.0325, ..., 0.8568, 0.9195, 0.8628]), + size=(30000, 30000), nnz=90000, layout=torch.sparse_csr) +tensor([0.3669, 0.2405, 0.0914, ..., 0.8449, 0.6451, 0.3598]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 90000 +Density: 0.0001 +Time: 21.79372525215149 seconds + +[20.48, 20.6, 20.6, 20.52, 20.52, 20.76, 20.88, 21.04, 21.0, 21.0] +[20.96, 20.88, 23.92, 25.0, 27.36, 27.36, 28.16, 28.88, 25.92, 25.64, 24.4, 24.24, 24.2, 24.16, 24.24, 24.84, 24.92, 24.92, 24.6, 24.64, 24.64, 24.68, 24.56, 24.8, 24.96] +25.32107639312744 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 9519, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 90000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 21.79372525215149, 'TIME_S_1KI': 2.2894973476364626, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 607.9340667724609, 'W': 24.009013571692563} +[20.48, 20.6, 20.6, 20.52, 20.52, 20.76, 20.88, 21.04, 21.0, 21.0, 20.24, 20.28, 20.44, 20.36, 20.2, 20.24, 20.24, 20.44, 20.52, 20.48] +369.74 +18.487000000000002 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 9519, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 90000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 21.79372525215149, 'TIME_S_1KI': 2.2894973476364626, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 607.9340667724609, 'W': 24.009013571692563, 'J_1KI': 63.86532900225454, 'W_1KI': 2.5222201462015508, 'W_D': 5.522013571692561, 'J_D': 139.82332749271384, 'W_D_1KI': 0.5801043777384768, 'J_D_1KI': 0.06094173523883567} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_20_10_10_synthetic_30000_0.001.json b/pytorch/output_synthetic_16core/altra_16_csr_20_10_10_synthetic_30000_0.001.json new file mode 100644 index 0000000..d309fe1 --- /dev/null +++ b/pytorch/output_synthetic_16core/altra_16_csr_20_10_10_synthetic_30000_0.001.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 900000, "MATRIX_DENSITY": 0.001, "TIME_S": 20.699798345565796, "TIME_S_1KI": 20.699798345565796, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 537.3931253051758, "W": 23.043866328673488, "J_1KI": 537.3931253051758, "W_1KI": 23.043866328673488, "W_D": 4.700866328673488, "J_D": 109.62627590250972, "W_D_1KI": 4.700866328673488, "J_D_1KI": 4.700866328673488} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_20_10_10_synthetic_30000_0.001.output b/pytorch/output_synthetic_16core/altra_16_csr_20_10_10_synthetic_30000_0.001.output new file mode 100644 index 0000000..67d8d59 --- /dev/null +++ b/pytorch/output_synthetic_16core/altra_16_csr_20_10_10_synthetic_30000_0.001.output @@ -0,0 +1,45 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 30000 -sd 0.001 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 900000, "MATRIX_DENSITY": 0.001, "TIME_S": 20.699798345565796} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 33, 63, ..., 899945, 899974, + 900000]), + col_indices=tensor([ 547, 1664, 1767, ..., 28485, 29124, 29514]), + values=tensor([0.5453, 0.3696, 0.4974, ..., 0.8638, 0.8625, 0.2546]), + size=(30000, 30000), nnz=900000, layout=torch.sparse_csr) +tensor([0.4458, 0.9665, 0.0852, ..., 0.0100, 0.1262, 0.9671]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 900000 +Density: 0.001 +Time: 20.699798345565796 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 33, 63, ..., 899945, 899974, + 900000]), + col_indices=tensor([ 547, 1664, 1767, ..., 28485, 29124, 29514]), + values=tensor([0.5453, 0.3696, 0.4974, ..., 0.8638, 0.8625, 0.2546]), + size=(30000, 30000), nnz=900000, layout=torch.sparse_csr) +tensor([0.4458, 0.9665, 0.0852, ..., 0.0100, 0.1262, 0.9671]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 900000 +Density: 0.001 +Time: 20.699798345565796 seconds + +[20.6, 20.52, 20.4, 20.52, 20.64, 20.44, 20.4, 20.36, 20.16, 20.16] +[20.16, 20.08, 20.2, 21.68, 22.88, 25.96, 26.92, 27.04, 26.52, 24.64, 24.28, 23.92, 24.12, 24.12, 24.48, 24.6, 24.4, 24.32, 24.28, 24.36, 24.16, 24.4, 24.32] +23.320441007614136 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 900000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 20.699798345565796, 'TIME_S_1KI': 20.699798345565796, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 537.3931253051758, 'W': 23.043866328673488} +[20.6, 20.52, 20.4, 20.52, 20.64, 20.44, 20.4, 20.36, 20.16, 20.16, 20.44, 20.2, 20.16, 20.16, 20.4, 20.44, 20.56, 20.52, 20.28, 20.2] +366.86 +18.343 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 900000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 20.699798345565796, 'TIME_S_1KI': 20.699798345565796, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 537.3931253051758, 'W': 23.043866328673488, 'J_1KI': 537.3931253051758, 'W_1KI': 23.043866328673488, 'W_D': 4.700866328673488, 'J_D': 109.62627590250972, 'W_D_1KI': 4.700866328673488, 'J_D_1KI': 4.700866328673488} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_20_10_10_synthetic_30000_0.01.json b/pytorch/output_synthetic_16core/altra_16_csr_20_10_10_synthetic_30000_0.01.json new file mode 100644 index 0000000..e69de29 diff --git a/pytorch/output_synthetic_16core/altra_16_csr_20_10_10_synthetic_30000_0.01.output b/pytorch/output_synthetic_16core/altra_16_csr_20_10_10_synthetic_30000_0.01.output new file mode 100644 index 0000000..054bc13 --- /dev/null +++ b/pytorch/output_synthetic_16core/altra_16_csr_20_10_10_synthetic_30000_0.01.output @@ -0,0 +1 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 30000 -sd 0.01 -c 16'] diff --git a/pytorch/output_synthetic_16core/altra_16_csr_20_10_10_synthetic_30000_1e-05.json b/pytorch/output_synthetic_16core/altra_16_csr_20_10_10_synthetic_30000_1e-05.json new file mode 100644 index 0000000..00f9500 --- /dev/null +++ b/pytorch/output_synthetic_16core/altra_16_csr_20_10_10_synthetic_30000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 16, "ITERATIONS": 52473, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 9000, "MATRIX_DENSITY": 1e-05, "TIME_S": 21.229777336120605, "TIME_S_1KI": 0.40458478333849035, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 561.8060250091554, "W": 23.114903822014995, "J_1KI": 10.706573380770212, "W_1KI": 0.4405104305455185, "W_D": 4.660903822014994, "J_D": 113.28292210769662, "W_D_1KI": 0.08882480174594543, "J_D_1KI": 0.0016927715538647577} diff --git a/pytorch/output_synthetic_16core/altra_16_csr_20_10_10_synthetic_30000_1e-05.output b/pytorch/output_synthetic_16core/altra_16_csr_20_10_10_synthetic_30000_1e-05.output new file mode 100644 index 0000000..a0c66f4 --- /dev/null +++ b/pytorch/output_synthetic_16core/altra_16_csr_20_10_10_synthetic_30000_1e-05.output @@ -0,0 +1,62 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 30000 -sd 1e-05 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 9000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.4002048969268799} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 8999, 9000, 9000]), + col_indices=tensor([17165, 27151, 23572, ..., 25119, 9148, 7528]), + values=tensor([0.4884, 0.2785, 0.9649, ..., 0.5831, 0.3229, 0.8447]), + size=(30000, 30000), nnz=9000, layout=torch.sparse_csr) +tensor([0.9734, 0.5614, 0.1566, ..., 0.4974, 0.8204, 0.0911]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 9000 +Density: 1e-05 +Time: 0.4002048969268799 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 52473 -ss 30000 -sd 1e-05 -c 16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 9000, "MATRIX_DENSITY": 1e-05, "TIME_S": 21.229777336120605} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 8998, 9000, 9000]), + col_indices=tensor([25247, 22356, 16191, ..., 29211, 15014, 22819]), + values=tensor([0.9864, 0.6356, 0.7247, ..., 0.1858, 0.6120, 0.1833]), + size=(30000, 30000), nnz=9000, layout=torch.sparse_csr) +tensor([0.8210, 0.2318, 0.4195, ..., 0.3881, 0.9911, 0.4380]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 9000 +Density: 1e-05 +Time: 21.229777336120605 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 8998, 9000, 9000]), + col_indices=tensor([25247, 22356, 16191, ..., 29211, 15014, 22819]), + values=tensor([0.9864, 0.6356, 0.7247, ..., 0.1858, 0.6120, 0.1833]), + size=(30000, 30000), nnz=9000, layout=torch.sparse_csr) +tensor([0.8210, 0.2318, 0.4195, ..., 0.3881, 0.9911, 0.4380]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 9000 +Density: 1e-05 +Time: 21.229777336120605 seconds + +[20.6, 20.72, 20.72, 20.72, 20.72, 20.6, 20.28, 20.32, 20.44, 20.48] +[20.48, 20.52, 20.6, 21.72, 23.52, 25.24, 26.32, 26.68, 25.64, 24.84, 24.92, 24.56, 24.64, 24.64, 24.44, 24.12, 24.32, 24.4, 24.32, 24.44, 24.28, 24.08, 24.04, 23.96] +24.3049259185791 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 52473, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 9000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 21.229777336120605, 'TIME_S_1KI': 0.40458478333849035, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 561.8060250091554, 'W': 23.114903822014995} +[20.6, 20.72, 20.72, 20.72, 20.72, 20.6, 20.28, 20.32, 20.44, 20.48, 20.76, 20.68, 20.68, 20.44, 20.48, 20.24, 20.24, 20.32, 20.36, 20.4] +369.08000000000004 +18.454 +{'CPU': 'Altra', 'CORES': 16, 'ITERATIONS': 52473, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 9000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 21.229777336120605, 'TIME_S_1KI': 0.40458478333849035, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 561.8060250091554, 'W': 23.114903822014995, 'J_1KI': 10.706573380770212, 'W_1KI': 0.4405104305455185, 'W_D': 4.660903822014994, 'J_D': 113.28292210769662, 'W_D_1KI': 0.08882480174594543, 'J_D_1KI': 0.0016927715538647577} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_100000_0.0001.json b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_100000_0.0001.json new file mode 100644 index 0000000..9b3aaee --- /dev/null +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_100000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 66220, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.006447315216064, "TIME_S_1KI": 0.15110914097275843, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1856.6265121269225, "W": 145.81, "J_1KI": 28.037247238401125, "W_1KI": 2.2019027484143763, "W_D": 109.5725, "J_D": 1395.2075200605393, "W_D_1KI": 1.6546738145575355, "J_D_1KI": 0.024987523626661668} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_100000_0.0001.output b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_100000_0.0001.output new file mode 100644 index 0000000..9d496c4 --- /dev/null +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_100000_0.0001.output @@ -0,0 +1,85 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '100000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.20569086074829102} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 9, 18, ..., 999978, + 999986, 1000000]), + col_indices=tensor([ 4321, 11912, 13631, ..., 82074, 92560, 99324]), + values=tensor([0.9071, 0.2919, 0.8193, ..., 0.7739, 0.0445, 0.1624]), + size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.6567, 0.9688, 0.9697, ..., 0.6873, 0.4864, 0.9023]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 1000000 +Density: 0.0001 +Time: 0.20569086074829102 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '51047', '-ss', '100000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 8.09404468536377} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 6, 17, ..., 999979, + 999988, 1000000]), + col_indices=tensor([15686, 48109, 49313, ..., 51931, 56127, 66767]), + values=tensor([0.4545, 0.6496, 0.9508, ..., 0.7270, 0.9957, 0.0621]), + size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.3660, 0.6002, 0.9317, ..., 0.1977, 0.4107, 0.4541]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 1000000 +Density: 0.0001 +Time: 8.09404468536377 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '66220', '-ss', '100000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.006447315216064} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 10, 18, ..., 999980, + 999990, 1000000]), + col_indices=tensor([ 4776, 21129, 24622, ..., 75160, 86654, 97411]), + values=tensor([0.8410, 0.1609, 0.8553, ..., 0.3742, 0.0938, 0.8797]), + size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.6086, 0.7634, 0.6649, ..., 0.3430, 0.9091, 0.5785]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 1000000 +Density: 0.0001 +Time: 10.006447315216064 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 10, 18, ..., 999980, + 999990, 1000000]), + col_indices=tensor([ 4776, 21129, 24622, ..., 75160, 86654, 97411]), + values=tensor([0.8410, 0.1609, 0.8553, ..., 0.3742, 0.0938, 0.8797]), + size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.6086, 0.7634, 0.6649, ..., 0.3430, 0.9091, 0.5785]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 1000000 +Density: 0.0001 +Time: 10.006447315216064 seconds + +[41.04, 40.85, 39.33, 39.23, 39.35, 39.32, 44.72, 39.63, 39.87, 39.35] +[145.81] +12.733190536499023 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 66220, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.006447315216064, 'TIME_S_1KI': 0.15110914097275843, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1856.6265121269225, 'W': 145.81} +[41.04, 40.85, 39.33, 39.23, 39.35, 39.32, 44.72, 39.63, 39.87, 39.35, 40.83, 39.21, 39.3, 44.69, 39.3, 39.36, 39.77, 39.25, 41.13, 39.66] +724.75 +36.2375 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 66220, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.006447315216064, 'TIME_S_1KI': 0.15110914097275843, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1856.6265121269225, 'W': 145.81, 'J_1KI': 28.037247238401125, 'W_1KI': 2.2019027484143763, 'W_D': 109.5725, 'J_D': 1395.2075200605393, 'W_D_1KI': 1.6546738145575355, 'J_D_1KI': 0.024987523626661668} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_100000_1e-05.json b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_100000_1e-05.json new file mode 100644 index 0000000..b72a71c --- /dev/null +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_100000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 101854, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 13.331042528152466, "TIME_S_1KI": 0.13088383890816724, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1504.6270782256126, "W": 115.31, "J_1KI": 14.77239065943029, "W_1KI": 1.1321106682113615, "W_D": 79.84075000000001, "J_D": 1041.8051721085908, "W_D_1KI": 0.7838744673748701, "J_D_1KI": 0.007696059726420858} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_100000_1e-05.output b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_100000_1e-05.output new file mode 100644 index 0000000..3cc7b50 --- /dev/null +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_100000_1e-05.output @@ -0,0 +1,85 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '100000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.1346125602722168} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 3, ..., 99997, 99999, + 100000]), + col_indices=tensor([50727, 53996, 86356, ..., 6143, 63321, 22305]), + values=tensor([0.4164, 0.0014, 0.4337, ..., 0.6487, 0.2549, 0.7487]), + size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) +tensor([0.9720, 0.1729, 0.4503, ..., 0.2850, 0.8795, 0.9664]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 100000 +Density: 1e-05 +Time: 0.1346125602722168 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '78001', '-ss', '100000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 8.040945768356323} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 2, ..., 100000, 100000, + 100000]), + col_indices=tensor([16049, 52557, 57673, ..., 90883, 73385, 65676]), + values=tensor([0.2845, 0.3961, 0.0285, ..., 0.0101, 0.6896, 0.8511]), + size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) +tensor([0.5851, 0.1832, 0.4128, ..., 0.6645, 0.1519, 0.8981]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 100000 +Density: 1e-05 +Time: 8.040945768356323 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '101854', '-ss', '100000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 13.331042528152466} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 100000, 100000, + 100000]), + col_indices=tensor([ 641, 46150, 85524, ..., 87101, 55219, 61785]), + values=tensor([0.2560, 0.7953, 0.3517, ..., 0.8505, 0.5170, 0.2719]), + size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) +tensor([0.1951, 0.6662, 0.1969, ..., 0.4780, 0.9904, 0.5617]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 100000 +Density: 1e-05 +Time: 13.331042528152466 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 100000, 100000, + 100000]), + col_indices=tensor([ 641, 46150, 85524, ..., 87101, 55219, 61785]), + values=tensor([0.2560, 0.7953, 0.3517, ..., 0.8505, 0.5170, 0.2719]), + size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) +tensor([0.1951, 0.6662, 0.1969, ..., 0.4780, 0.9904, 0.5617]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 100000 +Density: 1e-05 +Time: 13.331042528152466 seconds + +[42.16, 39.6, 39.44, 39.17, 39.28, 39.19, 39.17, 39.11, 40.48, 39.44] +[115.31] +13.048539400100708 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 101854, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 13.331042528152466, 'TIME_S_1KI': 0.13088383890816724, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1504.6270782256126, 'W': 115.31} +[42.16, 39.6, 39.44, 39.17, 39.28, 39.19, 39.17, 39.11, 40.48, 39.44, 39.93, 39.1, 39.15, 39.29, 39.15, 39.23, 39.19, 39.11, 39.43, 39.06] +709.3849999999999 +35.469249999999995 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 101854, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 13.331042528152466, 'TIME_S_1KI': 0.13088383890816724, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1504.6270782256126, 'W': 115.31, 'J_1KI': 14.77239065943029, 'W_1KI': 1.1321106682113615, 'W_D': 79.84075000000001, 'J_D': 1041.8051721085908, 'W_D_1KI': 0.7838744673748701, 'J_D_1KI': 0.007696059726420858} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.0001.json b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.0001.json new file mode 100644 index 0000000..9b9bfd5 --- /dev/null +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 282693, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.381328821182251, "TIME_S_1KI": 0.0367229780050523, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1282.42685277462, "W": 97.9, "J_1KI": 4.5364648320779795, "W_1KI": 0.3463120770588589, "W_D": 62.39075000000001, "J_D": 817.2785818666817, "W_D_1KI": 0.22070143229581213, "J_D_1KI": 0.00078071063767342} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.0001.output b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.0001.output new file mode 100644 index 0000000..b8e2459 --- /dev/null +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.0001.output @@ -0,0 +1,81 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.05349230766296387} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 1, ..., 9999, 10000, 10000]), + col_indices=tensor([3626, 2250, 5764, ..., 7539, 8316, 7972]), + values=tensor([0.1411, 0.7419, 0.4018, ..., 0.4202, 0.3955, 0.4235]), + size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) +tensor([0.9736, 0.6802, 0.3390, ..., 0.1575, 0.6861, 0.0446]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000 +Density: 0.0001 +Time: 0.05349230766296387 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '196289', '-ss', '10000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 7.290691137313843} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 3, 6, ..., 9998, 10000, 10000]), + col_indices=tensor([ 763, 7857, 9582, ..., 1442, 6306, 9133]), + values=tensor([0.7701, 0.8887, 0.1796, ..., 0.1701, 0.0666, 0.3737]), + size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) +tensor([0.4503, 0.2095, 0.3791, ..., 0.5528, 0.9269, 0.0093]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000 +Density: 0.0001 +Time: 7.290691137313843 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '282693', '-ss', '10000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.381328821182251} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 4, ..., 9997, 9998, 10000]), + col_indices=tensor([4956, 145, 658, ..., 4096, 6098, 6574]), + values=tensor([0.3279, 0.7076, 0.5307, ..., 0.3493, 0.0702, 0.3289]), + size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) +tensor([0.0837, 0.8046, 0.5398, ..., 0.6704, 0.0489, 0.7610]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000 +Density: 0.0001 +Time: 10.381328821182251 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 4, ..., 9997, 9998, 10000]), + col_indices=tensor([4956, 145, 658, ..., 4096, 6098, 6574]), + values=tensor([0.3279, 0.7076, 0.5307, ..., 0.3493, 0.0702, 0.3289]), + size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) +tensor([0.0837, 0.8046, 0.5398, ..., 0.6704, 0.0489, 0.7610]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000 +Density: 0.0001 +Time: 10.381328821182251 seconds + +[39.48, 38.98, 44.27, 38.82, 39.35, 38.99, 39.28, 39.0, 38.75, 39.31] +[97.9] +13.099354982376099 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 282693, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.381328821182251, 'TIME_S_1KI': 0.0367229780050523, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1282.42685277462, 'W': 97.9} +[39.48, 38.98, 44.27, 38.82, 39.35, 38.99, 39.28, 39.0, 38.75, 39.31, 39.89, 39.14, 38.98, 38.75, 41.57, 38.58, 39.15, 38.62, 39.12, 38.99] +710.185 +35.509249999999994 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 282693, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.381328821182251, 'TIME_S_1KI': 0.0367229780050523, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1282.42685277462, 'W': 97.9, 'J_1KI': 4.5364648320779795, 'W_1KI': 0.3463120770588589, 'W_D': 62.39075000000001, 'J_D': 817.2785818666817, 'W_D_1KI': 0.22070143229581213, 'J_D_1KI': 0.00078071063767342} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.001.json b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.001.json new file mode 100644 index 0000000..d2eaa5f --- /dev/null +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.001.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 189141, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.465899229049683, "TIME_S_1KI": 0.05533384738924761, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1388.9149661660194, "W": 107.77, "J_1KI": 7.343278116146259, "W_1KI": 0.5697865613484121, "W_D": 72.38875, "J_D": 932.9295560643077, "W_D_1KI": 0.3827237352028381, "J_D_1KI": 0.002023483724855204} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.001.output b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.001.output new file mode 100644 index 0000000..117af51 --- /dev/null +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.001.output @@ -0,0 +1,85 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.06988883018493652} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 9, 21, ..., 99977, 99988, + 100000]), + col_indices=tensor([ 768, 2423, 2910, ..., 9615, 9787, 9788]), + values=tensor([0.1330, 0.2030, 0.8709, ..., 0.6786, 0.0798, 0.8357]), + size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) +tensor([0.0016, 0.6011, 0.7478, ..., 0.9565, 0.9755, 0.4110]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 100000 +Density: 0.001 +Time: 0.06988883018493652 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '150238', '-ss', '10000', '-sd', '0.001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 8.34029221534729} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 9, 21, ..., 99979, 99987, + 100000]), + col_indices=tensor([ 978, 1327, 2112, ..., 8470, 8534, 8708]), + values=tensor([0.4296, 0.3021, 0.5865, ..., 0.4657, 0.4173, 0.7957]), + size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) +tensor([0.7639, 0.4914, 0.7736, ..., 0.7926, 0.8542, 0.7117]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 100000 +Density: 0.001 +Time: 8.34029221534729 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '189141', '-ss', '10000', '-sd', '0.001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.465899229049683} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 8, 15, ..., 99985, 99995, + 100000]), + col_indices=tensor([ 277, 3135, 4455, ..., 4161, 8684, 9934]), + values=tensor([0.4295, 0.8999, 0.7885, ..., 0.8935, 0.6648, 0.4808]), + size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) +tensor([0.1477, 0.6711, 0.3568, ..., 0.3604, 0.6617, 0.9866]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 100000 +Density: 0.001 +Time: 10.465899229049683 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 8, 15, ..., 99985, 99995, + 100000]), + col_indices=tensor([ 277, 3135, 4455, ..., 4161, 8684, 9934]), + values=tensor([0.4295, 0.8999, 0.7885, ..., 0.8935, 0.6648, 0.4808]), + size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) +tensor([0.1477, 0.6711, 0.3568, ..., 0.3604, 0.6617, 0.9866]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 100000 +Density: 0.001 +Time: 10.465899229049683 seconds + +[39.55, 39.91, 39.11, 39.43, 38.85, 39.56, 39.33, 39.4, 38.87, 38.91] +[107.77] +12.887769937515259 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 189141, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.465899229049683, 'TIME_S_1KI': 0.05533384738924761, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1388.9149661660194, 'W': 107.77} +[39.55, 39.91, 39.11, 39.43, 38.85, 39.56, 39.33, 39.4, 38.87, 38.91, 39.56, 38.88, 39.03, 38.89, 39.75, 39.07, 39.18, 39.11, 38.8, 42.89] +707.6249999999999 +35.381249999999994 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 189141, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.465899229049683, 'TIME_S_1KI': 0.05533384738924761, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1388.9149661660194, 'W': 107.77, 'J_1KI': 7.343278116146259, 'W_1KI': 0.5697865613484121, 'W_D': 72.38875, 'J_D': 932.9295560643077, 'W_D_1KI': 0.3827237352028381, 'J_D_1KI': 0.002023483724855204} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.01.json b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.01.json new file mode 100644 index 0000000..a1716dd --- /dev/null +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.01.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 105256, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.995163202285767, "TIME_S_1KI": 0.10446115378017184, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1749.1652185320856, "W": 133.05, "J_1KI": 16.61819961362854, "W_1KI": 1.264060956145018, "W_D": 97.78125000000001, "J_D": 1285.4983955249193, "W_D_1KI": 0.928985045983127, "J_D_1KI": 0.008825958101990642} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.01.output b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.01.output new file mode 100644 index 0000000..a290fe5 --- /dev/null +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.01.output @@ -0,0 +1,85 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.01', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 0.13490986824035645} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 107, 208, ..., 999789, + 999899, 1000000]), + col_indices=tensor([ 114, 296, 309, ..., 9749, 9750, 9977]), + values=tensor([0.3507, 0.7412, 0.8612, ..., 0.2456, 0.4049, 0.8296]), + size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.8457, 0.6850, 0.0016, ..., 0.7234, 0.0569, 0.9899]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000000 +Density: 0.01 +Time: 0.13490986824035645 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '77829', '-ss', '10000', '-sd', '0.01', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 7.763918876647949} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 109, 200, ..., 999783, + 999885, 1000000]), + col_indices=tensor([ 5, 70, 184, ..., 9826, 9903, 9930]), + values=tensor([0.4822, 0.0560, 0.4645, ..., 0.7540, 0.5324, 0.2081]), + size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.2499, 0.5119, 0.0857, ..., 0.6236, 0.3822, 0.7230]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000000 +Density: 0.01 +Time: 7.763918876647949 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '105256', '-ss', '10000', '-sd', '0.01', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.995163202285767} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 112, 220, ..., 999823, + 999909, 1000000]), + col_indices=tensor([ 16, 85, 154, ..., 9645, 9832, 9858]), + values=tensor([0.5111, 0.0405, 0.8270, ..., 0.3072, 0.2885, 0.2472]), + size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.6255, 0.9183, 0.8326, ..., 0.9246, 0.2373, 0.5392]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000000 +Density: 0.01 +Time: 10.995163202285767 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 112, 220, ..., 999823, + 999909, 1000000]), + col_indices=tensor([ 16, 85, 154, ..., 9645, 9832, 9858]), + values=tensor([0.5111, 0.0405, 0.8270, ..., 0.3072, 0.2885, 0.2472]), + size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.6255, 0.9183, 0.8326, ..., 0.9246, 0.2373, 0.5392]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000000 +Density: 0.01 +Time: 10.995163202285767 seconds + +[40.1, 38.91, 39.01, 39.37, 38.97, 38.99, 39.2, 38.87, 38.93, 38.8] +[133.05] +13.146675825119019 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 105256, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.995163202285767, 'TIME_S_1KI': 0.10446115378017184, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1749.1652185320856, 'W': 133.05} +[40.1, 38.91, 39.01, 39.37, 38.97, 38.99, 39.2, 38.87, 38.93, 38.8, 40.08, 39.28, 39.91, 38.88, 38.99, 38.83, 39.08, 39.35, 39.95, 38.73] +705.375 +35.26875 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 105256, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.995163202285767, 'TIME_S_1KI': 0.10446115378017184, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1749.1652185320856, 'W': 133.05, 'J_1KI': 16.61819961362854, 'W_1KI': 1.264060956145018, 'W_D': 97.78125000000001, 'J_D': 1285.4983955249193, 'W_D_1KI': 0.928985045983127, 'J_D_1KI': 0.008825958101990642} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.05.json b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.05.json new file mode 100644 index 0000000..0aa6e19 --- /dev/null +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.05.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 27486, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.233055591583252, "TIME_S_1KI": 0.3723006472961963, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2077.8737717533113, "W": 151.69, "J_1KI": 75.59753226199925, "W_1KI": 5.518809575784036, "W_D": 115.92275, "J_D": 1587.9282864692211, "W_D_1KI": 4.217519828276212, "J_D_1KI": 0.1534424735602202} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.05.output b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.05.output new file mode 100644 index 0000000..a8a40a5 --- /dev/null +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_0.05.output @@ -0,0 +1,85 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 0.45975399017333984} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 512, 1006, ..., 4999034, + 4999489, 5000000]), + col_indices=tensor([ 23, 40, 103, ..., 9927, 9976, 9991]), + values=tensor([0.6183, 0.2980, 0.3566, ..., 0.0352, 0.5258, 0.0852]), + size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.4623, 0.5953, 0.6862, ..., 0.1082, 0.6720, 0.4260]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000000 +Density: 0.05 +Time: 0.45975399017333984 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '22838', '-ss', '10000', '-sd', '0.05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 8.724292278289795} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 513, 1006, ..., 4998953, + 4999498, 5000000]), + col_indices=tensor([ 69, 83, 128, ..., 9917, 9953, 9972]), + values=tensor([0.6637, 0.2623, 0.2360, ..., 0.3507, 0.8119, 0.6229]), + size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.8552, 0.8520, 0.0158, ..., 0.2551, 0.9127, 0.4905]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000000 +Density: 0.05 +Time: 8.724292278289795 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '27486', '-ss', '10000', '-sd', '0.05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.233055591583252} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 518, 1031, ..., 4999018, + 4999521, 5000000]), + col_indices=tensor([ 2, 29, 76, ..., 9919, 9923, 9942]), + values=tensor([0.8327, 0.8899, 0.2406, ..., 0.0134, 0.9622, 0.2874]), + size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.5989, 0.5463, 0.4311, ..., 0.3886, 0.2295, 0.1764]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000000 +Density: 0.05 +Time: 10.233055591583252 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 518, 1031, ..., 4999018, + 4999521, 5000000]), + col_indices=tensor([ 2, 29, 76, ..., 9919, 9923, 9942]), + values=tensor([0.8327, 0.8899, 0.2406, ..., 0.0134, 0.9622, 0.2874]), + size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.5989, 0.5463, 0.4311, ..., 0.3886, 0.2295, 0.1764]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000000 +Density: 0.05 +Time: 10.233055591583252 seconds + +[45.15, 39.18, 39.48, 39.74, 39.27, 40.48, 39.56, 39.63, 39.62, 39.49] +[151.69] +13.698159217834473 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 27486, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.233055591583252, 'TIME_S_1KI': 0.3723006472961963, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2077.8737717533113, 'W': 151.69} +[45.15, 39.18, 39.48, 39.74, 39.27, 40.48, 39.56, 39.63, 39.62, 39.49, 40.16, 40.86, 39.65, 39.13, 39.26, 39.59, 39.63, 39.11, 39.14, 39.23] +715.345 +35.767250000000004 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 27486, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.233055591583252, 'TIME_S_1KI': 0.3723006472961963, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2077.8737717533113, 'W': 151.69, 'J_1KI': 75.59753226199925, 'W_1KI': 5.518809575784036, 'W_D': 115.92275, 'J_D': 1587.9282864692211, 'W_D_1KI': 4.217519828276212, 'J_D_1KI': 0.1534424735602202} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_1e-05.json b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_1e-05.json new file mode 100644 index 0000000..cda3d72 --- /dev/null +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 375977, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.999524116516113, "TIME_S_1KI": 0.029255843087518954, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1323.755545105934, "W": 96.41999999999999, "J_1KI": 3.5208418203930933, "W_1KI": 0.25645185742744897, "W_D": 61.132499999999986, "J_D": 839.2914941006896, "W_D_1KI": 0.16259638222550846, "J_D_1KI": 0.0004324636406628822} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_1e-05.output b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_1e-05.output new file mode 100644 index 0000000..e9eebf5 --- /dev/null +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_10000_1e-05.output @@ -0,0 +1,1900 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.04503059387207031} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), + col_indices=tensor([4113, 614, 2519, 8527, 7416, 2734, 949, 6682, 484, + 5512, 2710, 4041, 4037, 3756, 4925, 4764, 8722, 3874, + 8352, 2481, 3774, 8294, 3589, 6629, 1741, 283, 3355, + 5134, 1636, 5257, 6914, 8377, 9479, 3405, 2807, 6603, + 730, 4849, 7221, 7178, 5773, 4547, 9572, 5072, 5733, + 8766, 8040, 7105, 6968, 6795, 4519, 4433, 7044, 2666, + 5807, 2089, 4272, 1275, 3276, 409, 2016, 5940, 4287, + 7005, 5810, 8597, 1286, 8246, 5523, 3085, 4475, 3444, + 5153, 3360, 5524, 9599, 3802, 5759, 6854, 9537, 9505, + 7933, 4849, 4073, 6294, 3565, 5654, 9049, 3619, 8438, + 2201, 1301, 373, 5050, 213, 3319, 2294, 9757, 2234, + 1810, 8112, 6888, 8132, 3918, 894, 916, 3277, 7303, + 4439, 8812, 5563, 6709, 2634, 805, 7224, 2711, 9378, + 7538, 3829, 8492, 5794, 788, 7855, 1497, 1779, 6847, + 7754, 9099, 5015, 8895, 2234, 7226, 3476, 4035, 7187, + 1217, 8293, 3002, 5806, 4814, 7027, 5895, 484, 4485, + 1879, 740, 7180, 6167, 776, 9922, 6200, 307, 9057, + 5384, 8371, 1115, 2660, 6841, 8748, 2961, 6800, 8955, + 3135, 5759, 4649, 6636, 3819, 980, 6238, 6734, 5414, + 7505, 121, 231, 1121, 9712, 5687, 7052, 816, 111, + 7191, 929, 7825, 966, 6662, 9913, 5970, 6853, 3650, + 2653, 2810, 2912, 8729, 1828, 3693, 9288, 554, 3170, + 4646, 1863, 8302, 8291, 8262, 6434, 7153, 7572, 278, + 3707, 342, 4305, 5353, 1645, 3158, 9062, 1831, 3442, + 5149, 7522, 6560, 8383, 4295, 5695, 856, 6038, 4672, + 1377, 9614, 3675, 6820, 6247, 2481, 4842, 2377, 3247, + 6377, 2541, 3714, 5057, 6938, 4228, 9505, 8711, 4039, + 7522, 438, 3550, 5566, 2760, 948, 1983, 2270, 3067, + 3282, 4364, 4801, 1680, 5226, 6645, 9002, 5222, 5459, + 2737, 7616, 6264, 7887, 223, 52, 8752, 4534, 2743, + 9660, 5066, 7136, 6475, 2976, 4605, 3242, 1471, 6147, + 891, 7320, 5035, 8599, 8089, 3160, 3600, 3366, 4723, + 332, 3965, 3678, 9459, 6018, 1966, 3522, 7175, 3624, + 2006, 5446, 2753, 5477, 6570, 1978, 5598, 2923, 6454, + 9211, 2207, 7417, 583, 5535, 3914, 4811, 6018, 9955, + 2760, 7, 9152, 4641, 1755, 9204, 8476, 4159, 6732, + 58, 6965, 1178, 3322, 2479, 8384, 5390, 3733, 5480, + 8738, 5963, 9220, 7794, 4116, 1556, 5705, 7177, 3304, + 2076, 1869, 1107, 6532, 2831, 264, 3709, 7642, 6257, + 6756, 655, 8454, 9755, 5961, 1723, 1346, 428, 3491, + 5232, 2725, 8447, 629, 6562, 3064, 3992, 6895, 8506, + 5127, 8552, 8547, 3524, 6818, 2773, 8892, 4914, 4601, + 3216, 6409, 4010, 3353, 1843, 5349, 643, 8379, 9654, + 2758, 7403, 996, 8474, 2873, 6165, 5586, 7092, 5911, + 8887, 1753, 295, 9968, 4807, 2036, 5209, 7858, 3526, + 9272, 6028, 3155, 8750, 4799, 3899, 6965, 9772, 1579, + 2739, 680, 8103, 4989, 9956, 5468, 7300, 4242, 9104, + 304, 2675, 6847, 1715, 8675, 3104, 6316, 3118, 1365, + 4880, 5482, 4494, 9331, 1914, 1008, 1058, 615, 6840, + 8374, 755, 6768, 5703, 9941, 8123, 2894, 6827, 9261, + 1016, 5865, 3837, 191, 6962, 9169, 8329, 8697, 1364, + 4230, 12, 6621, 8033, 606, 5058, 6909, 5930, 5310, + 6295, 626, 7718, 4644, 2636, 7562, 3504, 6140, 8756, + 1941, 7761, 1448, 1556, 2243, 5037, 7498, 1075, 4282, + 9354, 546, 1061, 8555, 3809, 8048, 7039, 3042, 5633, + 8033, 9170, 5913, 9232, 189, 9152, 3734, 3120, 8218, + 2534, 2830, 7684, 1386, 3969, 8993, 270, 2230, 9222, + 6405, 2868, 8681, 7600, 6500, 9840, 129, 2788, 7646, + 6078, 5454, 227, 3233, 2061, 5164, 3557, 6028, 3733, + 533, 4737, 6629, 2120, 69, 2205, 5593, 6558, 2333, + 3390, 1311, 9344, 3055, 4149, 912, 4398, 8156, 1605, + 9401, 3684, 6447, 9959, 9297, 3115, 8842, 7985, 959, + 5159, 2972, 1020, 5456, 4954, 6079, 2307, 3735, 9141, + 5359, 6625, 439, 3624, 1571, 5500, 1385, 3593, 7729, + 4466, 771, 2426, 5714, 3813, 9066, 4085, 1948, 4327, + 6300, 7334, 3057, 3389, 3217, 8355, 3678, 993, 2886, + 3792, 6839, 106, 42, 5192, 9697, 4408, 7262, 2508, + 88, 8331, 4710, 9900, 9903, 3495, 9276, 9055, 8491, + 3453, 7654, 804, 1179, 3222, 3598, 899, 6379, 4786, + 3808, 4427, 4525, 6611, 3148, 9561, 2867, 5923, 2301, + 4082, 9909, 8137, 5769, 1741, 7368, 198, 6198, 8534, + 8001, 1520, 5923, 6663, 3858, 5085, 5322, 4593, 7385, + 8632, 6602, 4215, 8714, 8313, 8763, 9207, 7857, 2640, + 7415, 4558, 7180, 1606, 8371, 2903, 5499, 2049, 4696, + 2750, 4471, 6398, 7882, 5766, 8388, 2474, 8083, 5520, + 5630, 3073, 829, 6105, 2802, 6994, 7594, 6776, 9456, + 3158, 3947, 6700, 9417, 1170, 1057, 2702, 8543, 886, + 6746, 6426, 41, 4872, 4253, 849, 6873, 4723, 5116, + 9608, 1782, 3927, 1606, 7152, 3573, 3687, 9143, 1779, + 4739, 6691, 1104, 9137, 1092, 5265, 1787, 8273, 6300, + 7652, 6105, 7010, 8713, 8375, 2087, 9024, 1102, 9773, + 4208, 6779, 1389, 7057, 9095, 2520, 9602, 7300, 2025, + 205, 4186, 7643, 9814, 1418, 2692, 313, 3309, 2211, + 4739, 1720, 4420, 6850, 3036, 5240, 6950, 1575, 7069, + 9747, 881, 5097, 5976, 9380, 7660, 67, 1202, 8152, + 9709, 6503, 338, 8670, 2752, 3705, 8300, 7886, 1942, + 8394, 8289, 8174, 9235, 6871, 5125, 1886, 2830, 8164, + 6878, 2136, 743, 6072, 308, 5043, 9261, 3554, 8760, + 6364, 5471, 1575, 9111, 3881, 1608, 8489, 3488, 5805, + 5923, 7733, 9321, 4538, 6016, 8063, 4674, 785, 4098, + 6931, 8453, 5136, 3086, 4405, 3151, 6385, 3120, 1990, + 6688, 2458, 4568, 7201, 760, 2534, 892, 9138, 4014, + 4753, 6411, 985, 1726, 1194, 6147, 5453, 5251, 4285, + 7680, 7080, 7430, 9006, 483, 4860, 8364, 4544, 8855, + 8967, 1292, 2680, 7780, 6091, 4988, 2734, 5577, 646, + 4717, 5082, 2801, 536, 1895, 1705, 8475, 7323, 8164, + 6604, 4784, 2300, 4820, 4982, 4372, 4588, 9893, 677, + 2459, 4938, 6627, 7089, 4988, 4206, 8924, 8519, 566, + 2145, 1792, 2859, 7022, 7840, 707, 4725, 3813, 6440, + 8160, 6788, 107, 7055, 9787, 5540, 8695, 1745, 3333, + 6649, 3171, 8138, 903, 2895, 6390, 2887, 3854, 7506, + 9383, 5244, 9744, 9149, 6163, 357, 5074, 31, 3859, + 520, 4913, 8192, 5427, 3680, 104, 353, 6679, 6413, + 3473, 5814, 3830, 867, 5023, 863, 5313, 4279, 3748, + 5611, 4646, 365, 9047, 754, 2070, 9816, 1759, 6619, + 8704, 6091, 5714, 7641, 8645, 7279, 7123, 188, 1229, + 2513, 2885, 2723, 9850, 7571, 2720, 579, 2999, 6057, + 8994, 1759, 5804, 5690, 6353, 3198, 9940, 9471, 3214, + 1425, 5299, 1460, 7850, 7707, 3587, 2142, 7188, 2556, + 9738, 5045, 7827, 4034, 6410, 937, 523, 7552, 7368, + 2636, 295, 2971, 1178, 2221, 5797, 791, 5332, 9031, + 6571]), + values=tensor([9.6079e-01, 5.9008e-01, 4.6121e-01, 2.2117e-01, + 1.2953e-01, 7.8771e-01, 9.2520e-01, 3.1107e-01, + 3.5062e-01, 3.6810e-01, 4.4742e-01, 2.7022e-01, + 4.1784e-02, 1.1642e-01, 4.0841e-01, 3.5582e-01, + 8.0780e-01, 4.1190e-01, 3.8340e-01, 9.5484e-01, + 1.7139e-01, 3.0430e-01, 9.5748e-01, 7.4335e-01, + 6.9420e-01, 7.3451e-01, 8.5826e-01, 6.0262e-01, + 1.9270e-01, 1.7381e-01, 7.0628e-01, 5.1518e-01, + 1.3041e-01, 2.1471e-01, 7.2521e-01, 3.5647e-01, + 3.2819e-01, 6.1639e-01, 8.9408e-01, 5.4947e-01, + 3.1015e-01, 5.6897e-01, 5.1346e-01, 1.7084e-01, + 2.9625e-01, 8.6564e-01, 3.0783e-01, 6.6253e-01, + 3.2719e-02, 1.9994e-01, 2.2068e-01, 1.0163e-01, + 3.9084e-02, 5.5442e-01, 8.8869e-01, 3.8630e-01, + 9.4885e-01, 7.9932e-01, 4.4806e-02, 9.2359e-01, + 3.3535e-01, 2.1424e-01, 3.9098e-01, 5.8058e-01, + 9.0490e-01, 1.9532e-01, 4.2696e-02, 7.8329e-01, + 3.9631e-01, 6.5512e-01, 5.2345e-01, 9.6262e-01, + 9.9010e-01, 1.2244e-01, 6.5164e-02, 9.1989e-01, + 3.3934e-01, 7.7869e-01, 1.5466e-01, 3.2238e-01, + 3.4449e-01, 6.1317e-01, 3.2262e-01, 7.5291e-01, + 6.5667e-01, 4.1234e-01, 2.1618e-01, 4.2188e-01, + 4.9130e-01, 8.4706e-01, 7.2233e-01, 2.3481e-01, + 8.6532e-01, 8.9899e-01, 5.7747e-01, 9.1370e-01, + 2.6179e-01, 8.6530e-01, 8.9069e-01, 1.4967e-01, + 4.2417e-01, 1.7737e-01, 6.2351e-01, 5.8608e-01, + 4.2216e-01, 3.4698e-02, 2.7237e-02, 9.6729e-01, + 2.9230e-01, 5.6324e-01, 4.3719e-01, 6.0183e-01, + 1.0615e-01, 5.8346e-01, 1.0998e-01, 1.4670e-02, + 6.8660e-01, 7.3470e-01, 7.4064e-01, 3.7389e-01, + 7.8495e-01, 2.5095e-02, 1.0201e-01, 5.8250e-01, + 5.3988e-01, 2.8653e-01, 3.4730e-02, 8.0745e-01, + 7.2620e-01, 4.6795e-01, 3.7164e-01, 4.2803e-01, + 5.9973e-01, 1.9384e-01, 9.4279e-01, 3.2563e-01, + 1.8314e-01, 1.8319e-01, 8.7212e-01, 1.5914e-01, + 3.5560e-01, 8.7200e-01, 1.0971e-01, 9.2430e-01, + 7.3267e-01, 7.0919e-01, 2.1549e-01, 7.5849e-01, + 4.2152e-01, 2.7361e-01, 9.3761e-02, 1.8642e-01, + 1.6968e-01, 9.8394e-02, 9.4331e-01, 9.5015e-01, + 5.2325e-01, 5.7285e-01, 8.9149e-01, 3.5676e-01, + 6.7088e-01, 5.6674e-01, 8.4336e-02, 9.4964e-01, + 8.8216e-01, 8.1742e-01, 9.7096e-02, 4.4077e-01, + 1.8360e-01, 7.1186e-01, 1.7385e-01, 8.0642e-01, + 3.3752e-02, 6.0913e-02, 9.1093e-01, 1.3954e-01, + 5.2428e-01, 2.6305e-01, 9.1961e-01, 5.8462e-01, + 8.8234e-01, 7.4346e-01, 5.9530e-01, 8.3897e-01, + 8.1794e-01, 2.5699e-01, 6.4052e-01, 6.9276e-01, + 7.5219e-01, 6.3442e-01, 2.5609e-01, 4.0655e-02, + 1.0731e-01, 4.2066e-01, 7.1792e-01, 5.8527e-01, + 9.0724e-01, 7.6542e-01, 3.9914e-01, 6.8811e-01, + 7.3030e-01, 5.3375e-01, 4.1736e-01, 4.4382e-01, + 8.7864e-02, 1.8168e-01, 8.4605e-01, 1.0664e-01, + 9.4157e-01, 7.0188e-01, 9.5259e-01, 1.7034e-01, + 2.8778e-02, 3.4403e-01, 8.5567e-02, 9.7015e-01, + 2.3894e-01, 3.8232e-01, 9.2959e-01, 4.6223e-01, + 6.2552e-01, 6.9841e-01, 8.1046e-01, 9.8615e-01, + 5.3395e-01, 6.7448e-01, 1.5110e-02, 4.3055e-01, + 2.8983e-01, 2.2205e-01, 4.2299e-01, 3.2742e-01, + 9.4562e-01, 1.3228e-01, 6.6648e-01, 9.6769e-01, + 8.3641e-01, 3.1945e-01, 1.8608e-01, 9.8320e-01, + 6.3287e-01, 3.7701e-04, 4.6284e-01, 1.5538e-01, + 4.3775e-01, 1.1248e-01, 3.9611e-01, 6.4523e-01, + 1.8065e-01, 8.7972e-01, 7.4047e-02, 9.8321e-01, + 4.3280e-01, 8.5535e-01, 8.9643e-01, 3.9210e-01, + 3.2548e-01, 4.7127e-01, 6.7657e-01, 2.8452e-01, + 9.5644e-01, 9.1884e-02, 5.5155e-01, 7.3372e-01, + 9.4569e-01, 1.2709e-01, 1.0575e-01, 9.0529e-01, + 1.2786e-01, 7.3029e-01, 8.1745e-01, 7.1494e-01, + 2.7889e-01, 8.4956e-01, 3.2322e-01, 9.5324e-01, + 6.1939e-01, 8.9236e-01, 3.9638e-01, 5.9051e-02, + 7.8152e-02, 7.5012e-01, 5.5313e-01, 6.3409e-01, + 3.8825e-01, 8.1240e-01, 2.7012e-01, 3.0842e-01, + 5.9480e-01, 4.6792e-01, 1.5467e-01, 5.0258e-01, + 8.5370e-01, 6.9643e-01, 5.6808e-01, 3.6627e-01, + 5.9433e-01, 2.7441e-01, 4.5090e-01, 9.1590e-01, + 6.2369e-01, 8.0591e-01, 4.2576e-01, 6.2346e-01, + 6.6044e-01, 5.8409e-01, 5.6222e-01, 3.2085e-01, + 8.3095e-01, 3.2480e-01, 6.2737e-01, 1.9380e-01, + 7.7641e-01, 9.2339e-01, 1.9094e-01, 3.9555e-01, + 2.8543e-01, 3.5448e-01, 4.2909e-02, 1.4642e-01, + 2.7259e-01, 3.6249e-01, 2.5456e-01, 1.6076e-01, + 2.1518e-01, 5.6783e-01, 2.1560e-01, 3.7696e-01, + 8.4695e-01, 8.6367e-01, 2.6642e-01, 9.1417e-01, + 7.0589e-02, 6.2700e-01, 7.2344e-02, 7.7867e-01, + 1.4290e-01, 6.4889e-01, 5.1584e-01, 5.5686e-01, + 6.5519e-01, 1.7406e-01, 8.9123e-01, 9.5773e-01, + 6.0739e-01, 5.0542e-01, 3.3455e-01, 6.9746e-02, + 6.2511e-01, 2.0777e-01, 8.5453e-01, 4.1452e-01, + 2.3019e-01, 7.6034e-01, 5.8986e-01, 3.2863e-01, + 2.8996e-01, 9.4487e-01, 1.1865e-01, 7.4444e-01, + 2.5404e-01, 6.9848e-01, 1.6335e-02, 5.7731e-01, + 5.6511e-01, 5.6679e-01, 8.4587e-01, 3.1103e-01, + 4.7871e-01, 5.4685e-01, 7.7579e-01, 4.0560e-01, + 4.7435e-01, 4.5381e-01, 2.8202e-01, 7.2471e-01, + 2.8117e-01, 1.0864e-01, 4.3474e-01, 9.9898e-01, + 1.0616e-01, 4.4184e-01, 7.7206e-01, 7.2931e-02, + 5.4728e-01, 1.2836e-01, 3.6502e-01, 9.8998e-01, + 1.2635e-01, 2.1816e-01, 7.3257e-01, 8.9531e-01, + 8.3663e-01, 3.1482e-01, 9.1892e-01, 3.9094e-01, + 7.5489e-01, 1.5191e-01, 5.6766e-01, 9.2956e-01, + 9.7694e-01, 8.3368e-01, 1.4911e-01, 2.1533e-01, + 7.1197e-01, 9.9767e-01, 6.0122e-01, 8.6538e-02, + 1.4058e-01, 5.7784e-02, 8.8705e-01, 2.6534e-01, + 5.7663e-01, 1.5194e-01, 6.9278e-01, 8.1533e-01, + 7.2639e-01, 3.1303e-02, 2.9506e-01, 4.0322e-01, + 5.4860e-01, 6.8788e-01, 5.5774e-01, 3.3571e-01, + 9.4743e-01, 2.4843e-01, 3.4099e-01, 7.5755e-01, + 1.0342e-01, 7.4654e-01, 2.6506e-01, 9.6601e-01, + 3.5672e-01, 5.8780e-02, 4.9007e-01, 5.0399e-01, + 8.4615e-01, 4.0587e-01, 1.0572e-01, 9.4780e-02, + 9.5970e-01, 5.4338e-01, 4.3598e-01, 5.0916e-02, + 9.8588e-01, 3.1161e-01, 3.9460e-01, 2.2249e-01, + 3.8783e-01, 7.6573e-02, 3.2922e-01, 5.3642e-01, + 7.5540e-01, 2.1019e-01, 1.7593e-01, 4.7754e-01, + 4.5408e-02, 9.2358e-02, 2.6244e-01, 4.9294e-01, + 9.7251e-01, 6.9946e-01, 9.6946e-01, 2.6101e-01, + 7.8417e-01, 8.5646e-01, 8.6128e-01, 2.1401e-01, + 7.9811e-01, 8.0751e-01, 1.3852e-01, 6.0504e-01, + 7.2703e-01, 1.2071e-01, 8.4736e-01, 6.4192e-01, + 2.4140e-01, 9.4170e-01, 4.1915e-01, 6.2504e-01, + 9.1354e-01, 8.7879e-01, 5.4874e-01, 6.2057e-01, + 3.1631e-01, 4.2865e-01, 7.1077e-01, 6.1382e-01, + 4.0319e-01, 7.2135e-02, 2.8476e-02, 6.4928e-01, + 3.5345e-01, 8.0768e-01, 2.3593e-01, 3.3792e-01, + 2.1400e-01, 2.2000e-01, 1.5807e-02, 6.9164e-01, + 8.6353e-01, 8.9324e-01, 5.2234e-01, 7.1487e-01, + 9.9592e-01, 8.3529e-01, 8.5741e-01, 8.0085e-01, + 3.8615e-01, 6.0506e-01, 5.1739e-01, 9.5544e-01, + 6.5394e-01, 4.0202e-01, 5.0238e-02, 3.2301e-01, + 2.2342e-01, 3.2250e-01, 1.7053e-01, 1.7154e-01, + 1.8552e-01, 8.2680e-01, 4.7119e-01, 5.1469e-01, + 6.6665e-01, 4.2289e-01, 9.7900e-01, 8.2423e-01, + 6.3580e-01, 7.9028e-01, 2.5581e-01, 3.1620e-01, + 7.2692e-01, 6.7538e-01, 4.2782e-01, 3.6750e-01, + 4.2076e-01, 9.7455e-01, 1.7885e-01, 7.8988e-01, + 7.3000e-01, 5.8912e-01, 5.7835e-01, 7.6855e-01, + 6.5106e-01, 4.8761e-02, 5.0213e-01, 4.1002e-01, + 3.7337e-01, 6.0524e-01, 3.8677e-01, 8.6913e-01, + 4.3120e-01, 8.6003e-01, 5.3176e-01, 9.6812e-01, + 7.3253e-01, 1.7968e-02, 3.4114e-01, 2.8416e-01, + 4.4138e-02, 5.9573e-02, 8.8837e-01, 7.3073e-01, + 2.2455e-02, 3.0071e-01, 7.9493e-01, 5.8090e-01, + 6.9503e-01, 9.0058e-02, 6.0456e-01, 9.1062e-01, + 9.6072e-01, 2.0727e-01, 2.6064e-01, 5.0282e-01, + 6.7661e-01, 3.9363e-01, 1.6355e-01, 9.3422e-01, + 5.7538e-01, 3.2045e-01, 1.8307e-01, 7.2388e-01, + 4.8884e-01, 7.1826e-01, 1.0501e-01, 4.1474e-01, + 7.8689e-01, 1.1854e-01, 3.4478e-01, 7.3953e-01, + 8.5906e-02, 1.7198e-01, 2.6567e-01, 3.8442e-02, + 3.5331e-01, 1.7057e-01, 6.8129e-01, 4.4314e-02, + 1.7635e-01, 3.0627e-01, 3.7595e-01, 9.7580e-01, + 7.7478e-01, 1.3801e-01, 7.6050e-02, 5.1964e-01, + 7.1683e-01, 1.4812e-02, 2.0494e-01, 8.6155e-01, + 1.0404e-01, 4.2076e-01, 6.5099e-01, 1.1149e-01, + 4.4182e-01, 7.2736e-01, 5.9277e-01, 8.4298e-01, + 6.7561e-01, 1.1172e-01, 1.5586e-01, 4.1346e-01, + 8.7060e-01, 8.8591e-01, 3.6579e-01, 1.1697e-01, + 1.7621e-01, 5.2057e-01, 3.2276e-01, 2.4297e-01, + 7.0933e-01, 4.2658e-01, 3.8468e-01, 4.6840e-01, + 7.7736e-01, 4.0808e-01, 8.7147e-01, 3.3704e-01, + 5.5257e-01, 4.2282e-01, 8.0689e-01, 7.9939e-01, + 4.8461e-01, 8.3967e-02, 6.6519e-01, 4.5634e-01, + 8.0610e-01, 8.0329e-02, 2.5188e-01, 8.7144e-01, + 5.5357e-01, 9.0614e-01, 3.7022e-01, 1.3199e-01, + 4.9399e-01, 5.7796e-01, 7.9855e-01, 5.1744e-01, + 2.4925e-01, 5.8142e-01, 5.8520e-01, 3.7935e-01, + 5.6113e-01, 7.1411e-01, 2.0834e-01, 4.8056e-02, + 3.8130e-01, 2.4083e-01, 4.0876e-01, 2.7972e-01, + 9.1674e-01, 7.4098e-02, 8.7967e-01, 9.1036e-01, + 8.8990e-01, 2.2696e-01, 9.2005e-01, 9.0147e-01, + 6.5858e-01, 5.9024e-01, 2.3922e-01, 8.9333e-01, + 7.6813e-01, 7.2107e-01, 9.8533e-01, 7.3042e-01, + 7.0476e-01, 7.7595e-01, 2.4322e-01, 6.3765e-01, + 2.8492e-01, 1.1785e-01, 2.3441e-01, 6.9709e-02, + 5.7818e-01, 3.2884e-01, 3.0298e-01, 7.5598e-01, + 1.6391e-01, 3.6590e-01, 8.0827e-02, 6.4771e-01, + 7.2071e-01, 7.5440e-01, 1.4465e-03, 6.1346e-01, + 2.9679e-01, 9.0389e-01, 5.3004e-01, 9.6867e-01, + 9.8515e-01, 7.2093e-02, 1.4018e-01, 1.7865e-01, + 5.2537e-01, 4.7855e-02, 7.0046e-01, 3.4734e-01, + 3.2334e-01, 4.8680e-01, 5.2083e-01, 5.6821e-01, + 5.2706e-01, 4.1377e-01, 5.0577e-01, 8.8593e-01, + 6.8253e-01, 1.4949e-01, 7.2151e-01, 9.8592e-01, + 2.6509e-01, 2.2733e-01, 1.2234e-01, 8.1566e-01, + 4.3301e-01, 2.5919e-01, 6.7630e-01, 3.8161e-01, + 4.9374e-01, 2.2563e-01, 1.6075e-01, 2.7385e-01, + 6.4091e-01, 2.9006e-01, 7.7477e-02, 2.5730e-01, + 7.7645e-01, 5.3171e-01, 7.3614e-01, 1.2321e-01, + 1.2520e-01, 8.6292e-01, 3.3752e-01, 9.9521e-02, + 2.0396e-02, 7.3447e-01, 3.8238e-01, 4.1324e-01, + 5.1392e-01, 9.8613e-01, 3.9540e-01, 3.2257e-03, + 1.8248e-01, 5.4588e-02, 6.7462e-01, 9.7400e-01, + 9.5486e-01, 8.5489e-01, 3.7943e-01, 1.5439e-01, + 9.2984e-01, 6.2689e-01, 7.1684e-01, 8.8493e-02, + 8.7790e-01, 3.8409e-01, 3.1495e-01, 2.8750e-01, + 8.5932e-01, 8.9138e-01, 5.8798e-01, 8.6858e-01, + 1.5927e-01, 1.8627e-01, 5.1673e-01, 8.5682e-01, + 3.6537e-01, 8.8473e-01, 4.7465e-01, 5.1589e-01, + 8.6057e-01, 2.1121e-01, 4.2156e-01, 5.3648e-01, + 2.1603e-01, 2.0873e-01, 8.1242e-02, 1.0171e-01, + 8.4708e-01, 6.0362e-01, 4.3183e-01, 8.5639e-01, + 4.8916e-01, 6.4619e-01, 5.7690e-01, 2.5753e-01, + 4.2611e-01, 4.0426e-01, 6.5076e-01, 3.3454e-02, + 8.3996e-01, 8.2875e-02, 8.0898e-01, 6.1217e-01, + 2.9743e-01, 9.9667e-01, 3.6883e-01, 6.3303e-01, + 6.4874e-01, 9.0628e-01, 4.7359e-01, 5.1549e-01, + 3.7847e-01, 7.2215e-01, 1.0511e-01, 6.1894e-01, + 6.1358e-01, 5.3679e-02, 5.2042e-02, 7.2284e-01, + 3.4372e-01, 3.4180e-01, 7.7002e-01, 8.1055e-01, + 2.8900e-01, 4.9163e-01, 4.5895e-01, 7.2888e-01, + 8.0969e-01, 8.7032e-01, 2.1255e-01, 3.5274e-01, + 6.1097e-02, 7.5921e-01, 9.7577e-01, 9.4678e-01, + 8.8305e-02, 7.2719e-01, 3.3226e-01, 7.4789e-01, + 9.9413e-01, 7.5201e-01, 3.5906e-01, 8.2048e-02, + 7.6101e-01, 2.3741e-03, 9.2050e-01, 2.3936e-04, + 3.2038e-01, 1.9210e-01, 6.0376e-01, 6.5341e-01, + 6.7820e-01, 4.8329e-01, 6.3921e-02, 1.8406e-01, + 9.3601e-01, 2.4145e-02, 7.3602e-01, 2.8236e-01, + 5.4117e-01, 9.6093e-02, 3.5464e-01, 4.6730e-01, + 8.0466e-01, 3.1517e-01, 1.5543e-01, 4.5395e-01, + 4.4196e-01, 1.1306e-01, 4.2106e-01, 3.7645e-01, + 3.7248e-01, 1.4547e-01, 4.5378e-01, 8.3007e-01, + 9.9474e-01, 5.1359e-01, 1.1437e-02, 6.1421e-01, + 8.2695e-01, 7.2613e-01, 4.5298e-01, 6.0201e-01, + 5.6260e-02, 4.9942e-01, 7.2186e-01, 9.9955e-01, + 9.6864e-01, 9.2020e-01, 8.5265e-03, 8.1929e-01, + 3.7340e-01, 4.9719e-01, 9.2959e-01, 8.5224e-01, + 8.7295e-01, 2.1447e-01, 8.9185e-03, 6.4517e-01, + 8.2381e-01, 5.5277e-01, 8.7305e-02, 9.7157e-02, + 9.6945e-01, 4.5957e-01, 2.5012e-01, 3.7574e-01, + 2.2385e-01, 7.1917e-01, 5.4531e-01, 2.1601e-01, + 6.2354e-01, 4.5955e-01, 2.7864e-01, 4.0172e-01, + 3.3217e-01, 3.2830e-01, 1.3320e-01, 8.5280e-01, + 7.1848e-01, 6.2103e-01, 7.3208e-01, 1.9941e-01, + 9.3285e-01, 7.1780e-01, 1.3221e-01, 2.8363e-01, + 9.7332e-01, 4.9667e-01, 7.4568e-01, 6.4196e-01, + 9.5067e-01, 6.2735e-01, 6.6890e-01, 8.1656e-01, + 2.4149e-01, 2.4013e-01, 2.9668e-02, 3.8869e-01, + 5.6431e-02, 5.9606e-01, 2.8391e-01, 7.5948e-01, + 5.7071e-01, 8.5520e-01, 4.0720e-01, 3.8487e-01, + 9.1407e-01, 3.7893e-01, 9.2517e-01, 3.1757e-02, + 5.8191e-01, 2.8741e-01, 4.5689e-01, 7.3211e-01, + 5.1279e-01, 2.0092e-01, 9.6941e-01, 1.0429e-01, + 8.8765e-02, 8.0419e-01, 1.9751e-01, 8.4583e-01, + 9.9007e-01, 5.8099e-01, 5.6395e-01, 1.7666e-01, + 7.5263e-01, 7.2795e-01, 4.5702e-01, 3.5597e-01, + 7.2686e-01, 6.7951e-01, 7.0072e-01, 4.3576e-01, + 3.0328e-01, 3.9285e-01, 6.9036e-01, 9.8846e-01, + 5.6203e-01, 4.7887e-01, 8.7240e-02, 4.9759e-01, + 3.3560e-01, 5.8114e-01, 9.8752e-01, 9.0553e-01]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.9668, 0.9511, 0.4479, ..., 0.0607, 0.6261, 0.2898]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 0.04503059387207031 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '233174', '-ss', '10000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 7.088708162307739} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), + col_indices=tensor([6339, 4641, 8767, 9629, 5248, 7593, 5215, 4233, 3907, + 8989, 5838, 7934, 891, 5239, 5411, 4963, 7963, 8173, + 4172, 4464, 4601, 9580, 2260, 6961, 5855, 1265, 1349, + 2190, 6418, 252, 5026, 6780, 5825, 9726, 7411, 4666, + 5731, 7839, 3753, 9206, 4521, 3044, 7848, 4653, 8995, + 579, 4725, 4836, 8826, 2364, 9710, 713, 7544, 9065, + 7816, 8496, 3385, 1467, 5199, 2666, 5229, 7632, 1859, + 2358, 9351, 6205, 2016, 380, 3677, 1279, 8529, 4708, + 600, 8708, 262, 2780, 7779, 4205, 2568, 2645, 4928, + 4767, 5127, 4130, 3518, 487, 2778, 3925, 1657, 1278, + 7068, 3351, 3630, 7719, 3614, 1109, 142, 4337, 7018, + 7816, 7494, 2297, 4786, 6789, 6911, 449, 6163, 812, + 8883, 3887, 726, 6261, 3381, 1211, 7361, 2658, 4836, + 2934, 3551, 5047, 7903, 3714, 2712, 9272, 1649, 9481, + 7845, 4115, 8011, 4904, 3857, 2157, 8222, 3091, 2952, + 5530, 893, 406, 656, 4883, 2559, 4176, 7319, 3087, + 1684, 1065, 2850, 6576, 7935, 6475, 7649, 2355, 6637, + 4645, 9422, 6130, 5581, 5702, 6904, 7945, 8119, 2180, + 408, 8239, 4419, 6214, 6023, 9693, 7635, 1127, 4320, + 8861, 4722, 2049, 6422, 104, 6661, 9156, 8586, 392, + 7446, 3109, 5971, 4358, 5232, 4896, 9459, 1771, 6550, + 3011, 5959, 9478, 4621, 388, 6640, 2764, 9283, 7190, + 464, 9583, 625, 4106, 2013, 1349, 4445, 446, 543, + 1545, 2963, 5230, 7111, 6095, 3395, 6571, 3059, 7732, + 2990, 7387, 3662, 925, 9527, 7839, 3262, 9035, 8871, + 7566, 6916, 7858, 9944, 1520, 9421, 9, 871, 3003, + 5962, 6872, 133, 5941, 4856, 8270, 8264, 8771, 26, + 6480, 1894, 8486, 8443, 6907, 6247, 7564, 9817, 5311, + 1169, 8939, 1744, 876, 5934, 7137, 7223, 9877, 4333, + 1508, 4152, 4899, 151, 6716, 2952, 5055, 9815, 9749, + 2132, 1495, 2274, 7975, 4840, 9431, 3088, 5808, 3007, + 5129, 656, 5845, 3672, 167, 3471, 6259, 9418, 9097, + 1751, 3334, 4912, 4687, 7215, 2905, 4983, 1876, 7556, + 6104, 8703, 1783, 3362, 306, 1557, 8547, 6285, 9713, + 5770, 8443, 3707, 6968, 8382, 3037, 4556, 6574, 3174, + 7983, 6141, 705, 7981, 1230, 4689, 8155, 4575, 6941, + 8183, 7079, 4053, 4770, 5978, 9450, 9971, 6548, 4713, + 7330, 2381, 8428, 895, 4263, 2382, 2494, 3102, 377, + 6580, 5769, 8240, 1818, 9244, 8064, 4348, 5859, 4637, + 6796, 5807, 1227, 5655, 3159, 4788, 5904, 5163, 8643, + 7455, 9087, 2599, 3470, 1933, 2052, 5737, 5929, 6787, + 7900, 3028, 1592, 2681, 3990, 5150, 5906, 9765, 3388, + 7902, 4412, 4202, 4919, 3936, 5854, 4278, 6226, 5795, + 9155, 8242, 9017, 8429, 1184, 3102, 3843, 6277, 8971, + 1912, 9612, 741, 4252, 7482, 3503, 2726, 2811, 3559, + 399, 7677, 5195, 4059, 9354, 906, 3533, 5066, 5261, + 3193, 4483, 4886, 4103, 4597, 9977, 5946, 8230, 4992, + 8472, 3117, 1248, 1710, 9801, 7084, 8399, 7976, 5881, + 2831, 8380, 740, 5933, 5902, 2054, 7730, 9220, 2421, + 3042, 8571, 558, 5545, 9248, 6314, 831, 8532, 164, + 6327, 8191, 6708, 3472, 8296, 987, 1978, 7731, 184, + 8077, 7024, 4373, 6476, 709, 2001, 3591, 7951, 674, + 3179, 4761, 6258, 404, 102, 7565, 1320, 4048, 8520, + 488, 1749, 3313, 4083, 5307, 2810, 390, 2437, 5305, + 7386, 1557, 9970, 2342, 3191, 9986, 178, 4626, 9267, + 4860, 4858, 1720, 8846, 6265, 9655, 9638, 9181, 6900, + 1613, 6595, 142, 2317, 8578, 5353, 2948, 3226, 9646, + 2814, 9928, 1619, 9514, 7599, 4491, 2351, 8435, 4286, + 2796, 6697, 2767, 215, 2381, 3251, 4594, 7945, 4553, + 5908, 1906, 8132, 4651, 9740, 9380, 6421, 885, 7449, + 4730, 8470, 4933, 6284, 274, 9613, 8769, 2849, 3054, + 647, 9306, 8076, 8650, 8558, 619, 7329, 8117, 5585, + 2935, 8965, 2239, 4899, 6916, 7529, 2944, 8894, 4693, + 883, 854, 9970, 4346, 9382, 5968, 4320, 5784, 8058, + 9957, 7797, 6604, 7854, 3200, 6586, 5581, 688, 7140, + 8461, 5640, 7421, 2, 3035, 1530, 3928, 6756, 9405, + 1862, 7698, 730, 1312, 4426, 4655, 8042, 4112, 8077, + 9757, 9198, 8803, 73, 3273, 649, 4257, 714, 5026, + 7230, 7355, 3577, 3243, 7112, 2281, 390, 231, 1780, + 450, 2570, 9716, 8058, 9251, 1372, 6520, 6388, 9274, + 3849, 3159, 5752, 4576, 1614, 9466, 5115, 2113, 5253, + 3480, 1193, 6699, 1791, 1597, 784, 3587, 6483, 2652, + 1195, 2433, 1554, 6460, 858, 9065, 6225, 8438, 4741, + 5530, 7845, 5905, 350, 2785, 2578, 237, 9882, 9324, + 5864, 8426, 2099, 7651, 5581, 8116, 4379, 6300, 3252, + 2820, 7305, 9535, 3471, 717, 5704, 219, 7072, 515, + 2227, 6380, 975, 8463, 1410, 7715, 116, 2199, 1775, + 688, 8980, 3787, 7284, 1628, 9292, 2018, 2821, 9192, + 3868, 5882, 8330, 4272, 5658, 483, 6593, 7399, 6269, + 8456, 6417, 3495, 5945, 2918, 3750, 159, 7898, 1407, + 9367, 564, 5300, 5013, 8346, 7601, 8865, 9223, 5944, + 901, 3124, 8400, 9741, 2948, 4858, 4999, 8774, 4713, + 2278, 4373, 2465, 6418, 8336, 2776, 4920, 5521, 7535, + 9154, 6696, 6660, 7005, 3240, 2019, 4528, 5313, 8399, + 4692, 1293, 2442, 3422, 1700, 953, 4080, 5160, 1845, + 6240, 4122, 6751, 9296, 4353, 9549, 3356, 1816, 5195, + 6398, 5782, 1694, 7383, 8555, 468, 5643, 437, 6323, + 363, 6907, 1437, 8290, 6802, 9750, 8431, 9749, 3998, + 7798, 2853, 5360, 7863, 4272, 4940, 991, 103, 7350, + 8318, 5850, 445, 1960, 6235, 731, 2056, 647, 4575, + 2714, 7085, 940, 6566, 9433, 3767, 9844, 8314, 8025, + 2745, 9939, 6053, 2095, 8416, 672, 2673, 9124, 1946, + 4995, 3271, 9749, 4543, 1749, 8419, 9156, 9258, 1109, + 3152, 5640, 9524, 6105, 832, 8218, 4229, 1259, 4638, + 7427, 3307, 2538, 4411, 4276, 5847, 9892, 5432, 127, + 747, 2773, 2394, 5071, 2979, 6115, 8303, 972, 1077, + 766, 1747, 4452, 7344, 5742, 5149, 2427, 4401, 2357, + 4741, 4890, 1768, 6984, 4719, 350, 4811, 539, 2475, + 8551, 7532, 194, 524, 6642, 3188, 5951, 7068, 6404, + 6696, 5171, 3898, 4152, 641, 9676, 8690, 6198, 148, + 1499, 6722, 8913, 9480, 5036, 5003, 7746, 3508, 9026, + 6763, 8327, 796, 2437, 7286, 634, 9036, 5938, 5483, + 9959, 3102, 8844, 1491, 6873, 7042, 5255, 6216, 4772, + 3446, 5933, 1150, 3106, 9009, 753, 4173, 8223, 6077, + 6054, 2576, 2721, 7916, 4263, 4368, 5827, 4016, 5554, + 2188, 1725, 9744, 5504, 128, 2481, 9845, 4266, 4938, + 5254, 3436, 6223, 8530, 4577, 7941, 4287, 814, 5792, + 5956, 3575, 3730, 5063, 3004, 6623, 7598, 6478, 3605, + 664, 4036, 424, 505, 5369, 4716, 2475, 8670, 5421, + 6595, 5235, 7757, 9306, 257, 8679, 6475, 8505, 7441, + 9960, 3498, 7408, 8594, 2914, 4652, 8512, 5905, 7800, + 8736]), + values=tensor([5.9797e-02, 3.1586e-01, 8.9348e-01, 2.2301e-03, + 7.5774e-01, 8.1473e-01, 6.9005e-01, 8.3764e-01, + 1.9388e-01, 3.7028e-01, 6.6707e-01, 7.5631e-01, + 9.6784e-01, 7.9670e-02, 4.9775e-02, 9.3745e-01, + 4.2617e-01, 5.6650e-01, 2.1143e-01, 5.6781e-01, + 3.2773e-01, 8.0071e-01, 7.1744e-01, 4.9315e-01, + 5.1779e-01, 8.3231e-01, 5.6317e-01, 8.3789e-01, + 1.6867e-01, 7.2317e-01, 3.5205e-01, 9.2952e-01, + 1.0560e-01, 2.0319e-01, 5.6453e-03, 1.2691e-01, + 6.7515e-01, 2.8654e-02, 1.4929e-01, 7.5179e-01, + 4.0274e-01, 8.6652e-01, 5.7557e-01, 3.4649e-01, + 5.1560e-01, 4.4271e-02, 4.8277e-01, 9.8128e-01, + 8.8709e-01, 5.1241e-01, 9.3991e-01, 2.9700e-02, + 9.9598e-01, 2.4645e-01, 1.5525e-01, 4.4033e-01, + 1.9020e-01, 3.4616e-01, 9.3560e-02, 5.1798e-01, + 1.0148e-01, 9.2502e-01, 7.5875e-02, 1.2222e-01, + 1.1586e-01, 8.5650e-01, 1.0749e-01, 8.9669e-01, + 5.2196e-01, 8.1933e-01, 4.5721e-01, 4.2455e-01, + 2.8674e-01, 1.4298e-01, 5.8864e-01, 4.0229e-01, + 1.6698e-01, 9.8795e-01, 7.4193e-01, 6.4737e-01, + 6.1647e-01, 5.1303e-01, 1.1406e-02, 1.4521e-01, + 3.3852e-01, 9.9773e-01, 6.8121e-01, 6.6374e-01, + 2.3301e-02, 5.1369e-01, 9.5374e-01, 4.0945e-01, + 6.7895e-01, 1.6201e-01, 7.1449e-01, 7.0733e-01, + 2.0865e-01, 5.7703e-01, 2.1282e-01, 9.8079e-01, + 3.0126e-01, 9.2204e-01, 3.5855e-01, 7.4006e-01, + 4.0260e-01, 2.4895e-01, 6.6630e-01, 4.3873e-01, + 6.9750e-01, 3.3585e-02, 2.6784e-01, 1.5943e-01, + 8.7140e-01, 1.7321e-01, 4.9353e-01, 4.7190e-01, + 2.4903e-01, 5.5852e-01, 3.0917e-01, 8.0618e-01, + 8.9951e-01, 1.5071e-01, 1.3120e-01, 6.7374e-01, + 8.9328e-01, 6.2104e-01, 3.0012e-02, 7.5397e-01, + 1.8498e-01, 2.9066e-01, 5.3134e-01, 8.4205e-01, + 2.4603e-01, 2.7883e-01, 7.0780e-01, 4.1218e-01, + 6.1176e-01, 7.8633e-01, 7.8208e-01, 8.0649e-01, + 7.2209e-01, 1.8549e-01, 3.9376e-01, 6.8222e-01, + 6.1499e-01, 7.8684e-02, 9.7657e-01, 9.2285e-01, + 2.2260e-01, 3.0372e-01, 7.9009e-01, 2.6687e-01, + 8.1037e-01, 6.1251e-01, 8.1966e-01, 3.9223e-02, + 4.6587e-01, 8.8132e-01, 1.8547e-01, 4.0486e-01, + 8.9928e-01, 8.8617e-01, 6.3218e-01, 6.5771e-01, + 8.5686e-02, 1.5945e-01, 6.0071e-01, 6.8548e-02, + 1.0579e-01, 2.6830e-01, 5.1166e-01, 9.3279e-01, + 1.1958e-01, 3.1685e-01, 6.8231e-01, 2.8457e-01, + 1.1497e-01, 1.5250e-01, 4.4321e-01, 6.0155e-01, + 7.1790e-01, 7.1978e-01, 6.7682e-01, 9.4540e-02, + 1.9797e-01, 9.5781e-01, 3.2506e-01, 2.7244e-01, + 8.3613e-01, 7.0382e-01, 7.3152e-01, 6.9588e-01, + 4.4820e-01, 4.3112e-01, 4.7823e-01, 4.6768e-01, + 1.8954e-01, 7.5206e-01, 8.3795e-01, 5.3464e-01, + 8.1446e-01, 4.3659e-01, 2.4537e-01, 3.1279e-01, + 7.1447e-01, 4.1738e-01, 1.4099e-01, 8.8032e-01, + 6.3535e-01, 7.2871e-01, 9.8657e-01, 4.6749e-01, + 2.8313e-01, 2.0200e-02, 7.7779e-02, 3.7336e-01, + 2.8724e-01, 9.4718e-01, 7.2532e-01, 5.1829e-01, + 5.5683e-01, 7.0625e-01, 7.3414e-01, 7.5766e-01, + 9.7259e-01, 3.1026e-01, 2.8144e-01, 1.0492e-01, + 2.9981e-01, 5.5736e-01, 5.5069e-01, 9.9987e-01, + 6.6277e-01, 7.9977e-01, 9.2426e-01, 4.0849e-01, + 6.8562e-01, 6.7766e-01, 1.4272e-01, 5.1420e-01, + 2.1391e-01, 1.4413e-01, 5.9377e-01, 2.5969e-01, + 4.4712e-01, 6.7579e-01, 9.0170e-01, 9.4087e-01, + 3.7861e-01, 5.2494e-01, 8.0595e-01, 8.6009e-01, + 2.1255e-02, 2.3412e-01, 2.6344e-01, 6.6887e-01, + 2.2484e-01, 9.2906e-01, 2.8464e-01, 7.0818e-01, + 4.3693e-01, 1.9227e-01, 9.7000e-01, 3.8882e-01, + 7.6479e-01, 8.0671e-01, 7.2264e-01, 4.7033e-01, + 3.2987e-01, 4.5877e-01, 8.9559e-01, 5.3586e-02, + 5.1775e-01, 9.6398e-01, 4.8668e-01, 2.8733e-01, + 8.4007e-02, 6.6030e-01, 4.5053e-01, 6.4219e-01, + 5.3442e-01, 8.9204e-02, 1.3479e-02, 6.8398e-01, + 4.5496e-01, 8.4411e-03, 6.9036e-01, 6.8798e-01, + 6.2433e-01, 6.9259e-01, 3.0161e-01, 3.7995e-02, + 6.3095e-01, 3.1976e-01, 2.3167e-01, 4.6570e-01, + 5.4730e-01, 8.9851e-01, 1.4343e-01, 1.9744e-02, + 2.5263e-01, 6.6548e-01, 9.5704e-02, 8.6671e-01, + 1.1189e-01, 6.8093e-02, 5.9177e-01, 6.4241e-01, + 7.4142e-01, 7.7089e-01, 9.2055e-01, 9.1185e-01, + 6.3925e-02, 9.1064e-01, 1.9802e-01, 8.8399e-01, + 7.6479e-02, 8.8093e-01, 7.9982e-01, 3.9832e-02, + 8.7614e-01, 6.9758e-01, 2.9838e-01, 2.4498e-01, + 2.5100e-04, 2.6495e-01, 8.6896e-02, 9.6968e-01, + 9.2855e-01, 3.0162e-01, 3.1537e-02, 9.2488e-01, + 6.8346e-01, 5.9580e-03, 9.0425e-01, 6.2726e-01, + 8.8373e-01, 7.3457e-02, 4.6862e-01, 8.1256e-01, + 4.4884e-01, 3.7307e-01, 7.0977e-01, 2.7326e-01, + 8.5745e-01, 1.9742e-01, 5.8825e-02, 3.3454e-01, + 1.6380e-01, 9.1259e-01, 7.6648e-01, 9.0361e-01, + 6.7038e-01, 2.1151e-02, 3.1773e-01, 5.8561e-01, + 8.1034e-01, 2.7378e-01, 5.1434e-01, 7.2376e-01, + 2.4184e-02, 3.6510e-01, 5.5591e-01, 7.7663e-01, + 8.6330e-01, 5.8496e-01, 8.9626e-01, 6.8770e-01, + 9.9476e-01, 7.7159e-01, 3.0655e-01, 1.8860e-01, + 8.6828e-01, 1.7995e-01, 3.4978e-01, 6.9750e-01, + 4.8250e-01, 6.8868e-01, 8.4389e-01, 7.4827e-01, + 9.9878e-01, 8.8959e-01, 5.4737e-01, 3.2379e-01, + 5.7137e-01, 8.5146e-01, 4.5064e-01, 2.3267e-01, + 8.1115e-01, 9.2106e-01, 1.2482e-02, 5.1706e-01, + 9.9087e-01, 7.0910e-01, 8.1717e-01, 5.8383e-01, + 9.1973e-01, 4.5580e-01, 1.3484e-01, 3.2765e-01, + 5.7245e-01, 9.2212e-01, 9.9063e-01, 9.0249e-01, + 6.8693e-01, 6.5675e-01, 6.1077e-01, 9.2089e-01, + 6.6177e-01, 3.3438e-01, 4.2984e-01, 3.1007e-01, + 8.2846e-01, 8.8850e-01, 2.1110e-01, 8.1829e-01, + 4.7551e-01, 6.2000e-01, 4.1692e-01, 5.2092e-01, + 7.6786e-01, 9.1542e-01, 5.4392e-01, 8.8456e-01, + 8.4469e-01, 3.8102e-01, 4.3214e-01, 5.2472e-01, + 9.7229e-01, 1.4086e-01, 9.4005e-01, 9.6540e-02, + 2.5348e-01, 4.7892e-01, 2.9356e-01, 9.6241e-01, + 2.4363e-01, 6.5549e-01, 3.4664e-01, 1.5140e-01, + 2.0653e-01, 3.4251e-01, 6.5092e-02, 6.7425e-02, + 4.7641e-01, 9.7564e-01, 9.0565e-01, 2.1639e-01, + 7.5697e-01, 5.7759e-01, 8.0824e-02, 8.1807e-01, + 9.3574e-01, 9.2358e-01, 1.1971e-01, 9.0508e-01, + 4.8221e-01, 5.6793e-01, 2.4712e-01, 4.4724e-01, + 6.0687e-01, 6.0084e-01, 3.9543e-01, 6.5026e-01, + 5.4289e-01, 7.3458e-01, 7.2942e-01, 4.0512e-01, + 6.8863e-01, 4.1767e-02, 5.5293e-01, 5.0961e-02, + 5.8265e-01, 6.2885e-01, 3.2344e-01, 3.7086e-01, + 9.4513e-02, 5.2906e-01, 5.0949e-01, 4.6165e-01, + 8.7258e-01, 3.4318e-01, 9.4513e-01, 8.1701e-01, + 3.7745e-01, 7.0468e-01, 2.0683e-01, 9.8588e-01, + 9.8906e-01, 5.5614e-01, 3.2419e-01, 8.3236e-01, + 6.5764e-02, 7.5798e-01, 7.6410e-01, 4.6352e-01, + 6.7976e-01, 3.6415e-01, 3.3778e-01, 6.7228e-01, + 3.1395e-01, 6.7979e-01, 9.9630e-01, 7.7595e-01, + 4.2823e-01, 1.8224e-01, 2.5108e-01, 8.4732e-01, + 9.5807e-02, 7.4592e-01, 9.1690e-01, 5.4894e-01, + 6.4604e-01, 4.2867e-02, 8.9503e-02, 2.3008e-01, + 9.3091e-02, 6.8898e-01, 7.2641e-01, 7.2536e-01, + 5.1182e-01, 3.8685e-01, 4.0557e-01, 2.3397e-01, + 3.3095e-01, 1.8926e-01, 5.0915e-01, 9.4197e-01, + 8.3461e-01, 2.1076e-01, 2.2497e-01, 3.2464e-01, + 6.6271e-01, 7.4466e-01, 9.1499e-01, 6.5195e-01, + 4.1717e-01, 8.6507e-01, 6.2078e-01, 9.4500e-02, + 1.3955e-01, 6.5948e-01, 8.8222e-01, 3.5343e-02, + 6.7590e-01, 7.0646e-01, 2.8159e-03, 7.0543e-01, + 2.7916e-01, 5.2058e-01, 3.5094e-01, 5.5246e-01, + 9.8389e-01, 6.0747e-01, 5.1724e-02, 8.4717e-01, + 8.4455e-01, 7.4994e-01, 9.9018e-01, 5.0871e-01, + 3.4972e-02, 9.2650e-01, 2.0510e-01, 4.5592e-01, + 6.3049e-01, 9.0046e-01, 4.4398e-02, 4.5015e-01, + 1.5364e-01, 1.0539e-01, 1.5162e-01, 3.4784e-01, + 7.2666e-01, 8.2500e-01, 1.4279e-01, 7.1443e-01, + 9.1664e-02, 2.2943e-01, 5.6659e-01, 3.0540e-02, + 2.7326e-01, 8.6386e-01, 2.3049e-01, 3.1528e-01, + 8.7637e-01, 1.9402e-02, 6.0174e-02, 5.1567e-01, + 9.4692e-01, 6.7348e-01, 2.1911e-01, 7.7383e-01, + 4.9676e-01, 4.9372e-01, 2.0545e-01, 7.8261e-03, + 8.7264e-01, 1.1286e-01, 9.2203e-01, 5.8348e-01, + 7.5578e-01, 3.5804e-01, 9.9899e-01, 8.3314e-02, + 2.1027e-01, 6.1831e-01, 2.3938e-01, 8.7485e-01, + 1.0222e-01, 2.9796e-01, 3.2359e-01, 3.7060e-01, + 2.5884e-01, 7.3045e-01, 5.9759e-01, 4.6175e-01, + 6.3187e-01, 4.0925e-01, 8.1417e-01, 6.2798e-01, + 2.3297e-02, 3.5433e-01, 4.9332e-01, 7.2145e-01, + 2.4077e-01, 6.8467e-02, 6.2307e-01, 1.3042e-01, + 2.8138e-01, 7.5976e-01, 6.9432e-01, 9.1672e-01, + 4.3510e-01, 3.5067e-02, 4.6770e-01, 6.7232e-01, + 2.5544e-01, 5.2293e-01, 8.7619e-01, 6.8424e-01, + 7.2771e-01, 9.3104e-01, 1.9051e-01, 9.5274e-01, + 6.9828e-01, 6.3012e-01, 6.4071e-01, 5.7960e-01, + 7.9925e-01, 9.4804e-02, 8.5019e-01, 3.5468e-01, + 8.9442e-01, 5.7501e-01, 9.7295e-01, 8.7263e-01, + 6.6304e-01, 5.1660e-01, 8.7113e-01, 6.8326e-01, + 2.0836e-01, 8.6064e-01, 6.5932e-01, 9.8303e-01, + 3.2765e-01, 7.4126e-01, 4.0225e-01, 5.8329e-01, + 3.4728e-01, 6.8208e-01, 8.6642e-01, 8.1105e-01, + 6.6790e-01, 3.5371e-01, 2.5556e-01, 9.3910e-01, + 4.0198e-01, 2.6802e-01, 3.5899e-01, 9.4529e-01, + 1.2365e-01, 5.1593e-01, 7.8345e-01, 4.2735e-01, + 9.3898e-01, 1.0231e-01, 7.9945e-01, 2.7850e-01, + 8.8009e-01, 8.4160e-01, 7.1094e-02, 8.0370e-01, + 6.0738e-01, 5.7333e-01, 6.5365e-01, 2.4782e-01, + 9.3323e-01, 1.3642e-01, 5.4412e-01, 3.2749e-01, + 2.7686e-01, 8.5186e-02, 1.3004e-01, 5.3547e-01, + 2.8639e-01, 8.8546e-01, 3.9756e-01, 5.6358e-01, + 7.6909e-01, 3.9548e-01, 4.0084e-01, 4.9522e-02, + 5.9447e-01, 5.6995e-01, 4.6947e-01, 8.7215e-01, + 6.1837e-01, 2.0034e-01, 3.8326e-01, 2.9975e-01, + 9.3635e-01, 8.5490e-01, 2.1056e-01, 6.8588e-01, + 5.1627e-01, 1.5068e-01, 9.1650e-01, 7.6046e-01, + 9.1249e-02, 1.7569e-01, 8.6032e-02, 9.4366e-01, + 1.8402e-01, 1.5197e-01, 5.1237e-01, 7.1106e-01, + 4.9457e-01, 5.9639e-01, 4.1015e-01, 5.9283e-01, + 3.4980e-01, 1.8764e-01, 3.0065e-01, 2.2116e-01, + 7.7094e-01, 5.3471e-01, 2.2148e-01, 8.0810e-01, + 3.4982e-02, 5.0035e-01, 8.2215e-01, 3.5867e-01, + 2.3880e-01, 2.4411e-01, 1.9415e-01, 7.9336e-01, + 4.7965e-01, 5.7440e-01, 1.1058e-01, 7.7221e-01, + 5.9623e-02, 6.8718e-01, 6.7513e-01, 4.8359e-01, + 2.0212e-01, 5.6448e-01, 5.4760e-01, 1.7598e-01, + 8.0921e-02, 1.3933e-01, 8.2620e-01, 3.7105e-01, + 3.5407e-01, 9.9007e-01, 8.6032e-01, 3.5567e-02, + 8.0722e-01, 7.2664e-01, 8.0544e-01, 8.6209e-01, + 5.1098e-01, 1.1634e-01, 6.5967e-02, 3.7816e-01, + 3.1122e-01, 5.0939e-01, 6.4653e-01, 4.7552e-01, + 9.7382e-01, 6.3824e-02, 5.1772e-01, 5.2606e-01, + 8.2232e-02, 4.4973e-01, 1.7601e-01, 8.1348e-01, + 7.3394e-01, 4.8243e-01, 7.1250e-01, 6.0531e-01, + 5.8494e-01, 2.4806e-01, 4.2528e-02, 3.0321e-01, + 1.1283e-01, 2.8491e-01, 5.7582e-01, 7.3199e-02, + 1.4029e-01, 3.2314e-01, 6.7951e-01, 3.4563e-01, + 1.8275e-01, 1.3782e-01, 7.7150e-01, 9.6866e-01, + 2.8417e-01, 3.2633e-01, 1.0866e-02, 2.1688e-01, + 5.9029e-01, 4.9274e-01, 5.4133e-01, 9.5045e-01, + 1.7733e-02, 1.1028e-01, 9.1602e-02, 9.1443e-01, + 9.3053e-01, 1.2892e-01, 5.8345e-01, 1.7120e-01, + 2.6217e-01, 9.0790e-01, 1.2331e-01, 1.0606e-02, + 8.9049e-02, 4.5886e-01, 8.2053e-01, 6.3672e-01, + 4.3700e-01, 9.4300e-01, 6.9414e-02, 3.6752e-02, + 7.0922e-01, 7.6619e-01, 1.7020e-01, 4.9363e-01, + 9.5185e-01, 1.8337e-02, 8.6529e-01, 3.7850e-01, + 6.5840e-01, 8.1267e-02, 6.8175e-01, 2.6105e-01, + 1.1958e-02, 8.5399e-01, 9.5227e-01, 9.4308e-01, + 3.4087e-01, 6.8046e-01, 4.0880e-01, 4.2278e-01, + 8.0349e-01, 8.2544e-01, 3.1626e-01, 2.1483e-01, + 5.8703e-01, 8.1015e-01, 2.6026e-01, 4.0984e-01, + 7.1906e-01, 7.5444e-02, 3.1672e-02, 6.2157e-01, + 4.7690e-01, 7.3978e-01, 4.6289e-01, 5.0697e-01, + 5.8991e-01, 7.3411e-02, 9.8459e-01, 9.2059e-01, + 7.7297e-02, 3.9565e-01, 5.9330e-02, 1.6467e-01, + 4.6085e-02, 9.8394e-01, 4.7420e-01, 1.7527e-01, + 8.6071e-01, 8.5043e-01, 5.4641e-01, 3.1303e-01, + 7.6572e-02, 3.3688e-01, 5.5810e-01, 7.8291e-01, + 7.5715e-01, 8.5556e-02, 3.8632e-01, 8.7833e-01, + 6.0417e-01, 9.5578e-01, 8.2911e-01, 9.1077e-01, + 4.0255e-02, 2.7065e-01, 4.4519e-01, 1.5818e-01, + 7.0510e-01, 4.7119e-01, 9.3945e-01, 1.6621e-01, + 8.9156e-01, 4.8768e-01, 2.1252e-01, 3.1250e-01, + 2.4778e-01, 5.0132e-01, 6.3727e-02, 8.8073e-01, + 8.1067e-02, 2.3802e-01, 4.1777e-01, 2.9406e-01, + 9.7699e-01, 1.2461e-01, 3.4226e-01, 8.2877e-01, + 5.2795e-01, 6.3498e-01, 2.0711e-01, 1.6407e-01, + 4.3654e-01, 7.6900e-02, 2.4319e-01, 7.7992e-01, + 7.2403e-01, 7.0366e-01, 1.8225e-01, 9.3758e-01, + 1.8038e-01, 3.1075e-01, 4.3956e-02, 6.7919e-01, + 9.8304e-02, 4.9273e-01, 8.1425e-01, 3.7930e-02, + 2.7202e-01, 2.9840e-01, 8.2132e-01, 1.1324e-01, + 8.1103e-01, 4.8281e-01, 5.5185e-01, 3.3551e-01, + 7.4731e-01, 4.6340e-01, 6.1275e-01, 9.5266e-01, + 4.6123e-01, 1.0211e-01, 2.1856e-01, 3.1378e-01, + 4.5652e-01, 5.2280e-01, 7.3852e-01, 9.0511e-01, + 9.1503e-02, 8.9445e-01, 8.6502e-01, 7.1965e-01, + 8.6239e-01, 5.9947e-01, 3.0871e-01, 5.1635e-01, + 6.8166e-01, 6.5746e-02, 3.2846e-02, 3.8413e-01, + 2.7706e-01, 7.8206e-01, 2.4514e-01, 5.7823e-01, + 5.2040e-01, 6.2925e-01, 9.7887e-01, 8.4393e-01, + 9.8090e-01, 7.5437e-01, 6.8239e-01, 2.4410e-01, + 9.6134e-01, 1.6346e-01, 4.8181e-01, 1.9722e-01]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.2611, 0.6478, 0.1138, ..., 0.3633, 0.3210, 0.9692]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 7.088708162307739 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '345384', '-ss', '10000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 9.645604133605957} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), + col_indices=tensor([8386, 6687, 1336, 4006, 2889, 63, 3271, 8876, 5809, + 2512, 7832, 2733, 3356, 4778, 2140, 779, 9751, 7240, + 1181, 7321, 2435, 1700, 1145, 7058, 2671, 9573, 9448, + 6201, 8201, 4132, 8088, 4935, 4564, 1801, 2140, 3767, + 4154, 3041, 6652, 3892, 6804, 8117, 8836, 7838, 9227, + 9815, 3957, 6041, 6513, 836, 4077, 5740, 165, 6693, + 9253, 4488, 6697, 8121, 527, 1601, 2341, 3820, 1804, + 1657, 7490, 6245, 3372, 1433, 9979, 3717, 6873, 3081, + 6306, 2907, 8882, 4044, 1805, 6070, 7397, 6632, 4430, + 9050, 4939, 4243, 9520, 9436, 8610, 3565, 1962, 5009, + 8292, 6355, 4785, 739, 8013, 464, 9981, 613, 9648, + 3885, 9065, 7010, 9621, 9406, 7765, 5572, 4542, 1690, + 8782, 2394, 9222, 6205, 3475, 4880, 6672, 2424, 2888, + 27, 9101, 629, 9556, 9408, 9624, 5180, 5403, 1419, + 4216, 6980, 2180, 5532, 8492, 8354, 6966, 2817, 5491, + 9780, 1196, 1142, 513, 3689, 9725, 6732, 2318, 541, + 5288, 2162, 6430, 4641, 4471, 3290, 5215, 9767, 356, + 9383, 2801, 9362, 483, 5422, 8381, 8545, 7037, 2671, + 6918, 5905, 7099, 9397, 3320, 5586, 6686, 6253, 8170, + 1197, 8081, 5276, 5498, 3973, 5719, 6, 4018, 191, + 4997, 6404, 6570, 1242, 2990, 3024, 8214, 1565, 8672, + 3559, 8708, 9395, 4507, 8669, 837, 566, 8699, 9769, + 5768, 6122, 297, 9572, 8148, 5082, 9475, 4877, 3777, + 4155, 1866, 5437, 4014, 6374, 9767, 6440, 4173, 9779, + 5678, 9986, 850, 3482, 5179, 1673, 2169, 1701, 1621, + 7569, 6430, 5599, 766, 4733, 4123, 3418, 9264, 4032, + 2763, 7503, 4004, 8112, 9531, 4528, 8162, 5697, 3229, + 4414, 7514, 8270, 843, 4470, 4332, 5154, 3197, 4663, + 9688, 1640, 3977, 6550, 4553, 285, 8771, 4769, 6381, + 2228, 177, 200, 4136, 5330, 3954, 4570, 1664, 9310, + 8177, 1261, 2114, 5886, 4871, 3431, 3184, 6547, 1994, + 9561, 2057, 4598, 9502, 775, 6930, 1345, 1396, 7979, + 1291, 7315, 8897, 7290, 6128, 6702, 6424, 1921, 3017, + 5642, 9895, 7073, 7559, 9240, 1936, 2501, 6299, 608, + 5270, 2518, 4117, 8638, 2432, 3241, 9239, 7588, 1119, + 5807, 8194, 1738, 2710, 900, 8311, 6519, 3889, 5525, + 701, 1556, 9224, 3079, 421, 4773, 6421, 4754, 9479, + 946, 4519, 8732, 8739, 3687, 2147, 9435, 6643, 6070, + 9961, 8652, 7149, 4024, 4961, 2799, 9377, 6950, 4754, + 1607, 3552, 4467, 6564, 8030, 8888, 7159, 8104, 9195, + 4046, 669, 3298, 5514, 1164, 8888, 9763, 5866, 785, + 4912, 1495, 5911, 723, 2112, 6187, 6103, 6303, 2239, + 3394, 202, 3549, 5133, 9224, 6796, 2158, 3007, 66, + 6648, 2818, 9175, 222, 4026, 1450, 8886, 4161, 5975, + 5093, 7330, 8430, 8812, 9647, 5384, 6958, 3246, 3443, + 3297, 9214, 1567, 9171, 7883, 4, 2600, 8920, 7351, + 3561, 511, 431, 4742, 360, 4012, 9154, 9443, 1893, + 647, 8408, 6428, 9486, 1044, 4008, 8951, 3809, 6695, + 3190, 8347, 2767, 2862, 9877, 4391, 6129, 5145, 2648, + 5993, 9470, 9740, 4774, 5299, 758, 8660, 5614, 3517, + 5221, 7009, 6408, 3602, 5959, 8924, 6010, 183, 2123, + 7038, 7450, 5520, 9014, 9762, 3893, 601, 4959, 7847, + 8395, 2093, 3516, 8653, 4637, 9242, 5975, 2428, 9155, + 4790, 9967, 3585, 6959, 2255, 1940, 1872, 1334, 557, + 3303, 2554, 252, 2660, 8388, 9592, 3342, 776, 8623, + 5559, 4701, 915, 7527, 5851, 1127, 3295, 5763, 7854, + 3449, 8075, 8679, 3865, 4017, 7580, 4179, 9968, 8205, + 8961, 6891, 9528, 5448, 7376, 5409, 7292, 3025, 2583, + 798, 274, 2832, 4249, 8478, 4127, 1427, 8032, 1706, + 3923, 9454, 4032, 2055, 7464, 3870, 2191, 8209, 8833, + 951, 3366, 6698, 2651, 5729, 6233, 9876, 345, 2080, + 1961, 2056, 9615, 7116, 3378, 6741, 9711, 6611, 5804, + 3857, 2845, 3064, 7397, 3292, 1927, 375, 258, 507, + 5816, 1045, 3749, 140, 65, 839, 3183, 2539, 6798, + 4858, 3962, 8021, 3576, 2833, 5206, 2400, 53, 7269, + 344, 7207, 8614, 9878, 8164, 9935, 2088, 8322, 7527, + 2494, 4692, 9827, 3198, 8779, 4379, 9590, 4943, 5298, + 7600, 9706, 161, 2936, 1872, 5424, 6061, 3910, 6493, + 7134, 859, 6556, 2108, 9208, 2826, 8911, 7637, 2277, + 7818, 6551, 5383, 5848, 1311, 2850, 6099, 2899, 3442, + 3741, 2999, 9298, 4174, 5137, 3721, 5034, 1145, 8317, + 7760, 2913, 8185, 7805, 6895, 8374, 9590, 6432, 6211, + 2561, 5506, 1334, 9822, 3888, 8038, 5700, 9940, 4005, + 6003, 3679, 2471, 6546, 7004, 5845, 3046, 3106, 3341, + 5524, 2222, 5512, 6022, 8010, 6825, 7806, 4113, 2314, + 5262, 6523, 6068, 8946, 1825, 1879, 6836, 9616, 4280, + 1425, 3261, 7045, 7340, 3532, 3422, 4765, 9947, 4451, + 9548, 2530, 3820, 6439, 2506, 9035, 3455, 7606, 8145, + 7636, 944, 8667, 2412, 6377, 7529, 3464, 2829, 9995, + 4498, 5471, 9804, 6400, 6994, 201, 4088, 7913, 2286, + 5146, 227, 1273, 1530, 1711, 8128, 8446, 264, 4022, + 8969, 9086, 5311, 973, 7787, 723, 8657, 2955, 2811, + 2639, 4614, 3599, 7519, 6130, 2197, 4829, 2091, 5673, + 5890, 9151, 1202, 7003, 7094, 3621, 5930, 3380, 929, + 1268, 2618, 9111, 7451, 910, 2630, 1171, 468, 3532, + 2742, 2900, 3348, 9764, 279, 8526, 4256, 2631, 2433, + 3407, 7106, 6292, 6411, 605, 8948, 9518, 4058, 2871, + 9753, 8385, 3453, 54, 9069, 774, 9503, 5739, 3336, + 5685, 3281, 5922, 9268, 4952, 2110, 6128, 4237, 2923, + 1004, 7408, 5996, 9922, 197, 9011, 941, 4794, 6293, + 7217, 8380, 3191, 6876, 283, 7219, 5517, 9763, 3917, + 9506, 7449, 1090, 5685, 7532, 6175, 1033, 5898, 5296, + 248, 4028, 381, 8671, 8441, 9519, 1965, 9373, 343, + 6129, 7428, 699, 5758, 4156, 2123, 4283, 3672, 8841, + 9768, 5587, 7925, 9795, 7576, 5312, 4264, 9232, 1577, + 8112, 8888, 2020, 962, 6489, 6113, 8186, 8288, 5361, + 1657, 9290, 6369, 96, 6744, 3295, 5988, 4803, 6098, + 7212, 2158, 4555, 8419, 3522, 4247, 7810, 3991, 1688, + 4864, 6169, 5001, 3335, 5725, 5380, 6774, 3434, 3293, + 727, 7777, 8150, 6940, 7624, 9509, 8401, 5224, 458, + 1726, 1075, 634, 8148, 1860, 6600, 9480, 7224, 1113, + 507, 5583, 5234, 5683, 5021, 43, 3034, 5881, 4346, + 552, 3514, 9781, 3543, 947, 2793, 9652, 1303, 6412, + 7971, 6721, 4145, 2593, 872, 7294, 1734, 3649, 2027, + 4695, 6819, 7797, 77, 4704, 9113, 8525, 763, 8776, + 2665, 5466, 9938, 9238, 7420, 855, 3191, 1211, 7740, + 4459, 8636, 5775, 9982, 6488, 4165, 9104, 544, 3173, + 6388, 6443, 2172, 6403, 3423, 7217, 5140, 8244, 1124, + 7418, 6948, 5153, 349, 4447, 6505, 4664, 3676, 522, + 2819, 9391, 1519, 9711, 2096, 811, 8845, 9535, 9072, + 1990, 9399, 4253, 928, 737, 3812, 6615, 2772, 4948, + 5722]), + values=tensor([9.0115e-01, 8.8050e-01, 3.5987e-01, 7.3636e-01, + 9.7083e-01, 7.9217e-01, 3.2045e-04, 5.0357e-01, + 9.7648e-01, 5.8740e-01, 3.2874e-01, 1.5283e-01, + 2.7996e-01, 5.0139e-01, 6.4518e-01, 4.0183e-01, + 6.1647e-01, 7.5213e-01, 5.2459e-01, 1.4687e-01, + 7.8967e-01, 7.1005e-01, 9.1450e-01, 9.1708e-01, + 9.9913e-01, 3.4558e-02, 8.6930e-01, 2.0159e-01, + 5.8830e-01, 9.0024e-01, 6.6306e-01, 4.4206e-01, + 1.7272e-01, 4.1850e-01, 5.1069e-01, 7.3974e-01, + 1.9908e-01, 6.3116e-01, 7.2987e-01, 8.1148e-01, + 2.1141e-01, 4.0869e-01, 3.6606e-01, 1.1063e-01, + 5.8883e-01, 2.2442e-01, 7.9393e-01, 7.9164e-01, + 4.4063e-01, 9.3353e-01, 6.7292e-01, 5.6572e-01, + 6.3369e-02, 8.5884e-01, 5.5282e-01, 8.8989e-01, + 9.0849e-01, 5.6683e-01, 8.6469e-01, 3.8254e-01, + 6.6273e-01, 6.6861e-01, 7.2263e-01, 4.8825e-01, + 3.4264e-01, 6.7193e-01, 4.4842e-01, 8.3390e-02, + 7.2084e-02, 7.4399e-01, 8.0451e-01, 7.1423e-01, + 9.9102e-01, 2.1979e-01, 8.9540e-01, 3.4973e-01, + 3.1231e-01, 2.7371e-01, 6.2965e-01, 9.9944e-01, + 6.9894e-01, 5.6744e-01, 6.8540e-01, 3.5404e-01, + 3.5127e-01, 4.0329e-01, 6.3087e-02, 6.5223e-01, + 2.2813e-01, 5.1441e-01, 1.8304e-01, 8.1642e-01, + 2.1854e-01, 5.6520e-01, 5.2881e-01, 7.9212e-01, + 3.9420e-01, 9.5741e-01, 5.5907e-01, 1.4001e-01, + 5.4957e-01, 8.4842e-01, 4.6425e-01, 1.0595e-01, + 4.5967e-01, 6.4599e-02, 9.1911e-01, 6.5753e-01, + 6.2962e-01, 5.6694e-01, 6.0193e-01, 1.4403e-01, + 4.9246e-01, 5.7669e-01, 2.9098e-01, 6.4498e-01, + 5.3745e-01, 4.2348e-01, 3.1712e-02, 4.3666e-01, + 8.1193e-01, 6.0611e-01, 4.6310e-01, 8.2270e-02, + 5.6178e-01, 9.5139e-01, 1.2013e-01, 7.4826e-01, + 3.7768e-01, 7.2530e-01, 8.7615e-02, 4.0503e-02, + 1.2463e-01, 6.4181e-02, 8.3595e-01, 1.9189e-01, + 3.9129e-01, 3.3246e-01, 5.7192e-01, 2.1101e-01, + 6.0817e-01, 9.7003e-02, 9.8184e-01, 9.7105e-01, + 4.7401e-01, 2.1217e-02, 7.9624e-01, 9.8049e-01, + 9.2013e-02, 8.1205e-02, 4.2661e-01, 7.2309e-01, + 7.9917e-02, 5.2711e-01, 6.0374e-01, 4.9148e-01, + 2.6376e-02, 4.2384e-01, 5.9763e-01, 2.6367e-01, + 2.5356e-01, 9.6932e-01, 5.1626e-01, 7.7903e-01, + 7.1553e-01, 9.6858e-01, 9.5479e-01, 6.4522e-01, + 5.7068e-01, 7.8164e-01, 5.2133e-02, 6.7311e-01, + 9.8581e-01, 6.5925e-03, 7.9162e-01, 2.9944e-01, + 6.0891e-01, 3.9472e-01, 2.7363e-01, 1.1914e-01, + 6.3504e-01, 2.5627e-02, 4.2015e-01, 1.6135e-01, + 3.6526e-01, 8.2710e-01, 8.6576e-01, 3.9387e-02, + 5.5228e-01, 5.2163e-01, 6.4411e-01, 3.3785e-01, + 6.1344e-01, 4.3780e-01, 8.5527e-01, 3.2033e-01, + 6.0259e-01, 5.5267e-01, 7.1983e-01, 1.3968e-01, + 4.5329e-02, 8.0719e-01, 7.1793e-01, 8.8356e-03, + 7.8471e-01, 9.1273e-01, 2.5071e-01, 8.3248e-02, + 7.5072e-01, 7.9566e-01, 3.7983e-01, 5.5128e-01, + 5.2776e-01, 7.0286e-01, 2.0685e-02, 6.5538e-01, + 5.6470e-01, 6.2072e-01, 9.8032e-01, 9.3015e-01, + 5.2162e-01, 9.8471e-02, 6.0975e-01, 8.9178e-01, + 5.3071e-01, 8.2338e-01, 1.0002e-01, 7.4946e-02, + 7.7185e-01, 9.7394e-01, 1.7129e-01, 6.4447e-01, + 2.5502e-02, 1.8622e-01, 5.1805e-01, 3.2572e-01, + 2.8875e-01, 6.2592e-01, 6.5948e-01, 7.2621e-01, + 6.7227e-01, 8.0332e-01, 1.2657e-01, 5.0462e-01, + 4.6989e-01, 6.8348e-01, 7.4530e-01, 7.5445e-01, + 5.5883e-01, 8.6002e-01, 5.5667e-01, 6.6355e-01, + 9.3600e-01, 1.4695e-01, 7.1804e-01, 3.3960e-01, + 8.8807e-01, 6.0725e-01, 8.2818e-01, 1.2540e-01, + 4.6094e-01, 1.1959e-01, 6.8050e-02, 9.6128e-01, + 1.7638e-01, 8.9032e-01, 7.1829e-01, 6.2017e-01, + 7.3900e-01, 1.4830e-02, 7.5134e-03, 3.8669e-01, + 5.9239e-01, 9.3017e-01, 8.3787e-01, 1.8825e-02, + 6.8285e-01, 6.7458e-02, 7.0504e-02, 4.9046e-01, + 3.7606e-01, 3.0865e-01, 1.8170e-01, 3.2952e-01, + 5.8782e-01, 8.1236e-01, 7.7799e-01, 7.8201e-01, + 1.0326e-01, 5.3681e-01, 8.0955e-01, 7.2573e-01, + 8.4076e-01, 5.6924e-01, 5.7448e-01, 7.8479e-01, + 1.7150e-01, 9.9653e-02, 2.8890e-01, 8.2325e-01, + 2.7212e-01, 4.3725e-01, 1.2614e-01, 3.0866e-01, + 1.2090e-01, 2.5676e-01, 1.8373e-01, 4.9961e-01, + 1.3768e-01, 3.3008e-01, 1.6190e-01, 8.7026e-03, + 4.9084e-01, 7.1519e-01, 6.1316e-01, 9.8670e-01, + 6.0605e-01, 7.7251e-01, 9.9157e-01, 6.8954e-01, + 1.2070e-01, 6.3810e-01, 6.1906e-01, 8.1502e-01, + 9.2001e-01, 4.3969e-01, 7.2756e-01, 8.7875e-01, + 4.3653e-01, 6.9847e-01, 3.1380e-01, 1.0810e-02, + 6.9225e-02, 9.5456e-01, 8.1509e-01, 1.8573e-01, + 1.7263e-01, 9.4344e-01, 6.8440e-01, 5.6809e-01, + 6.1681e-01, 8.5756e-01, 3.9344e-01, 2.9940e-01, + 1.9684e-01, 6.1325e-02, 6.9474e-01, 1.0074e-01, + 7.6320e-01, 1.4226e-01, 7.4760e-01, 9.4379e-01, + 5.2194e-01, 8.8193e-01, 3.2323e-01, 3.0987e-01, + 3.5587e-01, 4.5229e-01, 3.0776e-01, 2.4086e-01, + 8.4018e-01, 6.9500e-02, 7.2262e-01, 1.6828e-01, + 7.5949e-01, 8.9556e-01, 2.8170e-02, 6.4718e-01, + 1.2163e-01, 1.5797e-01, 3.4644e-01, 2.3799e-01, + 7.4442e-01, 2.2091e-01, 2.3291e-01, 1.5846e-01, + 7.8926e-01, 9.4641e-01, 6.5959e-01, 5.6732e-02, + 5.9274e-01, 4.3890e-03, 3.4973e-01, 3.9735e-01, + 1.8059e-01, 7.0888e-01, 5.5119e-01, 1.3779e-01, + 6.4749e-01, 1.3662e-01, 1.0865e-01, 1.3147e-01, + 5.0075e-01, 5.2678e-01, 2.4781e-01, 4.1504e-01, + 1.1935e-01, 8.3008e-01, 3.0970e-02, 6.8251e-01, + 1.6886e-01, 6.1165e-01, 5.0473e-01, 3.9204e-01, + 1.6855e-01, 3.3378e-01, 6.5922e-01, 1.1903e-01, + 5.3665e-02, 9.2576e-01, 2.0670e-01, 2.4041e-01, + 3.2132e-01, 6.7659e-01, 5.2846e-01, 5.8656e-01, + 8.8374e-01, 4.9666e-01, 7.7909e-01, 9.4623e-01, + 2.8933e-01, 1.5404e-01, 6.7852e-01, 8.1786e-01, + 9.4597e-01, 8.5793e-01, 3.3160e-01, 7.5230e-01, + 6.0446e-01, 6.4710e-01, 4.1057e-01, 6.7625e-01, + 8.8298e-01, 8.4069e-01, 3.9020e-01, 8.4527e-02, + 3.9151e-01, 1.5840e-01, 2.2059e-01, 5.8245e-01, + 1.7197e-01, 7.6726e-01, 8.8227e-03, 6.6955e-01, + 7.9928e-02, 1.8556e-01, 4.1794e-01, 6.5818e-01, + 4.6296e-01, 3.2847e-01, 8.2173e-01, 9.2977e-01, + 4.9292e-01, 3.8914e-01, 8.7533e-01, 5.3061e-01, + 5.5412e-01, 5.6525e-01, 7.2016e-01, 4.2913e-01, + 5.3712e-01, 8.5796e-01, 3.7029e-02, 5.1389e-01, + 4.6832e-01, 6.7621e-01, 5.3004e-01, 4.0844e-01, + 1.1041e-01, 2.7438e-01, 9.8368e-01, 5.2663e-01, + 9.6305e-01, 7.2215e-01, 9.3935e-01, 6.3998e-01, + 7.0704e-01, 1.1377e-01, 4.1005e-01, 3.2696e-01, + 1.0026e-01, 2.8994e-01, 3.5055e-01, 9.0988e-01, + 3.6443e-01, 8.3417e-01, 7.7405e-01, 5.0774e-02, + 3.3797e-01, 3.3466e-01, 8.9527e-01, 8.0208e-01, + 2.6681e-02, 7.1682e-01, 5.9444e-02, 8.6531e-01, + 4.3369e-01, 6.1949e-01, 3.8697e-01, 8.8910e-01, + 3.1565e-01, 6.4832e-01, 3.4978e-01, 5.2312e-01, + 7.1400e-01, 7.5351e-01, 9.0160e-01, 2.4848e-01, + 3.8887e-01, 3.5081e-01, 9.4599e-01, 1.7879e-01, + 6.0495e-01, 7.3665e-01, 9.2823e-01, 4.9776e-01, + 5.3755e-01, 9.1204e-01, 2.6898e-01, 9.3739e-01, + 1.4367e-01, 3.6463e-01, 5.8079e-02, 6.7584e-01, + 3.4121e-03, 9.6325e-02, 8.6028e-01, 4.8736e-01, + 5.4316e-01, 1.7502e-02, 8.2095e-01, 5.4301e-01, + 8.4924e-01, 4.9184e-01, 9.6464e-01, 8.9516e-01, + 3.8089e-01, 8.8603e-01, 3.1658e-01, 8.6537e-01, + 5.1600e-01, 9.0927e-01, 3.0592e-01, 7.3833e-01, + 9.7473e-01, 3.8865e-01, 7.6546e-01, 2.5279e-01, + 3.3127e-02, 7.8531e-01, 1.8327e-01, 2.5612e-01, + 2.0669e-01, 4.9848e-01, 7.1653e-01, 1.9062e-02, + 1.0880e-01, 4.7684e-01, 9.3279e-01, 1.6869e-01, + 2.6717e-01, 3.3740e-01, 3.2854e-01, 8.8305e-02, + 3.8199e-01, 8.1604e-01, 7.2703e-01, 5.8406e-01, + 5.9930e-01, 8.6077e-01, 1.7066e-02, 9.8540e-01, + 2.7795e-01, 7.2662e-01, 6.5484e-01, 7.1277e-01, + 6.5119e-01, 1.2851e-01, 4.7065e-01, 8.9167e-01, + 9.9947e-02, 2.1288e-01, 6.0742e-01, 3.4325e-01, + 1.5077e-01, 7.6764e-01, 6.5939e-02, 4.6402e-01, + 7.2707e-01, 9.1168e-01, 9.3561e-01, 6.0751e-02, + 4.5006e-01, 4.4882e-01, 5.3932e-01, 5.1565e-01, + 2.3385e-01, 6.9360e-01, 9.7167e-01, 2.0001e-01, + 3.5852e-01, 6.0614e-02, 9.7567e-01, 3.4254e-01, + 1.9393e-01, 4.9862e-01, 3.0823e-01, 1.2389e-01, + 8.7236e-01, 7.5087e-02, 5.2167e-01, 8.0826e-01, + 1.0438e-01, 7.9152e-01, 4.6284e-01, 8.8711e-01, + 5.8942e-01, 7.7338e-01, 5.1972e-01, 2.6555e-03, + 7.6202e-01, 5.3881e-01, 6.4357e-01, 8.0505e-01, + 5.6126e-01, 5.6111e-01, 8.4910e-01, 9.6083e-01, + 2.9755e-01, 6.7317e-01, 7.8388e-01, 3.7047e-01, + 2.9249e-02, 1.8628e-01, 2.7018e-01, 2.7893e-01, + 4.8369e-02, 9.2188e-01, 2.1911e-02, 1.9599e-01, + 5.0704e-01, 4.4787e-01, 8.2433e-01, 1.6686e-01, + 8.7724e-01, 2.9033e-01, 5.8332e-01, 2.3699e-01, + 4.5496e-01, 3.5785e-01, 9.8532e-01, 6.4439e-01, + 4.4912e-01, 4.8356e-01, 2.7958e-01, 4.8668e-01, + 7.1707e-02, 8.5048e-01, 8.6171e-01, 1.6321e-02, + 9.3929e-01, 6.7710e-02, 3.2336e-02, 7.6459e-02, + 5.2305e-01, 7.6182e-01, 8.3472e-01, 5.2988e-01, + 7.0034e-01, 9.4743e-01, 5.9486e-01, 5.1122e-01, + 6.8446e-04, 2.0202e-02, 9.8175e-01, 9.4232e-01, + 5.2271e-01, 3.0729e-01, 3.1359e-01, 6.8320e-02, + 2.5836e-02, 9.9227e-01, 7.7773e-01, 6.0685e-01, + 6.7938e-01, 3.2782e-01, 3.1725e-01, 2.6244e-01, + 6.7564e-01, 3.7335e-02, 7.7889e-02, 5.0003e-01, + 1.7315e-01, 9.7719e-01, 9.6079e-01, 7.2794e-01, + 1.0881e-01, 4.4640e-01, 7.8867e-01, 1.9848e-01, + 6.0195e-01, 3.8139e-01, 7.1983e-01, 7.7696e-01, + 8.1739e-01, 1.7853e-01, 4.4990e-01, 6.1366e-01, + 5.2893e-01, 7.0284e-01, 5.6232e-01, 1.8886e-01, + 4.4881e-01, 1.5936e-01, 7.5306e-01, 4.0777e-01, + 8.5523e-01, 2.7170e-01, 4.4524e-01, 2.9691e-03, + 3.2916e-01, 6.2114e-01, 3.4808e-01, 5.4781e-01, + 9.2626e-01, 2.2532e-01, 5.8168e-01, 1.5934e-01, + 1.2946e-01, 6.6174e-01, 3.5593e-01, 1.3698e-01, + 7.3235e-02, 2.5540e-01, 9.9694e-01, 1.3705e-01, + 6.1872e-01, 9.6207e-01, 9.5219e-01, 2.8191e-01, + 9.1440e-02, 3.1180e-01, 6.9635e-03, 2.5435e-01, + 9.1899e-01, 6.7879e-01, 7.5487e-01, 1.7226e-01, + 3.7427e-01, 9.1988e-01, 2.3870e-01, 9.3252e-01, + 5.7403e-01, 6.7265e-01, 2.0904e-01, 3.7595e-01, + 9.3516e-02, 8.3802e-01, 3.6882e-01, 4.8034e-01, + 6.5282e-01, 3.5730e-02, 3.2261e-01, 4.9454e-01, + 2.2186e-02, 3.4044e-01, 1.6303e-01, 4.5287e-01, + 6.0998e-01, 5.0775e-01, 3.8602e-01, 3.4840e-01, + 3.1037e-01, 5.5778e-02, 5.6720e-01, 1.3354e-01, + 4.9769e-01, 1.1604e-01, 8.2515e-01, 8.0195e-01, + 6.7554e-01, 3.4584e-01, 6.5775e-01, 1.0032e-01, + 3.8742e-01, 5.4175e-01, 9.3981e-01, 2.9224e-01, + 3.5257e-01, 8.9192e-02, 2.7028e-02, 4.7090e-01, + 9.5903e-01, 2.5803e-01, 4.7281e-01, 5.2437e-01, + 5.9106e-01, 8.4471e-01, 9.0420e-01, 4.0432e-02, + 8.1010e-01, 3.7143e-02, 6.7355e-01, 1.5820e-01, + 2.5496e-01, 1.3753e-01, 3.7765e-01, 3.9838e-01, + 3.5075e-01, 5.5563e-01, 4.7392e-01, 8.7443e-01, + 5.6379e-01, 6.4811e-01, 2.3482e-01, 4.7936e-01, + 2.4676e-01, 2.6263e-01, 2.5426e-01, 2.7892e-01, + 2.8513e-01, 1.0752e-01, 1.3344e-01, 6.0327e-01, + 4.8809e-01, 8.0322e-01, 1.7330e-01, 9.7564e-01, + 4.1668e-01, 1.4600e-01, 7.6508e-02, 3.7961e-02, + 8.6266e-01, 1.6828e-01, 7.6288e-01, 9.3571e-01, + 9.1052e-01, 5.1313e-01, 4.6865e-01, 6.0842e-02, + 4.1447e-01, 3.8370e-01, 6.4880e-01, 3.7351e-01, + 4.3286e-01, 1.4471e-01, 4.6189e-01, 5.9934e-01, + 8.9889e-01, 2.8845e-01, 1.8585e-01, 4.2197e-01, + 1.5149e-01, 5.9919e-02, 6.2940e-01, 8.5199e-01, + 5.5759e-02, 1.6348e-01, 3.4757e-01, 5.3078e-01, + 8.3393e-01, 4.3723e-01, 8.9504e-02, 4.3079e-02, + 2.8489e-01, 2.4196e-01, 4.7086e-01, 1.8450e-01, + 9.9173e-01, 5.6553e-01, 2.5036e-01, 3.5301e-01, + 2.7440e-01, 8.3964e-01, 2.5246e-01, 6.6661e-01, + 8.2671e-01, 1.3135e-01, 9.1725e-01, 6.2427e-01, + 4.4502e-01, 2.5897e-01, 2.7876e-01, 6.4101e-01, + 6.7482e-01, 1.8311e-01, 1.6083e-01, 1.8583e-01, + 5.4458e-01, 2.9069e-01, 8.2224e-01, 6.2075e-01, + 3.9232e-01, 2.1246e-01, 3.4202e-01, 1.2238e-01, + 9.6849e-01, 1.9917e-01, 5.4351e-01, 4.7916e-02, + 5.0439e-01, 3.5896e-01, 3.5784e-02, 6.6932e-01, + 9.5056e-01, 2.9698e-01, 2.6797e-01, 2.6664e-01, + 3.8807e-01, 9.9453e-01, 8.1949e-01, 6.8321e-01, + 2.3754e-01, 7.9641e-02, 1.7435e-01, 5.9529e-01, + 9.3165e-02, 6.5469e-01, 5.0478e-02, 2.0361e-02, + 8.6962e-01, 7.4207e-01, 1.5179e-01, 2.1719e-01, + 2.6114e-01, 3.4410e-01, 3.7211e-01, 6.8090e-01, + 9.8753e-01, 9.6870e-01, 4.6431e-01, 1.2912e-01, + 5.2046e-01, 1.6160e-01, 7.6828e-01, 4.4862e-01, + 8.2709e-01, 3.1929e-01, 4.9581e-01, 4.2626e-01, + 2.4334e-01, 7.2818e-01, 2.9872e-01, 1.1291e-01, + 4.6972e-01, 6.6826e-01, 6.1663e-01, 1.3006e-01, + 6.0978e-01, 4.5701e-01, 9.5261e-01, 2.9689e-02, + 4.7773e-01, 9.8330e-01, 6.2423e-01, 4.6928e-01, + 1.1704e-01, 2.9244e-01, 3.2726e-01, 8.8208e-01, + 4.8767e-02, 5.9852e-01, 4.0702e-01, 2.0990e-01, + 2.6724e-01, 6.9050e-01, 4.1816e-01, 4.0625e-01, + 2.2784e-01, 2.5273e-01, 7.8303e-03, 2.4529e-01, + 9.5090e-01, 6.2446e-01, 7.3078e-01, 6.5680e-01, + 6.0812e-01, 7.0013e-01, 2.7493e-01, 5.6124e-02, + 6.2114e-01, 6.0714e-01, 7.3406e-01, 6.5069e-01, + 5.3137e-01, 8.6755e-01, 8.4930e-01, 6.6233e-01, + 6.9737e-01, 8.9394e-01, 3.9952e-01, 6.6654e-01, + 3.0713e-01, 6.5818e-01, 2.1786e-01, 7.3671e-01, + 7.9441e-01, 1.8102e-01, 1.2417e-01, 7.0777e-01]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.7495, 0.5234, 0.3924, ..., 0.9829, 0.4941, 0.4696]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 9.645604133605957 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '375977', '-ss', '10000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.999524116516113} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), + col_indices=tensor([7315, 7011, 7905, 1028, 2803, 8634, 5420, 3714, 9961, + 9682, 9462, 3672, 9521, 6357, 2121, 3239, 5077, 5611, + 4819, 9590, 9566, 7110, 9282, 3205, 6562, 8535, 6101, + 4471, 8275, 3563, 3283, 2844, 9366, 4926, 9577, 7356, + 8518, 1230, 10, 3109, 6967, 7024, 3566, 6230, 1306, + 5778, 1783, 7611, 4767, 1036, 2386, 1905, 3222, 7598, + 3813, 6094, 6353, 9093, 5396, 1174, 7424, 6062, 4513, + 177, 8866, 7252, 2860, 4744, 8855, 2227, 299, 9342, + 3509, 1775, 3656, 5550, 9595, 6991, 8012, 9812, 5920, + 3934, 6803, 5774, 7689, 674, 5602, 3014, 6143, 7099, + 663, 4281, 4779, 9464, 8707, 8638, 8538, 5514, 6658, + 4407, 5833, 3387, 3279, 4896, 4259, 2176, 8287, 8834, + 3999, 3877, 1161, 9724, 9738, 238, 3075, 5186, 7486, + 891, 9045, 5190, 5381, 5459, 4110, 1402, 6321, 6193, + 9155, 9992, 7314, 291, 2462, 2852, 6279, 222, 309, + 7313, 8459, 3425, 6366, 652, 7078, 5904, 156, 5860, + 2945, 3690, 8593, 4252, 7597, 5596, 5776, 7114, 5766, + 611, 9442, 2673, 7518, 6593, 859, 8021, 4190, 3626, + 9970, 1168, 1714, 3198, 7142, 1721, 1966, 1005, 3234, + 3374, 8223, 3515, 685, 4449, 3575, 1088, 4518, 6724, + 1106, 5643, 2563, 3222, 3789, 8841, 4328, 5908, 980, + 3354, 5903, 453, 6584, 6902, 1796, 5128, 9193, 4852, + 7599, 2332, 9798, 4331, 6435, 2285, 749, 227, 8974, + 2233, 1060, 9434, 8311, 8983, 7891, 4157, 9048, 9215, + 1244, 1930, 3548, 3700, 5258, 2713, 1101, 6198, 1383, + 485, 1663, 3680, 5007, 2469, 3200, 3534, 5060, 8323, + 5125, 6533, 8536, 7835, 7036, 2925, 4362, 4257, 3178, + 2891, 2108, 3452, 9536, 7002, 616, 6420, 8664, 8815, + 6583, 6609, 1072, 8384, 5169, 1059, 7775, 2477, 5080, + 5419, 1433, 8621, 761, 6118, 3052, 2864, 4101, 5536, + 5114, 2890, 8264, 7375, 8458, 5708, 8141, 9842, 7535, + 9487, 506, 9991, 4912, 6899, 6042, 5987, 8236, 2381, + 2377, 8623, 6899, 4199, 1671, 8263, 3247, 8424, 4377, + 3844, 7302, 4183, 5465, 7916, 7243, 867, 5598, 4757, + 1405, 2390, 6269, 8998, 6806, 1037, 5633, 6240, 2683, + 661, 6248, 4362, 6589, 6881, 7919, 3436, 9778, 9040, + 7754, 6133, 7587, 9613, 1799, 8034, 1412, 569, 7649, + 854, 2162, 975, 1777, 1311, 2293, 7425, 7721, 8243, + 3457, 2497, 8795, 9492, 8514, 1656, 1379, 1684, 2624, + 6150, 9236, 5502, 3220, 4424, 3861, 8284, 3334, 9155, + 9329, 2543, 88, 331, 573, 7250, 1893, 2214, 1117, + 5839, 6679, 2059, 4263, 3884, 5823, 5109, 6317, 8095, + 5772, 3805, 2801, 1284, 3513, 6344, 2050, 8362, 1104, + 3767, 8450, 2746, 7137, 2448, 1034, 910, 1808, 8546, + 7613, 4713, 1419, 7363, 5135, 416, 7410, 1254, 3607, + 5213, 2583, 1030, 7355, 9095, 3057, 2965, 1346, 6518, + 456, 1710, 4150, 606, 3991, 9343, 1922, 1471, 8654, + 8556, 4029, 7374, 5147, 245, 2185, 3615, 6782, 7298, + 4827, 1048, 4435, 5810, 5501, 9685, 936, 1353, 4747, + 6183, 8133, 2032, 6413, 2310, 638, 2549, 9087, 7037, + 9683, 9195, 7009, 3023, 8664, 3999, 7198, 4435, 2636, + 2391, 2637, 6770, 5371, 8323, 5172, 7013, 9841, 3318, + 9942, 9659, 100, 2774, 5785, 1509, 2452, 6366, 3270, + 7991, 2560, 8019, 9904, 251, 6517, 6214, 3419, 1023, + 9453, 641, 7273, 1656, 5351, 4640, 5117, 6185, 1841, + 2653, 7756, 2706, 5419, 3985, 8928, 5908, 8395, 9421, + 5401, 2577, 7369, 8901, 3379, 6155, 3350, 3982, 5664, + 2632, 8161, 9582, 4592, 162, 9591, 1297, 2536, 9311, + 3172, 5585, 8289, 7147, 6739, 4983, 1071, 2040, 1688, + 3636, 7012, 4562, 2335, 5647, 715, 3383, 3263, 4154, + 5053, 6148, 8770, 7782, 6127, 8164, 6802, 5781, 664, + 3307, 3627, 8545, 4737, 7093, 7554, 9661, 1123, 6095, + 7857, 2265, 2364, 9252, 8564, 2821, 5037, 4976, 9852, + 4939, 4236, 323, 6914, 3029, 7213, 1359, 1808, 8226, + 8417, 9064, 9262, 5852, 3099, 5978, 9101, 5008, 9044, + 3805, 679, 4939, 2966, 9288, 8198, 4028, 31, 99, + 296, 8675, 6350, 1078, 4079, 9324, 818, 7786, 2367, + 5106, 7500, 3688, 495, 8439, 9765, 7521, 8162, 4283, + 1827, 1758, 498, 5591, 1635, 6647, 2322, 7481, 7741, + 8801, 1143, 8098, 1520, 1220, 6535, 4958, 3736, 3448, + 9104, 1436, 6505, 4589, 9260, 2728, 1235, 3582, 184, + 8130, 836, 5131, 4649, 3369, 3926, 5032, 4259, 4469, + 3719, 9447, 9115, 47, 3895, 3886, 9444, 2841, 4061, + 3017, 950, 3712, 7167, 5221, 790, 8084, 4463, 144, + 6564, 1773, 9290, 8835, 6735, 5270, 3631, 66, 2756, + 5023, 4534, 3959, 4551, 6473, 5945, 6848, 1690, 7777, + 6894, 3396, 9382, 1836, 441, 8618, 776, 5251, 8749, + 4321, 521, 6968, 7286, 596, 4655, 632, 7619, 1492, + 6316, 699, 7905, 1661, 4395, 9739, 104, 3521, 1753, + 6768, 1527, 3851, 9459, 3343, 5453, 7187, 8372, 997, + 5605, 6632, 6960, 7667, 7471, 2070, 4717, 1707, 1420, + 4300, 7588, 6313, 9723, 219, 5653, 7652, 2470, 9617, + 8449, 7892, 3278, 7246, 7417, 9017, 3709, 3870, 4523, + 9505, 4269, 6241, 9265, 7319, 8501, 753, 8354, 1912, + 1553, 8094, 1317, 5971, 2810, 414, 9472, 3324, 7338, + 9143, 2633, 8788, 9526, 766, 2702, 6774, 7114, 145, + 5175, 9354, 4708, 8663, 375, 3947, 9572, 8290, 5014, + 5394, 7415, 2379, 2168, 1593, 1872, 3501, 5911, 919, + 2321, 4308, 6674, 3273, 7641, 102, 3093, 4396, 9235, + 3771, 320, 755, 3459, 8281, 6984, 5238, 5946, 6352, + 7589, 5255, 4512, 2004, 1268, 5192, 5673, 4505, 9942, + 6596, 5939, 8561, 4262, 210, 1555, 4451, 645, 5242, + 2965, 3429, 8117, 6744, 8237, 9222, 6984, 2092, 2593, + 1178, 9712, 4151, 2676, 4438, 1667, 3002, 5084, 1702, + 2111, 6635, 9280, 2973, 5064, 874, 8288, 9477, 2791, + 1087, 7121, 1852, 1045, 9241, 8406, 813, 8275, 6074, + 8646, 4357, 5764, 661, 9267, 6343, 9809, 4190, 3021, + 5816, 9379, 3340, 6454, 1557, 356, 8328, 8537, 7080, + 7354, 1578, 666, 4817, 1570, 9849, 1827, 7697, 2475, + 6386, 9715, 5209, 9237, 6075, 9469, 583, 462, 3775, + 6440, 2999, 7916, 3754, 9198, 8174, 243, 3114, 2481, + 975, 9771, 5568, 9040, 5301, 3260, 4502, 2126, 5304, + 837, 9354, 258, 3627, 1232, 4503, 6332, 9854, 9142, + 4321, 3920, 3750, 5002, 1898, 5869, 3909, 3405, 600, + 8568, 3715, 3998, 3685, 5953, 2878, 8577, 7035, 2600, + 194, 9795, 6880, 2652, 7730, 3386, 3550, 179, 9688, + 5552, 8778, 6934, 3301, 9299, 7193, 8775, 1828, 7546, + 9311, 4434, 5261, 1742, 8110, 9147, 8767, 3915, 6212, + 5141, 5602, 4694, 7093, 8690, 2073, 7118, 8341, 6600, + 2953, 5097, 8404, 865, 8300, 3366, 8481, 7438, 3656, + 4341, 3597, 8718, 5002, 9403, 144, 8793, 6261, 1341, + 1279]), + values=tensor([6.3376e-01, 7.6730e-01, 7.2919e-02, 5.4427e-02, + 6.0546e-01, 6.0189e-01, 9.2261e-01, 5.7961e-01, + 4.9178e-01, 9.4390e-01, 2.8388e-02, 9.5132e-01, + 9.7425e-01, 5.9400e-01, 5.7570e-01, 9.4685e-01, + 1.1230e-03, 2.8396e-01, 8.0782e-01, 5.4140e-01, + 5.7368e-01, 3.1036e-02, 1.9431e-01, 9.2723e-01, + 8.0731e-01, 9.7470e-01, 6.8939e-01, 9.8405e-02, + 2.9168e-01, 2.5387e-01, 9.5437e-01, 4.1772e-01, + 4.7585e-02, 4.8136e-01, 1.5348e-01, 3.4622e-01, + 2.3877e-01, 2.8323e-03, 2.7343e-01, 1.3764e-01, + 1.2578e-01, 9.8729e-01, 5.9137e-01, 2.2799e-01, + 6.1987e-01, 2.1468e-01, 2.2450e-01, 2.0210e-01, + 9.2984e-01, 7.9165e-01, 2.7490e-01, 6.2165e-01, + 1.6123e-01, 4.0289e-01, 9.3432e-01, 3.9183e-01, + 1.5643e-02, 5.4120e-01, 9.4215e-02, 9.6242e-01, + 7.3975e-01, 5.8198e-01, 5.9396e-01, 8.2065e-01, + 2.0481e-01, 4.1419e-01, 7.9918e-02, 5.7401e-01, + 9.2905e-01, 8.5287e-02, 5.1333e-01, 3.7557e-01, + 2.1503e-01, 3.9680e-01, 9.1255e-02, 6.5433e-02, + 5.2830e-02, 3.3823e-02, 2.3435e-01, 5.5829e-01, + 2.8861e-01, 9.7182e-01, 8.5050e-01, 1.7125e-01, + 3.8665e-01, 9.6698e-01, 1.7106e-01, 1.8865e-01, + 7.2944e-01, 1.4105e-01, 1.9717e-01, 2.3506e-01, + 9.7885e-01, 8.9037e-01, 8.7398e-01, 3.5326e-02, + 5.2638e-01, 2.1680e-01, 1.1436e-01, 9.4880e-01, + 6.7321e-01, 8.4246e-01, 6.5198e-01, 3.1991e-01, + 6.2040e-01, 9.1412e-01, 3.9267e-01, 1.5271e-01, + 9.2351e-01, 6.8775e-01, 2.2448e-01, 8.7632e-01, + 7.8738e-01, 2.0587e-01, 3.7930e-01, 9.9595e-01, + 6.7491e-01, 4.7656e-01, 1.0028e-01, 1.5781e-01, + 5.2293e-01, 9.8016e-01, 9.4054e-01, 7.3715e-01, + 3.4949e-01, 9.2644e-01, 6.3554e-01, 5.1357e-01, + 2.9100e-01, 9.3441e-01, 9.8280e-01, 6.4754e-01, + 2.7015e-01, 8.1047e-01, 8.2692e-01, 7.8373e-01, + 5.5185e-02, 5.3173e-01, 3.3446e-01, 4.6782e-01, + 2.8341e-01, 3.8462e-01, 5.5173e-01, 3.3233e-01, + 1.4466e-01, 9.9674e-02, 5.9887e-01, 3.0987e-01, + 2.0656e-01, 1.4293e-01, 6.2518e-01, 2.2170e-01, + 7.1340e-02, 1.4400e-01, 9.8693e-01, 5.7422e-01, + 2.8495e-01, 2.7480e-01, 3.2319e-01, 8.1503e-01, + 4.9779e-01, 3.7355e-01, 8.0157e-02, 5.6260e-01, + 4.5111e-01, 1.5335e-01, 6.0164e-02, 7.2363e-01, + 2.5203e-01, 7.8959e-01, 1.7399e-01, 6.4875e-01, + 8.3746e-01, 9.9659e-01, 3.2280e-01, 5.4780e-01, + 6.3405e-01, 2.5291e-01, 8.3069e-01, 3.2372e-01, + 9.6184e-01, 6.9730e-01, 6.4462e-02, 8.6435e-01, + 9.8089e-01, 4.8332e-02, 2.0838e-01, 6.1370e-01, + 4.3683e-01, 7.6069e-01, 5.9835e-01, 3.6330e-01, + 3.6132e-01, 4.5351e-01, 5.5867e-01, 8.3977e-01, + 7.7599e-01, 7.6807e-01, 6.1329e-01, 4.6591e-01, + 6.1334e-01, 5.1913e-01, 1.3149e-01, 5.9490e-01, + 5.7945e-02, 2.4761e-01, 1.3468e-01, 8.8630e-02, + 9.3435e-01, 5.7224e-01, 1.4595e-01, 4.8246e-01, + 8.2826e-01, 2.9221e-01, 2.3054e-01, 4.1104e-01, + 9.8005e-01, 9.5886e-01, 6.1801e-01, 9.8291e-01, + 8.7964e-01, 9.2761e-02, 1.8925e-03, 8.9489e-01, + 6.5450e-01, 3.7551e-02, 9.5895e-01, 2.1970e-01, + 5.7556e-01, 1.0274e-01, 6.8162e-01, 7.1993e-01, + 6.0126e-02, 9.6031e-01, 3.1287e-02, 8.9614e-01, + 6.1790e-01, 4.4599e-01, 9.1123e-01, 8.7231e-01, + 4.8551e-01, 8.6899e-01, 3.9527e-01, 6.0987e-01, + 2.4934e-01, 1.2417e-01, 2.4374e-01, 1.5547e-01, + 6.5609e-01, 8.3903e-01, 7.6651e-01, 2.5083e-01, + 2.8586e-01, 8.8381e-01, 7.9996e-01, 4.8057e-01, + 9.0034e-01, 1.7433e-01, 3.1113e-01, 8.5701e-01, + 1.7210e-01, 3.0793e-01, 1.3582e-01, 7.4721e-01, + 6.0021e-01, 4.6952e-01, 8.5957e-01, 9.8856e-01, + 1.1020e-01, 5.5178e-01, 3.5557e-01, 6.0157e-02, + 3.4176e-01, 5.8491e-01, 1.0830e-01, 4.4019e-02, + 5.0292e-01, 8.5915e-01, 9.1769e-01, 1.7949e-01, + 8.4804e-01, 3.1152e-01, 4.2578e-01, 3.4406e-01, + 3.7329e-01, 5.8707e-01, 7.7429e-01, 7.8815e-01, + 3.2826e-01, 5.3079e-01, 3.0037e-01, 2.6109e-01, + 7.4216e-01, 4.7964e-01, 6.5762e-01, 5.6755e-01, + 7.6597e-01, 7.2324e-01, 5.8358e-01, 2.7153e-01, + 3.5332e-01, 9.5097e-01, 7.4019e-02, 2.6906e-01, + 8.8423e-01, 1.3775e-02, 6.1518e-01, 9.2142e-01, + 8.1158e-01, 9.3027e-01, 2.8284e-01, 5.1808e-01, + 1.7706e-01, 5.8911e-01, 6.3706e-01, 1.3509e-01, + 1.8796e-01, 8.3253e-01, 5.2281e-01, 5.8225e-01, + 3.1314e-01, 7.5077e-01, 9.2693e-01, 8.8607e-01, + 1.0153e-01, 3.3197e-01, 2.4983e-01, 7.3707e-01, + 9.3066e-01, 5.5808e-01, 5.9277e-01, 5.6892e-01, + 8.4811e-01, 7.3016e-01, 3.2158e-01, 9.9875e-01, + 8.9341e-01, 6.5226e-01, 2.8142e-02, 3.8748e-01, + 9.9689e-01, 8.4440e-01, 1.3415e-01, 9.1314e-01, + 8.2779e-01, 8.8866e-01, 5.2771e-01, 1.6774e-01, + 1.0001e-01, 3.2182e-02, 7.0240e-01, 4.9489e-01, + 7.3331e-01, 7.6800e-01, 3.9459e-01, 1.2124e-01, + 9.6981e-01, 2.4451e-02, 9.5581e-01, 5.6013e-01, + 8.6836e-01, 3.6457e-01, 6.6173e-01, 4.3691e-01, + 5.0752e-01, 8.9140e-01, 6.2725e-01, 5.1154e-01, + 3.8584e-01, 8.8067e-01, 8.0378e-01, 4.3013e-01, + 1.0393e-01, 3.7228e-01, 6.6680e-01, 6.1334e-01, + 1.5971e-01, 3.5533e-01, 1.8241e-01, 8.3902e-01, + 2.0770e-01, 1.5535e-02, 9.2843e-03, 2.3731e-01, + 3.3058e-01, 4.8184e-01, 1.8423e-01, 4.4116e-01, + 9.3384e-01, 5.0193e-01, 1.6866e-02, 3.8718e-01, + 7.5768e-01, 9.4654e-02, 5.3538e-02, 1.5641e-01, + 4.4035e-02, 9.9726e-01, 4.2594e-01, 5.1388e-01, + 9.1867e-01, 4.4814e-01, 9.5295e-02, 9.4138e-01, + 9.5373e-01, 2.1289e-01, 8.8704e-01, 6.7959e-01, + 5.8117e-01, 8.1876e-01, 3.1571e-01, 9.8089e-01, + 8.9793e-01, 7.2910e-01, 9.9414e-01, 1.1571e-01, + 3.1824e-01, 5.3603e-01, 3.2715e-01, 3.7889e-01, + 7.8753e-01, 2.6621e-01, 4.3075e-01, 4.7258e-01, + 6.2817e-01, 7.7791e-01, 4.8235e-01, 2.3192e-01, + 6.2132e-01, 9.1709e-01, 6.7642e-02, 9.3561e-01, + 5.6446e-01, 9.8651e-01, 5.1759e-01, 9.8335e-01, + 2.3037e-01, 1.9742e-01, 2.0549e-01, 1.4721e-01, + 2.3052e-02, 2.7569e-01, 4.0358e-02, 3.5939e-01, + 1.0842e-01, 7.4946e-01, 8.5014e-01, 5.5189e-01, + 8.4503e-01, 4.6246e-03, 1.6066e-01, 7.2416e-01, + 9.9480e-01, 1.8422e-01, 9.4831e-01, 3.3529e-01, + 9.4494e-01, 3.4365e-01, 2.6628e-01, 5.3290e-01, + 9.3233e-02, 7.2194e-01, 7.6637e-01, 8.0021e-02, + 7.3160e-01, 8.3532e-01, 9.7215e-01, 4.4904e-01, + 7.9254e-02, 8.7417e-01, 9.8399e-01, 8.1783e-01, + 1.4564e-01, 9.6394e-01, 6.3995e-01, 7.3142e-01, + 1.1885e-01, 1.1676e-01, 4.8026e-01, 6.7704e-01, + 2.6034e-01, 6.0302e-01, 6.0501e-01, 5.6108e-01, + 6.2763e-01, 9.5279e-01, 6.6563e-01, 5.9835e-01, + 9.4274e-01, 4.2874e-01, 3.1187e-01, 1.7232e-02, + 9.2523e-01, 7.2337e-01, 2.3001e-01, 4.8959e-01, + 7.4727e-01, 9.9497e-01, 1.6681e-01, 3.5589e-01, + 1.4686e-01, 8.6831e-01, 3.7435e-01, 4.6312e-01, + 7.3891e-01, 3.6720e-01, 8.0284e-01, 7.7236e-01, + 6.5776e-02, 5.3563e-01, 2.2124e-01, 4.9381e-01, + 2.6533e-01, 2.8308e-01, 4.5876e-01, 9.9927e-01, + 5.7074e-01, 4.9419e-02, 5.5013e-02, 5.7653e-01, + 2.9803e-01, 1.5908e-01, 5.9323e-01, 1.2686e-01, + 3.1267e-01, 5.6400e-01, 8.9399e-02, 9.9575e-01, + 4.0021e-01, 8.5003e-01, 3.5400e-01, 9.8075e-01, + 9.3946e-01, 2.1345e-01, 2.9200e-01, 2.7106e-01, + 7.8208e-01, 1.2337e-01, 7.6499e-01, 8.8815e-01, + 9.4963e-01, 6.5762e-02, 1.2987e-01, 8.8306e-02, + 2.9500e-01, 3.0178e-01, 1.7011e-01, 2.0707e-01, + 1.6883e-01, 5.3873e-01, 5.3918e-01, 2.6079e-01, + 2.0780e-01, 1.8459e-01, 6.2376e-01, 6.7532e-01, + 3.6186e-01, 4.6222e-01, 4.5177e-01, 3.0205e-01, + 7.3128e-01, 5.9687e-01, 2.2776e-01, 9.4918e-01, + 9.3331e-01, 5.5633e-01, 6.6717e-01, 7.7574e-01, + 2.2907e-02, 5.4869e-01, 8.5278e-01, 7.7307e-01, + 3.3436e-01, 3.7913e-01, 5.0240e-01, 7.5275e-01, + 5.3813e-01, 8.2946e-02, 3.7859e-01, 7.9385e-01, + 9.1423e-01, 2.2822e-01, 4.3641e-01, 3.0321e-01, + 6.1523e-01, 9.1439e-01, 2.7838e-01, 6.8154e-01, + 6.0011e-01, 3.7820e-01, 1.9577e-01, 2.8305e-02, + 1.5139e-01, 2.8758e-01, 5.7909e-01, 7.1980e-01, + 5.5532e-01, 8.9573e-01, 2.4678e-01, 4.3668e-01, + 9.2720e-01, 5.7365e-01, 5.9780e-01, 8.8441e-01, + 2.1912e-01, 2.6757e-01, 8.0682e-01, 6.0861e-01, + 1.9053e-02, 6.9830e-01, 7.0238e-01, 1.8043e-03, + 6.9298e-01, 3.2843e-01, 4.4586e-01, 1.7567e-02, + 6.2070e-01, 8.5091e-01, 8.3733e-01, 9.4375e-02, + 1.1168e-01, 7.8741e-01, 7.8798e-01, 3.2198e-01, + 5.5968e-01, 9.5879e-01, 4.7578e-01, 3.4492e-02, + 1.8563e-01, 1.9669e-01, 5.0613e-01, 3.5203e-02, + 2.0767e-01, 4.9352e-01, 7.2210e-01, 2.1544e-02, + 9.4704e-01, 7.1352e-01, 4.4836e-01, 7.2969e-01, + 7.7148e-01, 1.2084e-01, 1.7120e-02, 8.4079e-01, + 6.1026e-01, 3.7129e-01, 2.4231e-01, 1.0633e-01, + 7.3717e-01, 9.7235e-02, 5.1810e-01, 5.1054e-01, + 6.1998e-01, 4.0900e-01, 6.3778e-01, 6.8169e-01, + 2.6785e-01, 9.8809e-01, 4.0731e-01, 4.2571e-01, + 4.7580e-01, 4.7162e-01, 3.2020e-01, 3.8089e-01, + 9.7933e-01, 9.2454e-01, 1.2763e-01, 7.7816e-01, + 6.8461e-01, 5.9559e-01, 9.8970e-01, 6.8703e-01, + 3.9614e-01, 6.8764e-01, 3.0704e-01, 6.3408e-01, + 7.2067e-01, 7.3043e-01, 5.8166e-01, 8.5199e-01, + 9.9214e-01, 3.2601e-01, 2.8523e-01, 5.2466e-01, + 1.6880e-01, 7.0266e-01, 8.1714e-02, 9.9022e-01, + 5.1510e-01, 2.3188e-01, 7.0673e-01, 9.3670e-01, + 6.8927e-01, 7.4791e-01, 4.1159e-01, 9.9218e-01, + 3.9861e-01, 5.8315e-01, 3.8248e-01, 9.6070e-01, + 5.2728e-01, 6.8154e-01, 9.6611e-01, 2.6567e-01, + 8.7328e-01, 1.6906e-01, 3.1671e-01, 5.9926e-01, + 9.2459e-01, 4.7512e-01, 5.5365e-01, 5.5367e-01, + 9.7200e-01, 7.8079e-01, 5.0291e-01, 9.2394e-02, + 2.9389e-01, 8.6800e-01, 3.2031e-01, 6.3648e-01, + 9.9521e-01, 1.0258e-01, 5.1779e-01, 6.8992e-01, + 2.1659e-01, 1.7651e-01, 2.3642e-02, 8.4533e-01, + 8.5897e-01, 7.7948e-01, 3.0726e-01, 4.5709e-02, + 5.5568e-01, 2.7976e-01, 6.9800e-01, 2.2745e-01, + 2.7651e-01, 9.0869e-01, 7.2947e-01, 7.3732e-01, + 8.3152e-01, 7.2021e-01, 3.0614e-01, 8.7317e-01, + 5.3468e-01, 8.3123e-01, 3.4375e-01, 4.0532e-02, + 8.3949e-02, 5.0905e-04, 4.0538e-02, 1.2199e-01, + 6.5995e-01, 6.7796e-02, 3.2800e-01, 8.6735e-01, + 4.7209e-01, 9.5358e-02, 1.6026e-01, 7.7149e-01, + 6.2073e-02, 4.7393e-01, 8.5895e-01, 9.7965e-01, + 8.6001e-01, 4.9042e-01, 7.9295e-01, 7.8847e-01, + 5.5936e-01, 3.4604e-01, 6.7556e-01, 6.1583e-01, + 6.4772e-01, 4.0602e-01, 2.8032e-01, 3.9837e-01, + 4.8167e-01, 9.2784e-01, 3.1825e-01, 6.8211e-01, + 7.1275e-01, 6.8629e-01, 5.6396e-01, 8.5622e-01, + 1.9037e-01, 1.9047e-01, 3.2621e-01, 2.3798e-01, + 1.1718e-02, 7.3091e-01, 4.3965e-01, 5.5108e-01, + 5.9347e-01, 3.6512e-02, 8.1292e-01, 6.9857e-01, + 3.0565e-01, 2.6693e-02, 4.0556e-01, 5.1861e-01, + 6.9724e-01, 3.5374e-01, 7.8549e-01, 9.2104e-01, + 5.4024e-01, 6.2665e-01, 5.9591e-01, 3.4322e-01, + 8.2211e-02, 8.2777e-01, 5.0700e-01, 1.2595e-01, + 6.6960e-01, 3.1515e-01, 1.4555e-02, 3.8011e-01, + 8.1554e-01, 7.0168e-01, 7.1629e-01, 7.0360e-01, + 5.8561e-01, 6.1912e-01, 7.9669e-01, 8.7766e-01, + 8.2578e-01, 7.0533e-01, 4.9176e-01, 2.1029e-01, + 7.9780e-01, 7.8577e-02, 6.7550e-01, 9.6215e-02, + 3.7034e-01, 8.4600e-01, 2.1426e-01, 6.8059e-01, + 8.9566e-01, 2.0948e-01, 2.5723e-01, 2.1477e-01, + 7.0287e-01, 8.8856e-01, 6.8210e-01, 2.1374e-01, + 5.9763e-01, 5.0325e-01, 9.7355e-01, 2.5234e-01, + 1.4671e-01, 7.4961e-01, 5.0105e-01, 4.1481e-01, + 3.3586e-01, 3.2885e-01, 4.4906e-01, 9.4966e-01, + 9.7029e-01, 3.6201e-01, 9.9074e-01, 5.6940e-01, + 5.3932e-01, 5.4720e-02, 8.8651e-01, 8.6641e-01, + 6.7084e-01, 6.3171e-01, 1.7082e-02, 9.7000e-01, + 6.0249e-01, 8.5227e-02, 5.1565e-01, 2.8812e-01, + 7.6133e-01, 8.8965e-01, 4.3881e-01, 8.9089e-02, + 2.0705e-02, 6.0003e-01, 6.0058e-01, 2.3583e-01, + 7.0114e-01, 4.6051e-01, 9.3395e-01, 9.1531e-01, + 9.8035e-01, 8.6110e-01, 5.0684e-01, 1.4922e-02, + 3.5417e-01, 6.3192e-01, 6.2847e-01, 2.1922e-01, + 5.2679e-01, 5.0140e-01, 4.1193e-01, 9.3722e-01, + 7.2416e-01, 8.2701e-01, 5.8773e-01, 4.5892e-01, + 8.6080e-01, 7.0796e-01, 7.3090e-01, 2.3398e-01, + 8.2336e-01, 8.1931e-02, 5.6648e-01, 9.2281e-01, + 5.8624e-01, 8.3555e-01, 9.2999e-01, 8.9524e-01, + 9.7694e-01, 1.0057e-01, 9.1836e-01, 1.8716e-01, + 9.1811e-01, 2.5747e-02, 5.2811e-01, 5.9349e-01, + 3.1233e-01, 5.9616e-01, 9.2941e-01, 9.2230e-01, + 7.5079e-01, 2.7152e-01, 6.8334e-01, 1.8560e-01, + 1.9301e-01, 7.6648e-01, 7.1679e-01, 9.8760e-01, + 8.5633e-01, 5.0996e-01, 8.6064e-01, 6.3841e-01, + 6.3329e-01, 2.8584e-02, 4.5359e-01, 6.6242e-01, + 6.9051e-01, 1.3944e-02, 2.4069e-01, 9.0102e-01, + 4.0050e-01, 1.3846e-01, 6.7660e-02, 9.8925e-01, + 6.0724e-01, 2.5858e-01, 1.3118e-01, 6.4780e-02, + 5.2943e-03, 8.5863e-01, 1.0742e-01, 8.2977e-01, + 2.6180e-01, 4.9962e-03, 3.6669e-01, 3.7121e-01, + 9.4605e-01, 9.0263e-01, 3.6751e-01, 2.8743e-01, + 5.2275e-01, 9.3565e-01, 3.4542e-02, 8.3878e-01, + 9.8396e-01, 5.7945e-01, 8.3609e-01, 2.4747e-01, + 5.0297e-01, 6.4252e-01, 4.6862e-01, 1.5146e-01, + 6.8402e-01, 7.2437e-01, 2.6435e-02, 6.6999e-01, + 8.2226e-01, 8.3864e-01, 4.0283e-01, 7.2857e-01, + 8.9768e-02, 8.3236e-01, 5.2385e-01, 2.0285e-01, + 9.6598e-01, 2.8956e-01, 6.8980e-01, 8.3998e-01, + 2.5672e-01, 6.8220e-01, 5.4447e-01, 9.8634e-01, + 4.3737e-01, 4.8044e-02, 6.7611e-01, 9.4603e-01]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.7103, 0.5485, 0.7256, ..., 0.6866, 0.8523, 0.5088]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 10.999524116516113 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), + col_indices=tensor([7315, 7011, 7905, 1028, 2803, 8634, 5420, 3714, 9961, + 9682, 9462, 3672, 9521, 6357, 2121, 3239, 5077, 5611, + 4819, 9590, 9566, 7110, 9282, 3205, 6562, 8535, 6101, + 4471, 8275, 3563, 3283, 2844, 9366, 4926, 9577, 7356, + 8518, 1230, 10, 3109, 6967, 7024, 3566, 6230, 1306, + 5778, 1783, 7611, 4767, 1036, 2386, 1905, 3222, 7598, + 3813, 6094, 6353, 9093, 5396, 1174, 7424, 6062, 4513, + 177, 8866, 7252, 2860, 4744, 8855, 2227, 299, 9342, + 3509, 1775, 3656, 5550, 9595, 6991, 8012, 9812, 5920, + 3934, 6803, 5774, 7689, 674, 5602, 3014, 6143, 7099, + 663, 4281, 4779, 9464, 8707, 8638, 8538, 5514, 6658, + 4407, 5833, 3387, 3279, 4896, 4259, 2176, 8287, 8834, + 3999, 3877, 1161, 9724, 9738, 238, 3075, 5186, 7486, + 891, 9045, 5190, 5381, 5459, 4110, 1402, 6321, 6193, + 9155, 9992, 7314, 291, 2462, 2852, 6279, 222, 309, + 7313, 8459, 3425, 6366, 652, 7078, 5904, 156, 5860, + 2945, 3690, 8593, 4252, 7597, 5596, 5776, 7114, 5766, + 611, 9442, 2673, 7518, 6593, 859, 8021, 4190, 3626, + 9970, 1168, 1714, 3198, 7142, 1721, 1966, 1005, 3234, + 3374, 8223, 3515, 685, 4449, 3575, 1088, 4518, 6724, + 1106, 5643, 2563, 3222, 3789, 8841, 4328, 5908, 980, + 3354, 5903, 453, 6584, 6902, 1796, 5128, 9193, 4852, + 7599, 2332, 9798, 4331, 6435, 2285, 749, 227, 8974, + 2233, 1060, 9434, 8311, 8983, 7891, 4157, 9048, 9215, + 1244, 1930, 3548, 3700, 5258, 2713, 1101, 6198, 1383, + 485, 1663, 3680, 5007, 2469, 3200, 3534, 5060, 8323, + 5125, 6533, 8536, 7835, 7036, 2925, 4362, 4257, 3178, + 2891, 2108, 3452, 9536, 7002, 616, 6420, 8664, 8815, + 6583, 6609, 1072, 8384, 5169, 1059, 7775, 2477, 5080, + 5419, 1433, 8621, 761, 6118, 3052, 2864, 4101, 5536, + 5114, 2890, 8264, 7375, 8458, 5708, 8141, 9842, 7535, + 9487, 506, 9991, 4912, 6899, 6042, 5987, 8236, 2381, + 2377, 8623, 6899, 4199, 1671, 8263, 3247, 8424, 4377, + 3844, 7302, 4183, 5465, 7916, 7243, 867, 5598, 4757, + 1405, 2390, 6269, 8998, 6806, 1037, 5633, 6240, 2683, + 661, 6248, 4362, 6589, 6881, 7919, 3436, 9778, 9040, + 7754, 6133, 7587, 9613, 1799, 8034, 1412, 569, 7649, + 854, 2162, 975, 1777, 1311, 2293, 7425, 7721, 8243, + 3457, 2497, 8795, 9492, 8514, 1656, 1379, 1684, 2624, + 6150, 9236, 5502, 3220, 4424, 3861, 8284, 3334, 9155, + 9329, 2543, 88, 331, 573, 7250, 1893, 2214, 1117, + 5839, 6679, 2059, 4263, 3884, 5823, 5109, 6317, 8095, + 5772, 3805, 2801, 1284, 3513, 6344, 2050, 8362, 1104, + 3767, 8450, 2746, 7137, 2448, 1034, 910, 1808, 8546, + 7613, 4713, 1419, 7363, 5135, 416, 7410, 1254, 3607, + 5213, 2583, 1030, 7355, 9095, 3057, 2965, 1346, 6518, + 456, 1710, 4150, 606, 3991, 9343, 1922, 1471, 8654, + 8556, 4029, 7374, 5147, 245, 2185, 3615, 6782, 7298, + 4827, 1048, 4435, 5810, 5501, 9685, 936, 1353, 4747, + 6183, 8133, 2032, 6413, 2310, 638, 2549, 9087, 7037, + 9683, 9195, 7009, 3023, 8664, 3999, 7198, 4435, 2636, + 2391, 2637, 6770, 5371, 8323, 5172, 7013, 9841, 3318, + 9942, 9659, 100, 2774, 5785, 1509, 2452, 6366, 3270, + 7991, 2560, 8019, 9904, 251, 6517, 6214, 3419, 1023, + 9453, 641, 7273, 1656, 5351, 4640, 5117, 6185, 1841, + 2653, 7756, 2706, 5419, 3985, 8928, 5908, 8395, 9421, + 5401, 2577, 7369, 8901, 3379, 6155, 3350, 3982, 5664, + 2632, 8161, 9582, 4592, 162, 9591, 1297, 2536, 9311, + 3172, 5585, 8289, 7147, 6739, 4983, 1071, 2040, 1688, + 3636, 7012, 4562, 2335, 5647, 715, 3383, 3263, 4154, + 5053, 6148, 8770, 7782, 6127, 8164, 6802, 5781, 664, + 3307, 3627, 8545, 4737, 7093, 7554, 9661, 1123, 6095, + 7857, 2265, 2364, 9252, 8564, 2821, 5037, 4976, 9852, + 4939, 4236, 323, 6914, 3029, 7213, 1359, 1808, 8226, + 8417, 9064, 9262, 5852, 3099, 5978, 9101, 5008, 9044, + 3805, 679, 4939, 2966, 9288, 8198, 4028, 31, 99, + 296, 8675, 6350, 1078, 4079, 9324, 818, 7786, 2367, + 5106, 7500, 3688, 495, 8439, 9765, 7521, 8162, 4283, + 1827, 1758, 498, 5591, 1635, 6647, 2322, 7481, 7741, + 8801, 1143, 8098, 1520, 1220, 6535, 4958, 3736, 3448, + 9104, 1436, 6505, 4589, 9260, 2728, 1235, 3582, 184, + 8130, 836, 5131, 4649, 3369, 3926, 5032, 4259, 4469, + 3719, 9447, 9115, 47, 3895, 3886, 9444, 2841, 4061, + 3017, 950, 3712, 7167, 5221, 790, 8084, 4463, 144, + 6564, 1773, 9290, 8835, 6735, 5270, 3631, 66, 2756, + 5023, 4534, 3959, 4551, 6473, 5945, 6848, 1690, 7777, + 6894, 3396, 9382, 1836, 441, 8618, 776, 5251, 8749, + 4321, 521, 6968, 7286, 596, 4655, 632, 7619, 1492, + 6316, 699, 7905, 1661, 4395, 9739, 104, 3521, 1753, + 6768, 1527, 3851, 9459, 3343, 5453, 7187, 8372, 997, + 5605, 6632, 6960, 7667, 7471, 2070, 4717, 1707, 1420, + 4300, 7588, 6313, 9723, 219, 5653, 7652, 2470, 9617, + 8449, 7892, 3278, 7246, 7417, 9017, 3709, 3870, 4523, + 9505, 4269, 6241, 9265, 7319, 8501, 753, 8354, 1912, + 1553, 8094, 1317, 5971, 2810, 414, 9472, 3324, 7338, + 9143, 2633, 8788, 9526, 766, 2702, 6774, 7114, 145, + 5175, 9354, 4708, 8663, 375, 3947, 9572, 8290, 5014, + 5394, 7415, 2379, 2168, 1593, 1872, 3501, 5911, 919, + 2321, 4308, 6674, 3273, 7641, 102, 3093, 4396, 9235, + 3771, 320, 755, 3459, 8281, 6984, 5238, 5946, 6352, + 7589, 5255, 4512, 2004, 1268, 5192, 5673, 4505, 9942, + 6596, 5939, 8561, 4262, 210, 1555, 4451, 645, 5242, + 2965, 3429, 8117, 6744, 8237, 9222, 6984, 2092, 2593, + 1178, 9712, 4151, 2676, 4438, 1667, 3002, 5084, 1702, + 2111, 6635, 9280, 2973, 5064, 874, 8288, 9477, 2791, + 1087, 7121, 1852, 1045, 9241, 8406, 813, 8275, 6074, + 8646, 4357, 5764, 661, 9267, 6343, 9809, 4190, 3021, + 5816, 9379, 3340, 6454, 1557, 356, 8328, 8537, 7080, + 7354, 1578, 666, 4817, 1570, 9849, 1827, 7697, 2475, + 6386, 9715, 5209, 9237, 6075, 9469, 583, 462, 3775, + 6440, 2999, 7916, 3754, 9198, 8174, 243, 3114, 2481, + 975, 9771, 5568, 9040, 5301, 3260, 4502, 2126, 5304, + 837, 9354, 258, 3627, 1232, 4503, 6332, 9854, 9142, + 4321, 3920, 3750, 5002, 1898, 5869, 3909, 3405, 600, + 8568, 3715, 3998, 3685, 5953, 2878, 8577, 7035, 2600, + 194, 9795, 6880, 2652, 7730, 3386, 3550, 179, 9688, + 5552, 8778, 6934, 3301, 9299, 7193, 8775, 1828, 7546, + 9311, 4434, 5261, 1742, 8110, 9147, 8767, 3915, 6212, + 5141, 5602, 4694, 7093, 8690, 2073, 7118, 8341, 6600, + 2953, 5097, 8404, 865, 8300, 3366, 8481, 7438, 3656, + 4341, 3597, 8718, 5002, 9403, 144, 8793, 6261, 1341, + 1279]), + values=tensor([6.3376e-01, 7.6730e-01, 7.2919e-02, 5.4427e-02, + 6.0546e-01, 6.0189e-01, 9.2261e-01, 5.7961e-01, + 4.9178e-01, 9.4390e-01, 2.8388e-02, 9.5132e-01, + 9.7425e-01, 5.9400e-01, 5.7570e-01, 9.4685e-01, + 1.1230e-03, 2.8396e-01, 8.0782e-01, 5.4140e-01, + 5.7368e-01, 3.1036e-02, 1.9431e-01, 9.2723e-01, + 8.0731e-01, 9.7470e-01, 6.8939e-01, 9.8405e-02, + 2.9168e-01, 2.5387e-01, 9.5437e-01, 4.1772e-01, + 4.7585e-02, 4.8136e-01, 1.5348e-01, 3.4622e-01, + 2.3877e-01, 2.8323e-03, 2.7343e-01, 1.3764e-01, + 1.2578e-01, 9.8729e-01, 5.9137e-01, 2.2799e-01, + 6.1987e-01, 2.1468e-01, 2.2450e-01, 2.0210e-01, + 9.2984e-01, 7.9165e-01, 2.7490e-01, 6.2165e-01, + 1.6123e-01, 4.0289e-01, 9.3432e-01, 3.9183e-01, + 1.5643e-02, 5.4120e-01, 9.4215e-02, 9.6242e-01, + 7.3975e-01, 5.8198e-01, 5.9396e-01, 8.2065e-01, + 2.0481e-01, 4.1419e-01, 7.9918e-02, 5.7401e-01, + 9.2905e-01, 8.5287e-02, 5.1333e-01, 3.7557e-01, + 2.1503e-01, 3.9680e-01, 9.1255e-02, 6.5433e-02, + 5.2830e-02, 3.3823e-02, 2.3435e-01, 5.5829e-01, + 2.8861e-01, 9.7182e-01, 8.5050e-01, 1.7125e-01, + 3.8665e-01, 9.6698e-01, 1.7106e-01, 1.8865e-01, + 7.2944e-01, 1.4105e-01, 1.9717e-01, 2.3506e-01, + 9.7885e-01, 8.9037e-01, 8.7398e-01, 3.5326e-02, + 5.2638e-01, 2.1680e-01, 1.1436e-01, 9.4880e-01, + 6.7321e-01, 8.4246e-01, 6.5198e-01, 3.1991e-01, + 6.2040e-01, 9.1412e-01, 3.9267e-01, 1.5271e-01, + 9.2351e-01, 6.8775e-01, 2.2448e-01, 8.7632e-01, + 7.8738e-01, 2.0587e-01, 3.7930e-01, 9.9595e-01, + 6.7491e-01, 4.7656e-01, 1.0028e-01, 1.5781e-01, + 5.2293e-01, 9.8016e-01, 9.4054e-01, 7.3715e-01, + 3.4949e-01, 9.2644e-01, 6.3554e-01, 5.1357e-01, + 2.9100e-01, 9.3441e-01, 9.8280e-01, 6.4754e-01, + 2.7015e-01, 8.1047e-01, 8.2692e-01, 7.8373e-01, + 5.5185e-02, 5.3173e-01, 3.3446e-01, 4.6782e-01, + 2.8341e-01, 3.8462e-01, 5.5173e-01, 3.3233e-01, + 1.4466e-01, 9.9674e-02, 5.9887e-01, 3.0987e-01, + 2.0656e-01, 1.4293e-01, 6.2518e-01, 2.2170e-01, + 7.1340e-02, 1.4400e-01, 9.8693e-01, 5.7422e-01, + 2.8495e-01, 2.7480e-01, 3.2319e-01, 8.1503e-01, + 4.9779e-01, 3.7355e-01, 8.0157e-02, 5.6260e-01, + 4.5111e-01, 1.5335e-01, 6.0164e-02, 7.2363e-01, + 2.5203e-01, 7.8959e-01, 1.7399e-01, 6.4875e-01, + 8.3746e-01, 9.9659e-01, 3.2280e-01, 5.4780e-01, + 6.3405e-01, 2.5291e-01, 8.3069e-01, 3.2372e-01, + 9.6184e-01, 6.9730e-01, 6.4462e-02, 8.6435e-01, + 9.8089e-01, 4.8332e-02, 2.0838e-01, 6.1370e-01, + 4.3683e-01, 7.6069e-01, 5.9835e-01, 3.6330e-01, + 3.6132e-01, 4.5351e-01, 5.5867e-01, 8.3977e-01, + 7.7599e-01, 7.6807e-01, 6.1329e-01, 4.6591e-01, + 6.1334e-01, 5.1913e-01, 1.3149e-01, 5.9490e-01, + 5.7945e-02, 2.4761e-01, 1.3468e-01, 8.8630e-02, + 9.3435e-01, 5.7224e-01, 1.4595e-01, 4.8246e-01, + 8.2826e-01, 2.9221e-01, 2.3054e-01, 4.1104e-01, + 9.8005e-01, 9.5886e-01, 6.1801e-01, 9.8291e-01, + 8.7964e-01, 9.2761e-02, 1.8925e-03, 8.9489e-01, + 6.5450e-01, 3.7551e-02, 9.5895e-01, 2.1970e-01, + 5.7556e-01, 1.0274e-01, 6.8162e-01, 7.1993e-01, + 6.0126e-02, 9.6031e-01, 3.1287e-02, 8.9614e-01, + 6.1790e-01, 4.4599e-01, 9.1123e-01, 8.7231e-01, + 4.8551e-01, 8.6899e-01, 3.9527e-01, 6.0987e-01, + 2.4934e-01, 1.2417e-01, 2.4374e-01, 1.5547e-01, + 6.5609e-01, 8.3903e-01, 7.6651e-01, 2.5083e-01, + 2.8586e-01, 8.8381e-01, 7.9996e-01, 4.8057e-01, + 9.0034e-01, 1.7433e-01, 3.1113e-01, 8.5701e-01, + 1.7210e-01, 3.0793e-01, 1.3582e-01, 7.4721e-01, + 6.0021e-01, 4.6952e-01, 8.5957e-01, 9.8856e-01, + 1.1020e-01, 5.5178e-01, 3.5557e-01, 6.0157e-02, + 3.4176e-01, 5.8491e-01, 1.0830e-01, 4.4019e-02, + 5.0292e-01, 8.5915e-01, 9.1769e-01, 1.7949e-01, + 8.4804e-01, 3.1152e-01, 4.2578e-01, 3.4406e-01, + 3.7329e-01, 5.8707e-01, 7.7429e-01, 7.8815e-01, + 3.2826e-01, 5.3079e-01, 3.0037e-01, 2.6109e-01, + 7.4216e-01, 4.7964e-01, 6.5762e-01, 5.6755e-01, + 7.6597e-01, 7.2324e-01, 5.8358e-01, 2.7153e-01, + 3.5332e-01, 9.5097e-01, 7.4019e-02, 2.6906e-01, + 8.8423e-01, 1.3775e-02, 6.1518e-01, 9.2142e-01, + 8.1158e-01, 9.3027e-01, 2.8284e-01, 5.1808e-01, + 1.7706e-01, 5.8911e-01, 6.3706e-01, 1.3509e-01, + 1.8796e-01, 8.3253e-01, 5.2281e-01, 5.8225e-01, + 3.1314e-01, 7.5077e-01, 9.2693e-01, 8.8607e-01, + 1.0153e-01, 3.3197e-01, 2.4983e-01, 7.3707e-01, + 9.3066e-01, 5.5808e-01, 5.9277e-01, 5.6892e-01, + 8.4811e-01, 7.3016e-01, 3.2158e-01, 9.9875e-01, + 8.9341e-01, 6.5226e-01, 2.8142e-02, 3.8748e-01, + 9.9689e-01, 8.4440e-01, 1.3415e-01, 9.1314e-01, + 8.2779e-01, 8.8866e-01, 5.2771e-01, 1.6774e-01, + 1.0001e-01, 3.2182e-02, 7.0240e-01, 4.9489e-01, + 7.3331e-01, 7.6800e-01, 3.9459e-01, 1.2124e-01, + 9.6981e-01, 2.4451e-02, 9.5581e-01, 5.6013e-01, + 8.6836e-01, 3.6457e-01, 6.6173e-01, 4.3691e-01, + 5.0752e-01, 8.9140e-01, 6.2725e-01, 5.1154e-01, + 3.8584e-01, 8.8067e-01, 8.0378e-01, 4.3013e-01, + 1.0393e-01, 3.7228e-01, 6.6680e-01, 6.1334e-01, + 1.5971e-01, 3.5533e-01, 1.8241e-01, 8.3902e-01, + 2.0770e-01, 1.5535e-02, 9.2843e-03, 2.3731e-01, + 3.3058e-01, 4.8184e-01, 1.8423e-01, 4.4116e-01, + 9.3384e-01, 5.0193e-01, 1.6866e-02, 3.8718e-01, + 7.5768e-01, 9.4654e-02, 5.3538e-02, 1.5641e-01, + 4.4035e-02, 9.9726e-01, 4.2594e-01, 5.1388e-01, + 9.1867e-01, 4.4814e-01, 9.5295e-02, 9.4138e-01, + 9.5373e-01, 2.1289e-01, 8.8704e-01, 6.7959e-01, + 5.8117e-01, 8.1876e-01, 3.1571e-01, 9.8089e-01, + 8.9793e-01, 7.2910e-01, 9.9414e-01, 1.1571e-01, + 3.1824e-01, 5.3603e-01, 3.2715e-01, 3.7889e-01, + 7.8753e-01, 2.6621e-01, 4.3075e-01, 4.7258e-01, + 6.2817e-01, 7.7791e-01, 4.8235e-01, 2.3192e-01, + 6.2132e-01, 9.1709e-01, 6.7642e-02, 9.3561e-01, + 5.6446e-01, 9.8651e-01, 5.1759e-01, 9.8335e-01, + 2.3037e-01, 1.9742e-01, 2.0549e-01, 1.4721e-01, + 2.3052e-02, 2.7569e-01, 4.0358e-02, 3.5939e-01, + 1.0842e-01, 7.4946e-01, 8.5014e-01, 5.5189e-01, + 8.4503e-01, 4.6246e-03, 1.6066e-01, 7.2416e-01, + 9.9480e-01, 1.8422e-01, 9.4831e-01, 3.3529e-01, + 9.4494e-01, 3.4365e-01, 2.6628e-01, 5.3290e-01, + 9.3233e-02, 7.2194e-01, 7.6637e-01, 8.0021e-02, + 7.3160e-01, 8.3532e-01, 9.7215e-01, 4.4904e-01, + 7.9254e-02, 8.7417e-01, 9.8399e-01, 8.1783e-01, + 1.4564e-01, 9.6394e-01, 6.3995e-01, 7.3142e-01, + 1.1885e-01, 1.1676e-01, 4.8026e-01, 6.7704e-01, + 2.6034e-01, 6.0302e-01, 6.0501e-01, 5.6108e-01, + 6.2763e-01, 9.5279e-01, 6.6563e-01, 5.9835e-01, + 9.4274e-01, 4.2874e-01, 3.1187e-01, 1.7232e-02, + 9.2523e-01, 7.2337e-01, 2.3001e-01, 4.8959e-01, + 7.4727e-01, 9.9497e-01, 1.6681e-01, 3.5589e-01, + 1.4686e-01, 8.6831e-01, 3.7435e-01, 4.6312e-01, + 7.3891e-01, 3.6720e-01, 8.0284e-01, 7.7236e-01, + 6.5776e-02, 5.3563e-01, 2.2124e-01, 4.9381e-01, + 2.6533e-01, 2.8308e-01, 4.5876e-01, 9.9927e-01, + 5.7074e-01, 4.9419e-02, 5.5013e-02, 5.7653e-01, + 2.9803e-01, 1.5908e-01, 5.9323e-01, 1.2686e-01, + 3.1267e-01, 5.6400e-01, 8.9399e-02, 9.9575e-01, + 4.0021e-01, 8.5003e-01, 3.5400e-01, 9.8075e-01, + 9.3946e-01, 2.1345e-01, 2.9200e-01, 2.7106e-01, + 7.8208e-01, 1.2337e-01, 7.6499e-01, 8.8815e-01, + 9.4963e-01, 6.5762e-02, 1.2987e-01, 8.8306e-02, + 2.9500e-01, 3.0178e-01, 1.7011e-01, 2.0707e-01, + 1.6883e-01, 5.3873e-01, 5.3918e-01, 2.6079e-01, + 2.0780e-01, 1.8459e-01, 6.2376e-01, 6.7532e-01, + 3.6186e-01, 4.6222e-01, 4.5177e-01, 3.0205e-01, + 7.3128e-01, 5.9687e-01, 2.2776e-01, 9.4918e-01, + 9.3331e-01, 5.5633e-01, 6.6717e-01, 7.7574e-01, + 2.2907e-02, 5.4869e-01, 8.5278e-01, 7.7307e-01, + 3.3436e-01, 3.7913e-01, 5.0240e-01, 7.5275e-01, + 5.3813e-01, 8.2946e-02, 3.7859e-01, 7.9385e-01, + 9.1423e-01, 2.2822e-01, 4.3641e-01, 3.0321e-01, + 6.1523e-01, 9.1439e-01, 2.7838e-01, 6.8154e-01, + 6.0011e-01, 3.7820e-01, 1.9577e-01, 2.8305e-02, + 1.5139e-01, 2.8758e-01, 5.7909e-01, 7.1980e-01, + 5.5532e-01, 8.9573e-01, 2.4678e-01, 4.3668e-01, + 9.2720e-01, 5.7365e-01, 5.9780e-01, 8.8441e-01, + 2.1912e-01, 2.6757e-01, 8.0682e-01, 6.0861e-01, + 1.9053e-02, 6.9830e-01, 7.0238e-01, 1.8043e-03, + 6.9298e-01, 3.2843e-01, 4.4586e-01, 1.7567e-02, + 6.2070e-01, 8.5091e-01, 8.3733e-01, 9.4375e-02, + 1.1168e-01, 7.8741e-01, 7.8798e-01, 3.2198e-01, + 5.5968e-01, 9.5879e-01, 4.7578e-01, 3.4492e-02, + 1.8563e-01, 1.9669e-01, 5.0613e-01, 3.5203e-02, + 2.0767e-01, 4.9352e-01, 7.2210e-01, 2.1544e-02, + 9.4704e-01, 7.1352e-01, 4.4836e-01, 7.2969e-01, + 7.7148e-01, 1.2084e-01, 1.7120e-02, 8.4079e-01, + 6.1026e-01, 3.7129e-01, 2.4231e-01, 1.0633e-01, + 7.3717e-01, 9.7235e-02, 5.1810e-01, 5.1054e-01, + 6.1998e-01, 4.0900e-01, 6.3778e-01, 6.8169e-01, + 2.6785e-01, 9.8809e-01, 4.0731e-01, 4.2571e-01, + 4.7580e-01, 4.7162e-01, 3.2020e-01, 3.8089e-01, + 9.7933e-01, 9.2454e-01, 1.2763e-01, 7.7816e-01, + 6.8461e-01, 5.9559e-01, 9.8970e-01, 6.8703e-01, + 3.9614e-01, 6.8764e-01, 3.0704e-01, 6.3408e-01, + 7.2067e-01, 7.3043e-01, 5.8166e-01, 8.5199e-01, + 9.9214e-01, 3.2601e-01, 2.8523e-01, 5.2466e-01, + 1.6880e-01, 7.0266e-01, 8.1714e-02, 9.9022e-01, + 5.1510e-01, 2.3188e-01, 7.0673e-01, 9.3670e-01, + 6.8927e-01, 7.4791e-01, 4.1159e-01, 9.9218e-01, + 3.9861e-01, 5.8315e-01, 3.8248e-01, 9.6070e-01, + 5.2728e-01, 6.8154e-01, 9.6611e-01, 2.6567e-01, + 8.7328e-01, 1.6906e-01, 3.1671e-01, 5.9926e-01, + 9.2459e-01, 4.7512e-01, 5.5365e-01, 5.5367e-01, + 9.7200e-01, 7.8079e-01, 5.0291e-01, 9.2394e-02, + 2.9389e-01, 8.6800e-01, 3.2031e-01, 6.3648e-01, + 9.9521e-01, 1.0258e-01, 5.1779e-01, 6.8992e-01, + 2.1659e-01, 1.7651e-01, 2.3642e-02, 8.4533e-01, + 8.5897e-01, 7.7948e-01, 3.0726e-01, 4.5709e-02, + 5.5568e-01, 2.7976e-01, 6.9800e-01, 2.2745e-01, + 2.7651e-01, 9.0869e-01, 7.2947e-01, 7.3732e-01, + 8.3152e-01, 7.2021e-01, 3.0614e-01, 8.7317e-01, + 5.3468e-01, 8.3123e-01, 3.4375e-01, 4.0532e-02, + 8.3949e-02, 5.0905e-04, 4.0538e-02, 1.2199e-01, + 6.5995e-01, 6.7796e-02, 3.2800e-01, 8.6735e-01, + 4.7209e-01, 9.5358e-02, 1.6026e-01, 7.7149e-01, + 6.2073e-02, 4.7393e-01, 8.5895e-01, 9.7965e-01, + 8.6001e-01, 4.9042e-01, 7.9295e-01, 7.8847e-01, + 5.5936e-01, 3.4604e-01, 6.7556e-01, 6.1583e-01, + 6.4772e-01, 4.0602e-01, 2.8032e-01, 3.9837e-01, + 4.8167e-01, 9.2784e-01, 3.1825e-01, 6.8211e-01, + 7.1275e-01, 6.8629e-01, 5.6396e-01, 8.5622e-01, + 1.9037e-01, 1.9047e-01, 3.2621e-01, 2.3798e-01, + 1.1718e-02, 7.3091e-01, 4.3965e-01, 5.5108e-01, + 5.9347e-01, 3.6512e-02, 8.1292e-01, 6.9857e-01, + 3.0565e-01, 2.6693e-02, 4.0556e-01, 5.1861e-01, + 6.9724e-01, 3.5374e-01, 7.8549e-01, 9.2104e-01, + 5.4024e-01, 6.2665e-01, 5.9591e-01, 3.4322e-01, + 8.2211e-02, 8.2777e-01, 5.0700e-01, 1.2595e-01, + 6.6960e-01, 3.1515e-01, 1.4555e-02, 3.8011e-01, + 8.1554e-01, 7.0168e-01, 7.1629e-01, 7.0360e-01, + 5.8561e-01, 6.1912e-01, 7.9669e-01, 8.7766e-01, + 8.2578e-01, 7.0533e-01, 4.9176e-01, 2.1029e-01, + 7.9780e-01, 7.8577e-02, 6.7550e-01, 9.6215e-02, + 3.7034e-01, 8.4600e-01, 2.1426e-01, 6.8059e-01, + 8.9566e-01, 2.0948e-01, 2.5723e-01, 2.1477e-01, + 7.0287e-01, 8.8856e-01, 6.8210e-01, 2.1374e-01, + 5.9763e-01, 5.0325e-01, 9.7355e-01, 2.5234e-01, + 1.4671e-01, 7.4961e-01, 5.0105e-01, 4.1481e-01, + 3.3586e-01, 3.2885e-01, 4.4906e-01, 9.4966e-01, + 9.7029e-01, 3.6201e-01, 9.9074e-01, 5.6940e-01, + 5.3932e-01, 5.4720e-02, 8.8651e-01, 8.6641e-01, + 6.7084e-01, 6.3171e-01, 1.7082e-02, 9.7000e-01, + 6.0249e-01, 8.5227e-02, 5.1565e-01, 2.8812e-01, + 7.6133e-01, 8.8965e-01, 4.3881e-01, 8.9089e-02, + 2.0705e-02, 6.0003e-01, 6.0058e-01, 2.3583e-01, + 7.0114e-01, 4.6051e-01, 9.3395e-01, 9.1531e-01, + 9.8035e-01, 8.6110e-01, 5.0684e-01, 1.4922e-02, + 3.5417e-01, 6.3192e-01, 6.2847e-01, 2.1922e-01, + 5.2679e-01, 5.0140e-01, 4.1193e-01, 9.3722e-01, + 7.2416e-01, 8.2701e-01, 5.8773e-01, 4.5892e-01, + 8.6080e-01, 7.0796e-01, 7.3090e-01, 2.3398e-01, + 8.2336e-01, 8.1931e-02, 5.6648e-01, 9.2281e-01, + 5.8624e-01, 8.3555e-01, 9.2999e-01, 8.9524e-01, + 9.7694e-01, 1.0057e-01, 9.1836e-01, 1.8716e-01, + 9.1811e-01, 2.5747e-02, 5.2811e-01, 5.9349e-01, + 3.1233e-01, 5.9616e-01, 9.2941e-01, 9.2230e-01, + 7.5079e-01, 2.7152e-01, 6.8334e-01, 1.8560e-01, + 1.9301e-01, 7.6648e-01, 7.1679e-01, 9.8760e-01, + 8.5633e-01, 5.0996e-01, 8.6064e-01, 6.3841e-01, + 6.3329e-01, 2.8584e-02, 4.5359e-01, 6.6242e-01, + 6.9051e-01, 1.3944e-02, 2.4069e-01, 9.0102e-01, + 4.0050e-01, 1.3846e-01, 6.7660e-02, 9.8925e-01, + 6.0724e-01, 2.5858e-01, 1.3118e-01, 6.4780e-02, + 5.2943e-03, 8.5863e-01, 1.0742e-01, 8.2977e-01, + 2.6180e-01, 4.9962e-03, 3.6669e-01, 3.7121e-01, + 9.4605e-01, 9.0263e-01, 3.6751e-01, 2.8743e-01, + 5.2275e-01, 9.3565e-01, 3.4542e-02, 8.3878e-01, + 9.8396e-01, 5.7945e-01, 8.3609e-01, 2.4747e-01, + 5.0297e-01, 6.4252e-01, 4.6862e-01, 1.5146e-01, + 6.8402e-01, 7.2437e-01, 2.6435e-02, 6.6999e-01, + 8.2226e-01, 8.3864e-01, 4.0283e-01, 7.2857e-01, + 8.9768e-02, 8.3236e-01, 5.2385e-01, 2.0285e-01, + 9.6598e-01, 2.8956e-01, 6.8980e-01, 8.3998e-01, + 2.5672e-01, 6.8220e-01, 5.4447e-01, 9.8634e-01, + 4.3737e-01, 4.8044e-02, 6.7611e-01, 9.4603e-01]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.7103, 0.5485, 0.7256, ..., 0.6866, 0.8523, 0.5088]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 10.999524116516113 seconds + +[39.86, 39.2, 39.16, 38.85, 39.2, 39.62, 38.88, 38.71, 38.95, 38.67] +[96.42] +13.729055643081665 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 375977, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.999524116516113, 'TIME_S_1KI': 0.029255843087518954, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1323.755545105934, 'W': 96.41999999999999} +[39.86, 39.2, 39.16, 38.85, 39.2, 39.62, 38.88, 38.71, 38.95, 38.67, 40.17, 39.41, 39.19, 38.69, 38.88, 39.53, 40.39, 39.3, 39.0, 38.88] +705.75 +35.2875 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 375977, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.999524116516113, 'TIME_S_1KI': 0.029255843087518954, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1323.755545105934, 'W': 96.41999999999999, 'J_1KI': 3.5208418203930933, 'W_1KI': 0.25645185742744897, 'W_D': 61.132499999999986, 'J_D': 839.2914941006896, 'W_D_1KI': 0.16259638222550846, 'J_D_1KI': 0.0004324636406628822} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_500000_1e-05.json b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_500000_1e-05.json new file mode 100644 index 0000000..7e41519 --- /dev/null +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_500000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 21375, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.636817216873169, "TIME_S_1KI": 0.4976288756431892, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2053.7217113614083, "W": 152.01000000000002, "J_1KI": 96.08054789994893, "W_1KI": 7.111578947368422, "W_D": 116.32275000000001, "J_D": 1571.5713255724313, "W_D_1KI": 5.442000000000001, "J_D_1KI": 0.2545964912280702} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_500000_1e-05.output b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_500000_1e-05.output new file mode 100644 index 0000000..e90e199 --- /dev/null +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_500000_1e-05.output @@ -0,0 +1,89 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '500000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.5442898273468018} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 8, 11, ..., 2499988, + 2499996, 2500000]), + col_indices=tensor([ 37839, 98870, 148404, ..., 161688, 445826, + 487462]), + values=tensor([0.2708, 0.4230, 0.0396, ..., 0.5012, 0.9237, 0.4084]), + size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.6604, 0.4578, 0.9008, ..., 0.1692, 0.6250, 0.2013]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 2500000 +Density: 1e-05 +Time: 0.5442898273468018 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '19291', '-ss', '500000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 9.475887298583984} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 8, 11, ..., 2499990, + 2499994, 2500000]), + col_indices=tensor([ 2997, 16168, 106256, ..., 284595, 359619, + 400100]), + values=tensor([0.5956, 0.5098, 0.7367, ..., 0.1293, 0.8182, 0.3844]), + size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.4741, 0.3124, 0.4103, ..., 0.8230, 0.7925, 0.1055]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 2500000 +Density: 1e-05 +Time: 9.475887298583984 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '21375', '-ss', '500000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.636817216873169} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 4, 7, ..., 2499987, + 2499990, 2500000]), + col_indices=tensor([ 69634, 109368, 119504, ..., 397654, 413765, + 480494]), + values=tensor([0.1977, 0.6347, 0.9236, ..., 0.5996, 0.0558, 0.7507]), + size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.2633, 0.4244, 0.4182, ..., 0.0717, 0.3446, 0.9616]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 2500000 +Density: 1e-05 +Time: 10.636817216873169 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 4, 7, ..., 2499987, + 2499990, 2500000]), + col_indices=tensor([ 69634, 109368, 119504, ..., 397654, 413765, + 480494]), + values=tensor([0.1977, 0.6347, 0.9236, ..., 0.5996, 0.0558, 0.7507]), + size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.2633, 0.4244, 0.4182, ..., 0.0717, 0.3446, 0.9616]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 2500000 +Density: 1e-05 +Time: 10.636817216873169 seconds + +[39.92, 39.18, 39.71, 40.61, 40.15, 39.79, 39.41, 39.75, 39.22, 39.64] +[152.01] +13.510438203811646 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 21375, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.636817216873169, 'TIME_S_1KI': 0.4976288756431892, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2053.7217113614083, 'W': 152.01000000000002} +[39.92, 39.18, 39.71, 40.61, 40.15, 39.79, 39.41, 39.75, 39.22, 39.64, 39.92, 39.78, 39.31, 39.34, 39.44, 40.15, 39.73, 39.14, 39.7, 39.19] +713.7450000000001 +35.687250000000006 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 21375, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.636817216873169, 'TIME_S_1KI': 0.4976288756431892, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2053.7217113614083, 'W': 152.01000000000002, 'J_1KI': 96.08054789994893, 'W_1KI': 7.111578947368422, 'W_D': 116.32275000000001, 'J_D': 1571.5713255724313, 'W_D_1KI': 5.442000000000001, 'J_D_1KI': 0.2545964912280702} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_50000_0.0001.json b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_50000_0.0001.json new file mode 100644 index 0000000..7a8ab5e --- /dev/null +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_50000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 88993, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.460110664367676, "TIME_S_1KI": 0.11753857791475371, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1554.5358743476868, "W": 116.24, "J_1KI": 17.468069110465844, "W_1KI": 1.3061701482139043, "W_D": 80.32, "J_D": 1074.1596819305419, "W_D_1KI": 0.9025428966323192, "J_D_1KI": 0.010141729086920537} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_50000_0.0001.output b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_50000_0.0001.output new file mode 100644 index 0000000..82a28ba --- /dev/null +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_50000_0.0001.output @@ -0,0 +1,105 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.1613328456878662} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 7, 9, ..., 249987, 249990, + 250000]), + col_indices=tensor([ 2831, 11435, 18332, ..., 36257, 39398, 40541]), + values=tensor([0.1158, 0.5239, 0.2299, ..., 0.2166, 0.7808, 0.4412]), + size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) +tensor([0.7586, 0.4736, 0.7326, ..., 0.5631, 0.8162, 0.2413]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 250000 +Density: 0.0001 +Time: 0.1613328456878662 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '65082', '-ss', '50000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 8.079791784286499} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 4, 7, ..., 249989, 249995, + 250000]), + col_indices=tensor([ 9506, 10457, 11174, ..., 14178, 16522, 25750]), + values=tensor([0.5729, 0.5279, 0.3744, ..., 0.1961, 0.5511, 0.6709]), + size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) +tensor([0.0404, 0.4787, 0.7701, ..., 0.8815, 0.0868, 0.4305]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 250000 +Density: 0.0001 +Time: 8.079791784286499 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '84576', '-ss', '50000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 9.978835582733154} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2, 7, ..., 249990, 249996, + 250000]), + col_indices=tensor([26217, 28400, 13678, ..., 15637, 35417, 48424]), + values=tensor([0.3837, 0.9571, 0.9616, ..., 0.3970, 0.1960, 0.8766]), + size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) +tensor([0.6737, 0.6555, 0.0878, ..., 0.0726, 0.6482, 0.1469]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 250000 +Density: 0.0001 +Time: 9.978835582733154 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '88993', '-ss', '50000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.460110664367676} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 4, 12, ..., 249992, 249993, + 250000]), + col_indices=tensor([ 7470, 20811, 24121, ..., 36968, 38743, 40607]), + values=tensor([0.2685, 0.7271, 0.6618, ..., 0.0403, 0.7886, 0.4035]), + size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) +tensor([0.0454, 0.0390, 0.3317, ..., 0.3195, 0.9524, 0.5758]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 250000 +Density: 0.0001 +Time: 10.460110664367676 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 4, 12, ..., 249992, 249993, + 250000]), + col_indices=tensor([ 7470, 20811, 24121, ..., 36968, 38743, 40607]), + values=tensor([0.2685, 0.7271, 0.6618, ..., 0.0403, 0.7886, 0.4035]), + size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) +tensor([0.0454, 0.0390, 0.3317, ..., 0.3195, 0.9524, 0.5758]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 250000 +Density: 0.0001 +Time: 10.460110664367676 seconds + +[40.38, 39.72, 39.57, 39.21, 40.98, 39.68, 39.65, 39.04, 39.23, 43.6] +[116.24] +13.373502016067505 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 88993, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.460110664367676, 'TIME_S_1KI': 0.11753857791475371, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1554.5358743476868, 'W': 116.24} +[40.38, 39.72, 39.57, 39.21, 40.98, 39.68, 39.65, 39.04, 39.23, 43.6, 39.84, 40.48, 39.37, 39.22, 39.24, 38.98, 44.18, 39.09, 39.18, 39.34] +718.4 +35.92 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 88993, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.460110664367676, 'TIME_S_1KI': 0.11753857791475371, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1554.5358743476868, 'W': 116.24, 'J_1KI': 17.468069110465844, 'W_1KI': 1.3061701482139043, 'W_D': 80.32, 'J_D': 1074.1596819305419, 'W_D_1KI': 0.9025428966323192, 'J_D_1KI': 0.010141729086920537} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_50000_0.001.json b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_50000_0.001.json new file mode 100644 index 0000000..19e233d --- /dev/null +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_50000_0.001.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 46287, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 11.077528476715088, "TIME_S_1KI": 0.23932267108940064, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2013.3453536748884, "W": 148.1, "J_1KI": 43.49699383573981, "W_1KI": 3.1996024801780196, "W_D": 112.52425, "J_D": 1529.7108434385657, "W_D_1KI": 2.4310119471989973, "J_D_1KI": 0.052520404156652996} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_50000_0.001.output b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_50000_0.001.output new file mode 100644 index 0000000..a9b5d6b --- /dev/null +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_50000_0.001.output @@ -0,0 +1,85 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '0.001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.2967829704284668} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 60, 108, ..., 2499894, + 2499951, 2500000]), + col_indices=tensor([ 368, 1693, 4088, ..., 44885, 46596, 47442]), + values=tensor([0.5982, 0.3592, 0.7042, ..., 0.6155, 0.2314, 0.2925]), + size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.7227, 0.5816, 0.4934, ..., 0.3583, 0.6407, 0.9822]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 2500000 +Density: 0.001 +Time: 0.2967829704284668 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '35379', '-ss', '50000', '-sd', '0.001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 8.025555610656738} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 48, 96, ..., 2499914, + 2499959, 2500000]), + col_indices=tensor([ 123, 723, 909, ..., 47588, 48779, 49819]), + values=tensor([0.6654, 0.3505, 0.8901, ..., 0.8476, 0.5107, 0.1185]), + size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.6658, 0.6242, 0.4020, ..., 0.5009, 0.1451, 0.6481]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 2500000 +Density: 0.001 +Time: 8.025555610656738 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '46287', '-ss', '50000', '-sd', '0.001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 11.077528476715088} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 45, 94, ..., 2499903, + 2499951, 2500000]), + col_indices=tensor([ 506, 1320, 4404, ..., 49283, 49651, 49966]), + values=tensor([0.0094, 0.0130, 0.0811, ..., 0.5846, 0.7695, 0.1584]), + size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.8952, 0.2999, 0.6108, ..., 0.3758, 0.9662, 0.9596]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 2500000 +Density: 0.001 +Time: 11.077528476715088 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 45, 94, ..., 2499903, + 2499951, 2500000]), + col_indices=tensor([ 506, 1320, 4404, ..., 49283, 49651, 49966]), + values=tensor([0.0094, 0.0130, 0.0811, ..., 0.5846, 0.7695, 0.1584]), + size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.8952, 0.2999, 0.6108, ..., 0.3758, 0.9662, 0.9596]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 2500000 +Density: 0.001 +Time: 11.077528476715088 seconds + +[40.89, 39.29, 39.33, 39.28, 39.26, 39.19, 39.19, 40.42, 39.41, 39.34] +[148.1] +13.594499349594116 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 46287, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 11.077528476715088, 'TIME_S_1KI': 0.23932267108940064, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2013.3453536748884, 'W': 148.1} +[40.89, 39.29, 39.33, 39.28, 39.26, 39.19, 39.19, 40.42, 39.41, 39.34, 40.01, 40.0, 39.66, 39.57, 39.25, 39.46, 39.33, 39.3, 39.25, 40.41] +711.5149999999999 +35.57574999999999 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 46287, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 11.077528476715088, 'TIME_S_1KI': 0.23932267108940064, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2013.3453536748884, 'W': 148.1, 'J_1KI': 43.49699383573981, 'W_1KI': 3.1996024801780196, 'W_D': 112.52425, 'J_D': 1529.7108434385657, 'W_D_1KI': 2.4310119471989973, 'J_D_1KI': 0.052520404156652996} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_50000_1e-05.json b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_50000_1e-05.json new file mode 100644 index 0000000..1e1cae0 --- /dev/null +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_50000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 126164, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.496079683303833, "TIME_S_1KI": 0.08319393553869434, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1339.4068178844452, "W": 103.41, "J_1KI": 10.616394675854009, "W_1KI": 0.8196474430106845, "W_D": 67.667, "J_D": 876.4494840517044, "W_D_1KI": 0.5363415871405472, "J_D_1KI": 0.0042511460253364455} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_50000_1e-05.output b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_50000_1e-05.output new file mode 100644 index 0000000..f5dabe4 --- /dev/null +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_10_10_10_synthetic_50000_1e-05.output @@ -0,0 +1,81 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.13353276252746582} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 24999, 25000, 25000]), + col_indices=tensor([10989, 5739, 28866, ..., 21823, 4005, 34886]), + values=tensor([0.4353, 0.4497, 0.0871, ..., 0.0925, 0.2903, 0.5435]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.7562, 0.8922, 0.4564, ..., 0.1486, 0.4797, 0.4813]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 0.13353276252746582 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '78632', '-ss', '50000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 6.544129848480225} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 24999, 24999, 25000]), + col_indices=tensor([34114, 35224, 10296, ..., 13464, 985, 3770]), + values=tensor([0.2384, 0.3975, 0.4000, ..., 0.4541, 0.7785, 0.5313]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.2311, 0.0634, 0.6873, ..., 0.2883, 0.1765, 0.0650]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 6.544129848480225 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '126164', '-ss', '50000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.496079683303833} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 3, ..., 25000, 25000, 25000]), + col_indices=tensor([ 3707, 41195, 46820, ..., 24919, 16438, 24153]), + values=tensor([0.4077, 0.2091, 0.6369, ..., 0.9924, 0.1508, 0.5036]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.4831, 0.5861, 0.9166, ..., 0.7031, 0.1228, 0.1244]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 10.496079683303833 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 3, ..., 25000, 25000, 25000]), + col_indices=tensor([ 3707, 41195, 46820, ..., 24919, 16438, 24153]), + values=tensor([0.4077, 0.2091, 0.6369, ..., 0.9924, 0.1508, 0.5036]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.4831, 0.5861, 0.9166, ..., 0.7031, 0.1228, 0.1244]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 10.496079683303833 seconds + +[41.91, 39.37, 39.94, 39.02, 39.81, 39.1, 40.39, 38.98, 39.08, 39.0] +[103.41] +12.952391624450684 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 126164, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.496079683303833, 'TIME_S_1KI': 0.08319393553869434, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1339.4068178844452, 'W': 103.41} +[41.91, 39.37, 39.94, 39.02, 39.81, 39.1, 40.39, 38.98, 39.08, 39.0, 39.67, 39.09, 39.31, 39.83, 39.31, 39.25, 39.43, 38.89, 44.16, 39.22] +714.86 +35.743 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 126164, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.496079683303833, 'TIME_S_1KI': 0.08319393553869434, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1339.4068178844452, 'W': 103.41, 'J_1KI': 10.616394675854009, 'W_1KI': 0.8196474430106845, 'W_D': 67.667, 'J_D': 876.4494840517044, 'W_D_1KI': 0.5363415871405472, 'J_D_1KI': 0.0042511460253364455} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_20_10_10_synthetic_30000_0.0001.json b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_20_10_10_synthetic_30000_0.0001.json new file mode 100644 index 0000000..62f730b --- /dev/null +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_20_10_10_synthetic_30000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 250038, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 90000, "MATRIX_DENSITY": 0.0001, "TIME_S": 22.432795524597168, "TIME_S_1KI": 0.08971754503154387, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2606.0890457463265, "W": 109.03, "J_1KI": 10.422771921653215, "W_1KI": 0.4360537198345852, "W_D": 73.72525, "J_D": 1762.2174302477242, "W_D_1KI": 0.2948561818603573, "J_D_1KI": 0.0011792454821281456} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_20_10_10_synthetic_30000_0.0001.output b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_20_10_10_synthetic_30000_0.0001.output new file mode 100644 index 0000000..3701848 --- /dev/null +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_20_10_10_synthetic_30000_0.0001.output @@ -0,0 +1,81 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '30000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 90000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.10453343391418457} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 3, 3, ..., 89993, 89997, 90000]), + col_indices=tensor([20651, 24290, 28771, ..., 10287, 15356, 24487]), + values=tensor([0.1253, 0.8320, 0.5079, ..., 0.2152, 0.2753, 0.6533]), + size=(30000, 30000), nnz=90000, layout=torch.sparse_csr) +tensor([0.9310, 0.8886, 0.9050, ..., 0.7990, 0.2751, 0.5722]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 90000 +Density: 0.0001 +Time: 0.10453343391418457 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '200892', '-ss', '30000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 90000, "MATRIX_DENSITY": 0.0001, "TIME_S": 16.872318267822266} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 3, 5, ..., 89991, 89992, 90000]), + col_indices=tensor([ 9009, 16842, 24312, ..., 27764, 28622, 29005]), + values=tensor([0.8393, 0.9269, 0.8193, ..., 0.0379, 0.8842, 0.8625]), + size=(30000, 30000), nnz=90000, layout=torch.sparse_csr) +tensor([0.6604, 0.9619, 0.4104, ..., 0.2632, 0.2079, 0.2105]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 90000 +Density: 0.0001 +Time: 16.872318267822266 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '250038', '-ss', '30000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 90000, "MATRIX_DENSITY": 0.0001, "TIME_S": 22.432795524597168} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 4, 6, ..., 89997, 89998, 90000]), + col_indices=tensor([12588, 20450, 20704, ..., 21668, 10676, 12342]), + values=tensor([0.6372, 0.0652, 0.9949, ..., 0.3492, 0.9239, 0.3604]), + size=(30000, 30000), nnz=90000, layout=torch.sparse_csr) +tensor([0.0127, 0.8502, 0.1682, ..., 0.0608, 0.3685, 0.2970]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 90000 +Density: 0.0001 +Time: 22.432795524597168 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 4, 6, ..., 89997, 89998, 90000]), + col_indices=tensor([12588, 20450, 20704, ..., 21668, 10676, 12342]), + values=tensor([0.6372, 0.0652, 0.9949, ..., 0.3492, 0.9239, 0.3604]), + size=(30000, 30000), nnz=90000, layout=torch.sparse_csr) +tensor([0.0127, 0.8502, 0.1682, ..., 0.0608, 0.3685, 0.2970]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 90000 +Density: 0.0001 +Time: 22.432795524597168 seconds + +[40.69, 39.01, 39.44, 38.94, 38.95, 39.35, 38.98, 39.05, 38.97, 38.87] +[109.03] +23.90249514579773 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 250038, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 90000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 22.432795524597168, 'TIME_S_1KI': 0.08971754503154387, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2606.0890457463265, 'W': 109.03} +[40.69, 39.01, 39.44, 38.94, 38.95, 39.35, 38.98, 39.05, 38.97, 38.87, 40.47, 39.15, 39.52, 39.41, 39.16, 39.78, 39.02, 38.95, 38.92, 38.96] +706.095 +35.30475 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 250038, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 90000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 22.432795524597168, 'TIME_S_1KI': 0.08971754503154387, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2606.0890457463265, 'W': 109.03, 'J_1KI': 10.422771921653215, 'W_1KI': 0.4360537198345852, 'W_D': 73.72525, 'J_D': 1762.2174302477242, 'W_D_1KI': 0.2948561818603573, 'J_D_1KI': 0.0011792454821281456} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_20_10_10_synthetic_30000_0.001.json b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_20_10_10_synthetic_30000_0.001.json new file mode 100644 index 0000000..e69de29 diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_20_10_10_synthetic_30000_0.001.output b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_20_10_10_synthetic_30000_0.001.output new file mode 100644 index 0000000..8658000 --- /dev/null +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_20_10_10_synthetic_30000_0.001.output @@ -0,0 +1,21 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '30000', '-sd', '0.001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 900000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.1439976692199707} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 29, 67, ..., 899936, 899964, + 900000]), + col_indices=tensor([ 58, 341, 3959, ..., 27670, 28034, 29816]), + values=tensor([0.8286, 0.0691, 0.1730, ..., 0.2645, 0.7295, 0.5386]), + size=(30000, 30000), nnz=900000, layout=torch.sparse_csr) +tensor([0.0558, 0.4553, 0.9674, ..., 0.2366, 0.6209, 0.6160]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 900000 +Density: 0.001 +Time: 0.1439976692199707 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '145835', '-ss', '30000', '-sd', '0.001', '-c', '16'] diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_20_10_10_synthetic_30000_1e-05.json b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_20_10_10_synthetic_30000_1e-05.json new file mode 100644 index 0000000..9b8b9bd --- /dev/null +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_20_10_10_synthetic_30000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 321850, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 9000, "MATRIX_DENSITY": 1e-05, "TIME_S": 20.594725370407104, "TIME_S_1KI": 0.06398858278827747, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2327.1387594389917, "W": 101.41000000000001, "J_1KI": 7.230507253189348, "W_1KI": 0.3150846667702346, "W_D": 65.9145, "J_D": 1512.5942979887725, "W_D_1KI": 0.20479881932577287, "J_D_1KI": 0.0006363175992722476} diff --git a/pytorch/output_synthetic_16core/epyc_7313p_16_csr_20_10_10_synthetic_30000_1e-05.output b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_20_10_10_synthetic_30000_1e-05.output new file mode 100644 index 0000000..e9d1ad8 --- /dev/null +++ b/pytorch/output_synthetic_16core/epyc_7313p_16_csr_20_10_10_synthetic_30000_1e-05.output @@ -0,0 +1,81 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '30000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 9000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.08333611488342285} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 9000, 9000, 9000]), + col_indices=tensor([13464, 15002, 12998, ..., 1674, 7890, 9839]), + values=tensor([0.3937, 0.5826, 0.6728, ..., 0.2443, 0.0810, 0.3168]), + size=(30000, 30000), nnz=9000, layout=torch.sparse_csr) +tensor([0.3767, 0.3322, 0.0921, ..., 0.4449, 0.8687, 0.6223]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 9000 +Density: 1e-05 +Time: 0.08333611488342285 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '251991', '-ss', '30000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 9000, "MATRIX_DENSITY": 1e-05, "TIME_S": 16.441835403442383} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 2, ..., 9000, 9000, 9000]), + col_indices=tensor([ 1592, 26221, 2007, ..., 5499, 7511, 18290]), + values=tensor([0.1009, 0.0773, 0.0762, ..., 0.6540, 0.2265, 0.9524]), + size=(30000, 30000), nnz=9000, layout=torch.sparse_csr) +tensor([0.5719, 0.1239, 0.1698, ..., 0.8424, 0.3509, 0.9636]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 9000 +Density: 1e-05 +Time: 16.441835403442383 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '321850', '-ss', '30000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 9000, "MATRIX_DENSITY": 1e-05, "TIME_S": 20.594725370407104} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 1, ..., 9000, 9000, 9000]), + col_indices=tensor([28655, 14046, 22660, ..., 19793, 14001, 26576]), + values=tensor([0.0604, 0.3035, 0.4856, ..., 0.8323, 0.7946, 0.0096]), + size=(30000, 30000), nnz=9000, layout=torch.sparse_csr) +tensor([0.2670, 0.6630, 0.3861, ..., 0.4215, 0.9031, 0.7574]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 9000 +Density: 1e-05 +Time: 20.594725370407104 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 1, ..., 9000, 9000, 9000]), + col_indices=tensor([28655, 14046, 22660, ..., 19793, 14001, 26576]), + values=tensor([0.0604, 0.3035, 0.4856, ..., 0.8323, 0.7946, 0.0096]), + size=(30000, 30000), nnz=9000, layout=torch.sparse_csr) +tensor([0.2670, 0.6630, 0.3861, ..., 0.4215, 0.9031, 0.7574]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 9000 +Density: 1e-05 +Time: 20.594725370407104 seconds + +[39.56, 39.04, 39.2, 38.58, 39.16, 39.36, 38.83, 40.63, 38.67, 39.16] +[101.41] +22.94782328605652 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 321850, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 9000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 20.594725370407104, 'TIME_S_1KI': 0.06398858278827747, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2327.1387594389917, 'W': 101.41000000000001} +[39.56, 39.04, 39.2, 38.58, 39.16, 39.36, 38.83, 40.63, 38.67, 39.16, 39.61, 44.11, 38.89, 39.27, 38.75, 38.81, 40.71, 38.62, 38.81, 38.61] +709.91 +35.4955 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 321850, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 9000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 20.594725370407104, 'TIME_S_1KI': 0.06398858278827747, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2327.1387594389917, 'W': 101.41000000000001, 'J_1KI': 7.230507253189348, 'W_1KI': 0.3150846667702346, 'W_D': 65.9145, 'J_D': 1512.5942979887725, 'W_D_1KI': 0.20479881932577287, 'J_D_1KI': 0.0006363175992722476} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_100000_0.0001.json b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_100000_0.0001.json new file mode 100644 index 0000000..092cf4b --- /dev/null +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_100000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 33012, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.519692420959473, "TIME_S_1KI": 0.318662680872394, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1224.664799463749, "W": 88.39, "J_1KI": 37.09756450574788, "W_1KI": 2.677511208045559, "W_D": 72.108, "J_D": 999.0737567567826, "W_D_1KI": 2.184296619411123, "J_D_1KI": 0.06616674601390778} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_100000_0.0001.output b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_100000_0.0001.output new file mode 100644 index 0000000..d5ef17d --- /dev/null +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_100000_0.0001.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '100000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.3180568218231201} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 7, 17, ..., 999979, + 999991, 1000000]), + col_indices=tensor([10691, 12782, 14246, ..., 70658, 88202, 93324]), + values=tensor([0.3844, 0.6658, 0.7124, ..., 0.3153, 0.8920, 0.6509]), + size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.9202, 0.9151, 0.8232, ..., 0.5628, 0.6151, 0.8368]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 1000000 +Density: 0.0001 +Time: 0.3180568218231201 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '33012', '-ss', '100000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.519692420959473} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 4, 15, ..., 999984, + 999990, 1000000]), + col_indices=tensor([ 7405, 49048, 69982, ..., 87685, 98650, 99933]), + values=tensor([0.6053, 0.2022, 0.4562, ..., 0.3977, 0.5709, 0.7435]), + size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.0490, 0.1129, 0.5767, ..., 0.3037, 0.9982, 0.0194]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 1000000 +Density: 0.0001 +Time: 10.519692420959473 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 4, 15, ..., 999984, + 999990, 1000000]), + col_indices=tensor([ 7405, 49048, 69982, ..., 87685, 98650, 99933]), + values=tensor([0.6053, 0.2022, 0.4562, ..., 0.3977, 0.5709, 0.7435]), + size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.0490, 0.1129, 0.5767, ..., 0.3037, 0.9982, 0.0194]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 1000000 +Density: 0.0001 +Time: 10.519692420959473 seconds + +[18.25, 17.99, 18.13, 17.81, 18.01, 17.82, 18.18, 18.25, 17.98, 18.75] +[88.39] +13.855241537094116 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 33012, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.519692420959473, 'TIME_S_1KI': 0.318662680872394, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1224.664799463749, 'W': 88.39} +[18.25, 17.99, 18.13, 17.81, 18.01, 17.82, 18.18, 18.25, 17.98, 18.75, 18.55, 17.94, 18.05, 17.81, 18.35, 17.79, 18.28, 18.36, 18.2, 17.83] +325.64 +16.282 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 33012, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.519692420959473, 'TIME_S_1KI': 0.318662680872394, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1224.664799463749, 'W': 88.39, 'J_1KI': 37.09756450574788, 'W_1KI': 2.677511208045559, 'W_D': 72.108, 'J_D': 999.0737567567826, 'W_D_1KI': 2.184296619411123, 'J_D_1KI': 0.06616674601390778} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_100000_1e-05.json b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_100000_1e-05.json new file mode 100644 index 0000000..d7ba913 --- /dev/null +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_100000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 64591, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.66994047164917, "TIME_S_1KI": 0.16519237156336286, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1159.8280617713929, "W": 82.8, "J_1KI": 17.9564964433341, "W_1KI": 1.2819123407285846, "W_D": 66.57124999999999, "J_D": 932.5024620434641, "W_D_1KI": 1.0306582960474369, "J_D_1KI": 0.015956685854800777} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_100000_1e-05.output b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_100000_1e-05.output new file mode 100644 index 0000000..ad36eba --- /dev/null +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_100000_1e-05.output @@ -0,0 +1,85 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '100000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.17906904220581055} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 1, ..., 99999, 99999, + 100000]), + col_indices=tensor([85471, 5444, 13434, ..., 17615, 87992, 83918]), + values=tensor([0.7119, 0.1219, 0.2242, ..., 0.7199, 0.3920, 0.9751]), + size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) +tensor([0.8861, 0.1716, 0.8373, ..., 0.2826, 0.6276, 0.0027]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 100000 +Density: 1e-05 +Time: 0.17906904220581055 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '58636', '-ss', '100000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 9.531909704208374} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 1, ..., 99999, 100000, + 100000]), + col_indices=tensor([28875, 86601, 1118, ..., 53659, 98581, 89346]), + values=tensor([0.0170, 0.0837, 0.6677, ..., 0.0775, 0.7543, 0.4196]), + size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) +tensor([0.4702, 0.4277, 0.7376, ..., 0.9470, 0.3873, 0.6416]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 100000 +Density: 1e-05 +Time: 9.531909704208374 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '64591', '-ss', '100000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.66994047164917} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 3, ..., 100000, 100000, + 100000]), + col_indices=tensor([32373, 45973, 94969, ..., 5823, 12968, 35562]), + values=tensor([0.6698, 0.7885, 0.1863, ..., 0.4943, 0.2796, 0.7613]), + size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) +tensor([0.4737, 0.5533, 0.8139, ..., 0.3662, 0.3156, 0.7007]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 100000 +Density: 1e-05 +Time: 10.66994047164917 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 3, ..., 100000, 100000, + 100000]), + col_indices=tensor([32373, 45973, 94969, ..., 5823, 12968, 35562]), + values=tensor([0.6698, 0.7885, 0.1863, ..., 0.4943, 0.2796, 0.7613]), + size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) +tensor([0.4737, 0.5533, 0.8139, ..., 0.3662, 0.3156, 0.7007]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 100000 +Density: 1e-05 +Time: 10.66994047164917 seconds + +[18.59, 17.9, 18.34, 17.96, 18.14, 17.94, 18.32, 17.79, 17.82, 17.71] +[82.8] +14.007585287094116 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 64591, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.66994047164917, 'TIME_S_1KI': 0.16519237156336286, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1159.8280617713929, 'W': 82.8} +[18.59, 17.9, 18.34, 17.96, 18.14, 17.94, 18.32, 17.79, 17.82, 17.71, 18.29, 17.85, 18.6, 17.8, 18.13, 17.74, 17.99, 17.83, 18.16, 17.94] +324.57500000000005 +16.22875 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 64591, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.66994047164917, 'TIME_S_1KI': 0.16519237156336286, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1159.8280617713929, 'W': 82.8, 'J_1KI': 17.9564964433341, 'W_1KI': 1.2819123407285846, 'W_D': 66.57124999999999, 'J_D': 932.5024620434641, 'W_D_1KI': 1.0306582960474369, 'J_D_1KI': 0.015956685854800777} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.0001.json b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.0001.json new file mode 100644 index 0000000..c1f8ab6 --- /dev/null +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 250193, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.988550901412964, "TIME_S_1KI": 0.043920297136262665, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1067.7657339859009, "W": 74.48, "J_1KI": 4.267768218878628, "W_1KI": 0.29769018317858614, "W_D": 58.048, "J_D": 832.1920693664551, "W_D_1KI": 0.23201288605196788, "J_D_1KI": 0.0009273356410929478} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.0001.output b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.0001.output new file mode 100644 index 0000000..15dcb35 --- /dev/null +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.0001.output @@ -0,0 +1,81 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.06029987335205078} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 1, ..., 9998, 9999, 10000]), + col_indices=tensor([9584, 2249, 9621, ..., 267, 2843, 1232]), + values=tensor([0.1887, 0.8280, 0.8733, ..., 0.6422, 0.8241, 0.9503]), + size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) +tensor([0.2203, 0.8610, 0.9153, ..., 0.2931, 0.9983, 0.3156]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000 +Density: 0.0001 +Time: 0.06029987335205078 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '174129', '-ss', '10000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 7.307769536972046} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 1, ..., 10000, 10000, 10000]), + col_indices=tensor([5050, 9096, 467, ..., 6460, 6547, 2963]), + values=tensor([0.3312, 0.9984, 0.8182, ..., 0.5509, 0.3722, 0.7285]), + size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) +tensor([0.0543, 0.3720, 0.3677, ..., 0.5280, 0.6433, 0.3148]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000 +Density: 0.0001 +Time: 7.307769536972046 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '250193', '-ss', '10000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.988550901412964} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 2, ..., 9997, 9999, 10000]), + col_indices=tensor([4233, 4275, 7541, ..., 2248, 7833, 717]), + values=tensor([0.0347, 0.7995, 0.4404, ..., 0.0217, 0.2651, 0.9390]), + size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) +tensor([0.4739, 0.4789, 0.6628, ..., 0.7267, 0.9323, 0.5704]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000 +Density: 0.0001 +Time: 10.988550901412964 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 2, ..., 9997, 9999, 10000]), + col_indices=tensor([4233, 4275, 7541, ..., 2248, 7833, 717]), + values=tensor([0.0347, 0.7995, 0.4404, ..., 0.0217, 0.2651, 0.9390]), + size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) +tensor([0.4739, 0.4789, 0.6628, ..., 0.7267, 0.9323, 0.5704]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000 +Density: 0.0001 +Time: 10.988550901412964 seconds + +[18.5, 18.04, 18.08, 20.55, 18.03, 18.27, 18.34, 17.92, 18.14, 18.0] +[74.48] +14.33627462387085 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 250193, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.988550901412964, 'TIME_S_1KI': 0.043920297136262665, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1067.7657339859009, 'W': 74.48} +[18.5, 18.04, 18.08, 20.55, 18.03, 18.27, 18.34, 17.92, 18.14, 18.0, 18.31, 18.29, 18.5, 18.09, 18.0, 17.95, 17.89, 18.08, 18.14, 17.85] +328.64 +16.432 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 250193, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.988550901412964, 'TIME_S_1KI': 0.043920297136262665, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1067.7657339859009, 'W': 74.48, 'J_1KI': 4.267768218878628, 'W_1KI': 0.29769018317858614, 'W_D': 58.048, 'J_D': 832.1920693664551, 'W_D_1KI': 0.23201288605196788, 'J_D_1KI': 0.0009273356410929478} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.001.json b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.001.json new file mode 100644 index 0000000..dab286f --- /dev/null +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.001.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 186516, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.228839635848999, "TIME_S_1KI": 0.054841620214078145, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1075.814607758522, "W": 79.58, "J_1KI": 5.767948099672533, "W_1KI": 0.4266658088314139, "W_D": 63.054, "J_D": 852.4053063282967, "W_D_1KI": 0.338062150164061, "J_D_1KI": 0.0018125101876732344} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.001.output b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.001.output new file mode 100644 index 0000000..fad6e92 --- /dev/null +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.001.output @@ -0,0 +1,85 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.0709388256072998} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 9, 17, ..., 99974, 99988, + 100000]), + col_indices=tensor([1106, 1398, 2518, ..., 6886, 7547, 8173]), + values=tensor([0.5902, 0.0057, 0.8492, ..., 0.2608, 0.7269, 0.6940]), + size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) +tensor([0.8144, 0.0674, 0.1585, ..., 0.0850, 0.2846, 0.5370]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 100000 +Density: 0.001 +Time: 0.0709388256072998 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '148014', '-ss', '10000', '-sd', '0.001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 8.332475900650024} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 11, 17, ..., 99965, 99978, + 100000]), + col_indices=tensor([ 77, 628, 3642, ..., 8176, 8481, 9600]), + values=tensor([0.7580, 0.3721, 0.0885, ..., 0.9345, 0.1388, 0.5730]), + size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) +tensor([0.9678, 0.5744, 0.4262, ..., 0.2115, 0.3242, 0.5272]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 100000 +Density: 0.001 +Time: 8.332475900650024 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '186516', '-ss', '10000', '-sd', '0.001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.228839635848999} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 15, 30, ..., 99982, 99990, + 100000]), + col_indices=tensor([ 298, 367, 1190, ..., 3689, 6850, 7173]), + values=tensor([0.7086, 0.6908, 0.8648, ..., 0.4576, 0.3199, 0.8368]), + size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) +tensor([0.7366, 0.0593, 0.8663, ..., 0.2557, 0.4256, 0.5242]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 100000 +Density: 0.001 +Time: 10.228839635848999 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 15, 30, ..., 99982, 99990, + 100000]), + col_indices=tensor([ 298, 367, 1190, ..., 3689, 6850, 7173]), + values=tensor([0.7086, 0.6908, 0.8648, ..., 0.4576, 0.3199, 0.8368]), + size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) +tensor([0.7366, 0.0593, 0.8663, ..., 0.2557, 0.4256, 0.5242]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 100000 +Density: 0.001 +Time: 10.228839635848999 seconds + +[18.35, 18.1, 18.16, 18.05, 17.94, 18.34, 18.01, 17.89, 17.93, 17.71] +[79.58] +13.51865553855896 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 186516, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.228839635848999, 'TIME_S_1KI': 0.054841620214078145, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1075.814607758522, 'W': 79.58} +[18.35, 18.1, 18.16, 18.05, 17.94, 18.34, 18.01, 17.89, 17.93, 17.71, 19.07, 18.27, 18.23, 17.94, 18.27, 18.14, 21.36, 18.53, 18.63, 18.33] +330.52 +16.526 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 186516, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.228839635848999, 'TIME_S_1KI': 0.054841620214078145, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1075.814607758522, 'W': 79.58, 'J_1KI': 5.767948099672533, 'W_1KI': 0.4266658088314139, 'W_D': 63.054, 'J_D': 852.4053063282967, 'W_D_1KI': 0.338062150164061, 'J_D_1KI': 0.0018125101876732344} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.01.json b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.01.json new file mode 100644 index 0000000..27eac6d --- /dev/null +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.01.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 57497, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.399010181427002, "TIME_S_1KI": 0.18086178724849997, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1216.1904487371446, "W": 87.17000000000002, "J_1KI": 21.15224183413299, "W_1KI": 1.5160790997791191, "W_D": 70.89300000000001, "J_D": 989.0947514319422, "W_D_1KI": 1.2329860688383745, "J_D_1KI": 0.021444354815701245} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.01.output b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.01.output new file mode 100644 index 0000000..98e81fe --- /dev/null +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.01.output @@ -0,0 +1,85 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.01', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 0.1964414119720459} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 102, 210, ..., 999804, + 999909, 1000000]), + col_indices=tensor([ 4, 297, 328, ..., 9417, 9717, 9744]), + values=tensor([0.3827, 0.2830, 0.2497, ..., 0.1291, 0.2102, 0.5312]), + size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.7948, 0.9855, 0.6473, ..., 0.4205, 0.5296, 0.9253]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000000 +Density: 0.01 +Time: 0.1964414119720459 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '53451', '-ss', '10000', '-sd', '0.01', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 9.761078357696533} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 112, 220, ..., 999796, + 999898, 1000000]), + col_indices=tensor([ 465, 658, 715, ..., 9500, 9653, 9927]), + values=tensor([0.9513, 0.9158, 0.4499, ..., 0.0775, 0.2496, 0.9759]), + size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.5799, 0.5098, 0.6156, ..., 0.8166, 0.2331, 0.2979]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000000 +Density: 0.01 +Time: 9.761078357696533 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '57497', '-ss', '10000', '-sd', '0.01', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.399010181427002} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 104, 198, ..., 999802, + 999905, 1000000]), + col_indices=tensor([ 124, 157, 187, ..., 9539, 9601, 9680]), + values=tensor([0.6532, 0.0603, 0.0418, ..., 0.1935, 0.1125, 0.4778]), + size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.5307, 0.8097, 0.3092, ..., 0.4937, 0.1856, 0.7516]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000000 +Density: 0.01 +Time: 10.399010181427002 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 104, 198, ..., 999802, + 999905, 1000000]), + col_indices=tensor([ 124, 157, 187, ..., 9539, 9601, 9680]), + values=tensor([0.6532, 0.0603, 0.0418, ..., 0.1935, 0.1125, 0.4778]), + size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.5307, 0.8097, 0.3092, ..., 0.4937, 0.1856, 0.7516]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000000 +Density: 0.01 +Time: 10.399010181427002 seconds + +[18.23, 18.13, 17.96, 18.03, 17.94, 17.9, 17.91, 17.8, 18.15, 18.93] +[87.17] +13.951938152313232 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 57497, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.399010181427002, 'TIME_S_1KI': 0.18086178724849997, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1216.1904487371446, 'W': 87.17000000000002} +[18.23, 18.13, 17.96, 18.03, 17.94, 17.9, 17.91, 17.8, 18.15, 18.93, 18.34, 17.87, 18.21, 18.15, 18.42, 17.87, 18.22, 18.25, 18.03, 17.9] +325.54 +16.277 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 57497, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.399010181427002, 'TIME_S_1KI': 0.18086178724849997, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1216.1904487371446, 'W': 87.17000000000002, 'J_1KI': 21.15224183413299, 'W_1KI': 1.5160790997791191, 'W_D': 70.89300000000001, 'J_D': 989.0947514319422, 'W_D_1KI': 1.2329860688383745, 'J_D_1KI': 0.021444354815701245} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.05.json b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.05.json new file mode 100644 index 0000000..ae32267 --- /dev/null +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.05.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 9007, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.744792222976685, "TIME_S_1KI": 1.192937961915919, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1359.414791688919, "W": 84.86, "J_1KI": 150.92869897734195, "W_1KI": 9.421561008104806, "W_D": 68.55725000000001, "J_D": 1098.2528838971855, "W_D_1KI": 7.611552126124127, "J_D_1KI": 0.8450707367740786} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.05.output b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.05.output new file mode 100644 index 0000000..c9ec716 --- /dev/null +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_0.05.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 1.1656646728515625} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 506, 991, ..., 4998989, + 4999492, 5000000]), + col_indices=tensor([ 25, 30, 53, ..., 9970, 9993, 9995]), + values=tensor([0.0157, 0.5603, 0.3033, ..., 0.4419, 0.2413, 0.9606]), + size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.4291, 0.9468, 0.9558, ..., 0.3375, 0.0455, 0.9666]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000000 +Density: 0.05 +Time: 1.1656646728515625 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '9007', '-ss', '10000', '-sd', '0.05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.744792222976685} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 491, 1013, ..., 4998981, + 4999517, 5000000]), + col_indices=tensor([ 61, 62, 77, ..., 9979, 9982, 9988]), + values=tensor([0.6511, 0.9070, 0.7175, ..., 0.4257, 0.4784, 0.0096]), + size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.7046, 0.2172, 0.5779, ..., 0.4690, 0.0165, 0.6122]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000000 +Density: 0.05 +Time: 10.744792222976685 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 491, 1013, ..., 4998981, + 4999517, 5000000]), + col_indices=tensor([ 61, 62, 77, ..., 9979, 9982, 9988]), + values=tensor([0.6511, 0.9070, 0.7175, ..., 0.4257, 0.4784, 0.0096]), + size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.7046, 0.2172, 0.5779, ..., 0.4690, 0.0165, 0.6122]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000000 +Density: 0.05 +Time: 10.744792222976685 seconds + +[18.37, 18.68, 18.13, 17.9, 18.06, 18.22, 18.04, 18.49, 17.9, 18.1] +[84.86] +16.019500255584717 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 9007, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.744792222976685, 'TIME_S_1KI': 1.192937961915919, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1359.414791688919, 'W': 84.86} +[18.37, 18.68, 18.13, 17.9, 18.06, 18.22, 18.04, 18.49, 17.9, 18.1, 18.25, 17.97, 18.05, 17.84, 17.92, 18.2, 17.96, 17.89, 18.19, 18.51] +326.05499999999995 +16.302749999999996 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 9007, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.744792222976685, 'TIME_S_1KI': 1.192937961915919, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1359.414791688919, 'W': 84.86, 'J_1KI': 150.92869897734195, 'W_1KI': 9.421561008104806, 'W_D': 68.55725000000001, 'J_D': 1098.2528838971855, 'W_D_1KI': 7.611552126124127, 'J_D_1KI': 0.8450707367740786} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_1e-05.json b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_1e-05.json new file mode 100644 index 0000000..3d91d0f --- /dev/null +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 279705, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.192691802978516, "TIME_S_1KI": 0.03644086377783206, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1002.2923643112182, "W": 73.24, "J_1KI": 3.5833909451429835, "W_1KI": 0.2618473034089487, "W_D": 56.983999999999995, "J_D": 779.8283463668822, "W_D_1KI": 0.20372892869272982, "J_D_1KI": 0.0007283707073263969} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_1e-05.output b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_1e-05.output new file mode 100644 index 0000000..d0774e1 --- /dev/null +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_10000_1e-05.output @@ -0,0 +1,1521 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.05549430847167969} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), + col_indices=tensor([3370, 8033, 9994, 2466, 6901, 8760, 7929, 6009, 6694, + 5159, 1569, 4321, 2884, 3593, 7087, 277, 9865, 708, + 219, 1957, 2394, 9752, 9341, 4634, 7106, 8670, 5732, + 279, 8294, 2115, 4730, 6630, 1087, 3467, 99, 364, + 8115, 4267, 1834, 5621, 1569, 7117, 9388, 1669, 5931, + 9264, 3811, 5721, 3727, 135, 5730, 2995, 3406, 9737, + 8203, 4619, 3682, 7347, 200, 8973, 7753, 580, 2253, + 5338, 9810, 8027, 181, 7440, 8883, 5987, 8971, 592, + 4310, 5459, 5555, 5982, 2912, 5657, 5155, 5158, 2575, + 4534, 5426, 285, 2313, 564, 416, 9640, 2595, 4194, + 651, 1798, 5551, 7426, 7258, 3436, 2400, 6562, 5104, + 7010, 536, 2620, 9757, 68, 4487, 1288, 1752, 3582, + 4320, 2874, 3544, 5364, 8870, 570, 876, 9095, 9069, + 7054, 4172, 1984, 9030, 5728, 1404, 5844, 3846, 641, + 8291, 9336, 3061, 3478, 6348, 6870, 170, 9681, 4066, + 161, 4454, 1223, 5179, 2812, 3556, 5193, 2967, 5978, + 997, 659, 500, 7339, 9371, 8915, 9451, 2693, 6998, + 4462, 9723, 8519, 528, 8686, 4869, 1134, 5722, 3684, + 5254, 2008, 3928, 3524, 7467, 5611, 9303, 1848, 7513, + 144, 6865, 9315, 260, 6542, 8384, 7775, 9566, 1870, + 5432, 4007, 6545, 8496, 7112, 7663, 8511, 3654, 8360, + 7458, 7244, 9547, 237, 7595, 3067, 3897, 1148, 6044, + 9905, 3252, 3717, 2097, 8397, 5162, 880, 3643, 3669, + 3006, 4680, 1145, 5124, 2016, 4795, 1874, 2179, 4471, + 5866, 4135, 4797, 3701, 1368, 8916, 2162, 8724, 3185, + 2438, 7109, 8896, 7886, 7935, 5984, 6692, 9779, 356, + 8330, 7674, 7049, 1894, 9291, 438, 644, 5593, 4012, + 4092, 1074, 7656, 8497, 9936, 1003, 1428, 4946, 3098, + 3834, 5854, 9677, 3180, 1592, 4702, 1405, 2278, 844, + 3771, 581, 700, 6434, 4124, 9326, 859, 5258, 8507, + 5298, 8386, 9430, 4702, 2123, 1428, 3971, 9516, 3171, + 631, 9941, 183, 4223, 8243, 8550, 4681, 1680, 6085, + 9231, 7887, 2007, 9929, 319, 2262, 7173, 8741, 4368, + 7062, 7568, 7422, 6915, 6947, 8441, 2961, 6342, 2044, + 1447, 9597, 985, 8998, 9652, 4424, 5209, 960, 6967, + 167, 332, 8301, 5318, 8462, 9782, 1436, 5255, 8291, + 1679, 100, 7990, 7641, 5493, 6378, 4691, 7683, 2088, + 3372, 8060, 1057, 3230, 8284, 1196, 9763, 1017, 415, + 4982, 6524, 8257, 2213, 7932, 3442, 8568, 3619, 2201, + 8218, 4246, 4441, 4982, 2118, 427, 6086, 1745, 4209, + 7427, 2079, 9082, 6939, 9748, 4182, 4214, 8354, 8651, + 3029, 8143, 5135, 9139, 422, 6584, 4206, 3350, 3991, + 580, 2652, 5057, 3635, 5440, 7829, 2912, 7163, 3688, + 695, 1097, 7502, 9778, 6390, 2778, 5858, 8301, 3489, + 4549, 1884, 825, 5427, 443, 8921, 1023, 9620, 3942, + 4314, 675, 963, 9852, 4203, 3468, 8239, 870, 8839, + 968, 4232, 4985, 3353, 73, 2459, 5154, 1956, 1327, + 6990, 1883, 4040, 9749, 9910, 4672, 5452, 4110, 9189, + 5479, 140, 5133, 1656, 2426, 8412, 8268, 6211, 4670, + 4046, 220, 7783, 3136, 5529, 1519, 5090, 4609, 7290, + 6130, 3587, 3942, 1229, 552, 8186, 3250, 8456, 5207, + 6427, 6375, 7492, 5408, 4660, 134, 3661, 13, 8254, + 5276, 4385, 9507, 9434, 8019, 1686, 3007, 5215, 4722, + 2267, 549, 6567, 9286, 5206, 4726, 1559, 1580, 1843, + 9051, 1093, 6549, 227, 7062, 3358, 7788, 368, 1631, + 6978, 486, 1733, 2943, 2244, 1432, 7203, 6090, 6747, + 7011, 1946, 5223, 4474, 9388, 5043, 3504, 986, 4293, + 9704, 6750, 9397, 4917, 3565, 4328, 3764, 3459, 2307, + 2729, 635, 5686, 8216, 7948, 4213, 7647, 9654, 8289, + 3877, 9908, 2629, 3758, 2379, 7870, 1661, 2524, 2025, + 1815, 1665, 3312, 6095, 9851, 161, 2621, 4565, 7285, + 2137, 5689, 9717, 1329, 6660, 9626, 5019, 6708, 5239, + 2539, 7410, 9243, 432, 2490, 4568, 6231, 3113, 8655, + 7941, 5808, 4116, 1627, 1188, 3208, 6858, 4204, 4107, + 8587, 6451, 7251, 5391, 5116, 7261, 6410, 672, 1611, + 2152, 6577, 1898, 7871, 7055, 9067, 2195, 7972, 8151, + 3524, 2108, 1529, 903, 5082, 5551, 7367, 8808, 5241, + 1594, 4707, 2380, 9631, 7076, 8394, 60, 5765, 6660, + 7579, 5424, 5880, 2129, 1669, 1900, 4256, 3378, 8104, + 786, 7144, 1856, 8099, 6815, 7882, 423, 608, 9782, + 4637, 469, 8681, 5348, 4408, 1360, 3224, 6978, 6622, + 2157, 480, 8176, 5588, 3027, 9032, 9775, 4249, 3903, + 1436, 224, 3043, 777, 9049, 6566, 883, 450, 1264, + 5827, 1325, 7033, 7598, 679, 18, 1120, 5920, 5758, + 2185, 5454, 2940, 7503, 9812, 4562, 3927, 3436, 2601, + 8869, 7843, 2841, 3522, 6350, 1990, 4736, 9057, 1919, + 3994, 2486, 4123, 9431, 8733, 1141, 4361, 3867, 8089, + 5781, 3266, 3873, 5516, 9798, 9002, 2944, 3297, 5197, + 1504, 1823, 4464, 7507, 2669, 3882, 4906, 2310, 4718, + 234, 7610, 4257, 4365, 5806, 4335, 3504, 7354, 8689, + 7274, 7744, 172, 8368, 5331, 8399, 5274, 8133, 5361, + 9298, 1154, 1186, 3811, 4358, 2956, 1986, 9397, 8700, + 7053, 4314, 9823, 2442, 8137, 2830, 8408, 6332, 298, + 3646, 3656, 82, 1106, 1369, 2489, 4912, 3347, 7014, + 6752, 7779, 5247, 3746, 5700, 1718, 5366, 8881, 5179, + 8357, 1175, 6351, 9104, 5664, 5393, 8089, 1751, 1181, + 442, 1145, 4570, 9871, 3241, 5972, 4479, 5878, 696, + 7460, 910, 8388, 5287, 6423, 2487, 7461, 8332, 6223, + 9907, 9105, 8301, 1183, 9143, 8830, 6716, 8759, 8681, + 8760, 2734, 4492, 4751, 9627, 6030, 6438, 4871, 2463, + 4874, 1337, 8813, 300, 266, 401, 9585, 8122, 8805, + 1942, 3005, 3251, 3369, 2623, 8238, 6235, 2278, 6386, + 8368, 7653, 5795, 8078, 6633, 864, 376, 7421, 3698, + 1655, 8162, 1822, 4509, 7622, 5335, 2343, 7786, 3326, + 6814, 8651, 1850, 6620, 4412, 8162, 5623, 110, 9074, + 5711, 6790, 4627, 1735, 2586, 315, 7785, 7851, 2760, + 1940, 1744, 4300, 8283, 2876, 1795, 3647, 5205, 5974, + 4770, 3963, 9075, 9085, 565, 5510, 5205, 1690, 2947, + 1996, 9032, 9696, 3776, 3990, 1005, 1961, 5455, 7300, + 4600, 5848, 4530, 4076, 1870, 1037, 8211, 83, 1549, + 6014, 5185, 1742, 7350, 5452, 7365, 9636, 5003, 9594, + 8668, 4421, 624, 8506, 8084, 1884, 4572, 304, 7069, + 7367, 7536, 9106, 7375, 2723, 6809, 334, 4105, 6967, + 1311, 7930, 2278, 7959, 1574, 326, 4014, 7802, 1752, + 657, 502, 6011, 3203, 6400, 3973, 9079, 1712, 8626, + 5170, 7690, 8122, 9371, 2199, 9383, 7195, 969, 7515, + 5328, 5262, 2752, 9435, 4633, 4921, 9066, 7196, 6365, + 139, 3707, 9176, 4417, 2454, 5392, 7486, 8004, 7632, + 1440, 9450, 7206, 3521, 6136, 4155, 916, 3884, 644, + 8199, 257, 4918, 721, 1533, 4326, 6500, 3021, 1625, + 6549, 1839, 5719, 458, 9056, 305, 1616, 7198, 4853, + 9757]), + values=tensor([2.2760e-01, 3.5221e-02, 5.9072e-01, 2.5078e-01, + 4.1717e-01, 3.4549e-01, 4.2576e-01, 7.0564e-01, + 5.7849e-01, 9.1025e-01, 7.0210e-01, 4.3945e-02, + 6.9883e-01, 6.9216e-01, 4.5909e-01, 8.9233e-01, + 1.7268e-02, 6.5426e-01, 9.7972e-01, 2.1253e-01, + 2.7185e-01, 2.9433e-01, 1.1540e-01, 7.2390e-01, + 2.2506e-01, 9.7264e-01, 8.2542e-01, 4.6082e-01, + 8.7183e-01, 8.5724e-01, 7.1250e-01, 5.0168e-02, + 9.4167e-01, 2.6410e-01, 8.8473e-01, 7.0941e-01, + 5.2592e-01, 2.2444e-03, 6.6744e-01, 7.7300e-01, + 7.7005e-01, 8.7332e-01, 4.4405e-01, 7.1587e-01, + 1.8697e-01, 1.1902e-01, 8.8079e-01, 3.7209e-01, + 1.5485e-01, 7.5170e-02, 9.4715e-02, 6.1784e-01, + 1.0109e-01, 6.2407e-01, 7.9488e-01, 2.2843e-01, + 6.0383e-01, 7.8142e-01, 9.7064e-01, 7.2740e-01, + 5.5003e-01, 8.2418e-01, 4.8375e-01, 3.5116e-01, + 3.3782e-01, 7.0287e-01, 5.8611e-01, 8.6277e-01, + 8.4254e-02, 6.2127e-01, 5.8344e-01, 3.2293e-01, + 7.7329e-01, 3.6031e-01, 9.6753e-01, 3.7167e-01, + 1.0712e-01, 4.6351e-01, 9.6488e-02, 2.0868e-01, + 5.6222e-01, 2.7802e-01, 6.2376e-01, 6.1054e-01, + 4.5383e-01, 3.9105e-02, 2.9168e-01, 6.4735e-02, + 8.5285e-02, 6.4931e-01, 5.5497e-01, 2.7920e-01, + 2.7865e-01, 3.1448e-02, 6.6142e-01, 1.8658e-01, + 3.0011e-01, 2.3787e-01, 6.4867e-02, 1.2835e-01, + 5.7700e-01, 2.9192e-01, 6.4012e-01, 3.5225e-01, + 4.5143e-01, 5.6227e-02, 6.0549e-01, 4.2581e-01, + 6.7602e-01, 7.4395e-01, 4.8068e-01, 5.2565e-01, + 8.9017e-01, 9.6632e-01, 9.5015e-02, 2.8433e-01, + 9.0995e-01, 9.8708e-01, 4.8744e-01, 1.1256e-01, + 3.0450e-02, 2.0815e-01, 1.9671e-01, 8.9670e-01, + 3.5518e-01, 9.4204e-01, 5.5091e-01, 3.7966e-01, + 6.3899e-01, 5.5009e-01, 2.0501e-01, 4.1548e-01, + 3.6357e-02, 2.7655e-01, 3.6680e-01, 5.4367e-01, + 5.7968e-01, 2.1066e-01, 2.3530e-01, 3.7776e-01, + 2.8517e-01, 9.0314e-01, 3.4144e-01, 5.8359e-01, + 1.7634e-01, 3.5609e-01, 1.0387e-01, 9.8228e-01, + 2.7448e-01, 9.3196e-01, 1.1081e-01, 7.4499e-01, + 3.1778e-01, 2.0672e-01, 1.7794e-02, 6.1138e-01, + 3.1989e-02, 3.6895e-01, 8.2641e-01, 5.9869e-01, + 3.5595e-01, 9.6373e-01, 3.7480e-01, 5.2143e-01, + 4.3349e-02, 1.3590e-01, 2.0842e-01, 2.1166e-01, + 3.8860e-01, 9.1333e-01, 8.6377e-01, 6.6471e-01, + 2.7729e-01, 2.3286e-01, 9.3413e-01, 9.8011e-01, + 9.0617e-01, 8.3591e-01, 5.6210e-01, 5.3489e-02, + 7.8598e-01, 3.9560e-02, 4.2489e-01, 7.4518e-01, + 5.7467e-01, 9.3889e-01, 8.6789e-01, 7.5959e-01, + 4.9204e-01, 4.2775e-01, 7.1760e-02, 2.8086e-01, + 6.7026e-02, 7.1900e-01, 2.9688e-01, 5.3084e-01, + 9.7309e-01, 9.7190e-01, 5.2828e-01, 6.9719e-01, + 5.8565e-01, 5.6568e-01, 5.9262e-01, 4.6447e-01, + 4.2431e-01, 6.8029e-01, 6.2315e-01, 6.3149e-01, + 3.5814e-01, 7.3594e-01, 7.3362e-01, 6.9685e-01, + 9.1457e-01, 3.4904e-01, 8.8544e-01, 8.7293e-01, + 3.9296e-01, 4.9813e-01, 3.9881e-01, 2.3942e-01, + 4.5849e-01, 9.8730e-01, 7.5710e-01, 9.1946e-01, + 2.4114e-01, 8.6826e-01, 9.5078e-01, 3.1663e-01, + 6.3165e-01, 8.8688e-01, 1.2552e-01, 6.0931e-01, + 4.3551e-02, 2.6901e-01, 5.2283e-01, 1.0118e-01, + 2.8103e-01, 9.6430e-01, 5.1347e-01, 7.0134e-01, + 8.7571e-01, 6.9586e-01, 4.3836e-01, 8.1650e-01, + 6.4549e-01, 9.2081e-01, 8.2708e-01, 1.4900e-02, + 5.1331e-01, 5.9988e-01, 1.1665e-01, 8.7802e-01, + 2.1991e-02, 6.0721e-01, 9.2510e-01, 8.6212e-01, + 2.3484e-01, 6.7764e-01, 1.9046e-01, 3.4118e-01, + 1.9233e-01, 3.4028e-01, 5.2586e-01, 5.1113e-02, + 9.3913e-01, 3.9639e-01, 4.1876e-01, 6.1110e-01, + 6.8628e-01, 2.4277e-01, 1.8463e-01, 4.8661e-01, + 5.4496e-01, 8.3349e-02, 1.0702e-01, 3.9832e-01, + 6.1730e-01, 6.8752e-01, 3.9926e-01, 6.8654e-01, + 4.6554e-02, 3.9080e-01, 5.3455e-01, 3.7730e-02, + 5.8768e-01, 9.8626e-01, 7.7561e-01, 8.3431e-01, + 4.8087e-01, 9.9003e-01, 4.9649e-01, 6.8913e-01, + 5.3056e-01, 7.1228e-01, 9.5001e-01, 9.0827e-01, + 5.3483e-01, 6.4157e-01, 7.8345e-02, 5.8628e-01, + 8.6508e-01, 2.5309e-01, 6.6991e-01, 5.7129e-01, + 1.2317e-01, 3.7441e-01, 9.9664e-01, 8.2565e-01, + 1.2528e-01, 2.7012e-01, 1.5033e-01, 9.9663e-01, + 4.0935e-01, 8.9345e-01, 3.6637e-01, 5.5793e-02, + 7.5246e-01, 4.2466e-01, 7.7363e-02, 4.8869e-01, + 3.8751e-01, 6.9318e-01, 8.5083e-02, 1.4567e-01, + 2.9250e-01, 5.2467e-01, 9.3045e-01, 5.3264e-01, + 1.2770e-01, 3.4043e-01, 2.2540e-01, 7.5242e-01, + 5.3542e-01, 4.6133e-01, 9.7629e-02, 3.1000e-01, + 5.3638e-01, 8.9934e-01, 6.8304e-01, 2.0806e-01, + 8.5919e-01, 3.4203e-01, 5.8597e-01, 6.2314e-01, + 3.5090e-01, 3.1243e-01, 9.2962e-01, 5.6896e-01, + 1.2483e-01, 7.1930e-01, 6.4281e-02, 2.1398e-01, + 1.6170e-01, 9.6231e-01, 9.2507e-01, 4.7013e-06, + 7.0523e-01, 8.2283e-01, 4.5006e-01, 9.7704e-01, + 1.8690e-01, 5.7980e-01, 3.6762e-01, 8.2601e-01, + 6.5415e-01, 1.4619e-01, 4.2706e-01, 3.1835e-01, + 2.1401e-01, 7.7684e-01, 4.4234e-01, 8.3810e-01, + 7.2964e-01, 9.5477e-02, 1.6790e-01, 8.4675e-01, + 5.1339e-01, 5.7626e-01, 1.3007e-01, 2.9192e-01, + 2.5965e-01, 6.0686e-01, 2.9454e-01, 1.3320e-01, + 7.0453e-01, 5.2023e-01, 7.1022e-02, 7.0869e-01, + 6.2223e-01, 2.2574e-02, 1.4690e-01, 8.6693e-01, + 7.3473e-02, 1.5893e-01, 9.5142e-01, 9.9127e-01, + 5.7690e-01, 2.2612e-01, 5.0941e-01, 4.6335e-01, + 4.3759e-02, 8.2616e-01, 9.9737e-01, 5.8361e-01, + 2.9258e-01, 9.5502e-01, 2.7463e-01, 9.1821e-01, + 4.5758e-02, 4.4305e-01, 4.3265e-01, 5.9651e-01, + 5.5001e-01, 5.4088e-01, 9.7137e-01, 1.3754e-01, + 9.7428e-01, 6.3537e-01, 8.5881e-01, 5.3823e-01, + 1.1991e-01, 1.9536e-01, 7.9941e-01, 9.1208e-02, + 2.4127e-01, 8.1470e-01, 4.8731e-01, 2.1894e-01, + 2.6253e-01, 1.1551e-01, 4.9124e-02, 9.8311e-01, + 3.0121e-01, 3.1190e-01, 4.5535e-01, 6.2488e-01, + 6.1180e-01, 5.8929e-01, 8.9395e-01, 1.4285e-01, + 4.1279e-01, 5.7728e-01, 1.5323e-01, 1.7431e-01, + 9.2063e-01, 9.8269e-01, 4.5162e-01, 3.2896e-01, + 3.2116e-01, 6.7039e-01, 3.5667e-01, 7.9971e-01, + 4.9289e-01, 8.0621e-01, 3.6761e-01, 8.0539e-01, + 5.6533e-01, 6.2716e-01, 4.3960e-01, 2.3829e-01, + 1.0842e-01, 4.0311e-01, 6.9153e-01, 1.0539e-01, + 9.6062e-01, 2.7797e-01, 4.8334e-01, 3.4844e-01, + 5.7558e-01, 1.7801e-01, 4.7933e-01, 5.9983e-01, + 8.0374e-01, 4.8049e-01, 4.0849e-01, 1.0845e-01, + 8.0544e-01, 7.6767e-01, 5.7822e-01, 9.0690e-01, + 8.5136e-01, 7.1502e-01, 6.3645e-01, 8.0806e-01, + 6.1472e-01, 9.2440e-01, 6.1268e-01, 6.9137e-01, + 4.3311e-01, 7.2099e-01, 1.4897e-01, 9.2718e-01, + 9.8949e-01, 2.5598e-01, 4.5546e-01, 2.8312e-01, + 9.8466e-01, 7.4199e-01, 6.7438e-01, 5.9843e-01, + 8.3839e-01, 9.5652e-01, 9.9919e-01, 7.9694e-01, + 6.0763e-01, 2.8055e-01, 9.3936e-01, 7.9674e-02, + 2.7143e-01, 8.7185e-01, 4.2139e-01, 8.7106e-01, + 9.5567e-01, 7.3814e-01, 8.8050e-01, 2.4368e-01, + 3.5106e-02, 9.5191e-02, 7.8457e-01, 8.2905e-01, + 5.5522e-01, 1.4311e-01, 6.3803e-01, 6.3374e-01, + 3.4075e-01, 9.6717e-01, 5.2403e-01, 9.9450e-01, + 3.6817e-01, 6.2288e-01, 6.5032e-01, 7.4284e-01, + 3.2219e-01, 9.1163e-01, 1.8294e-01, 7.4995e-01, + 9.3000e-01, 1.4936e-01, 9.2124e-01, 1.9468e-01, + 2.6204e-01, 3.9770e-01, 3.5536e-01, 9.6075e-01, + 6.5686e-01, 5.3686e-01, 3.6731e-01, 9.0661e-02, + 5.8419e-01, 1.9639e-02, 6.2822e-01, 6.9317e-01, + 3.0485e-01, 6.4889e-01, 9.5125e-01, 5.7206e-01, + 6.2057e-01, 2.1344e-01, 3.9874e-01, 6.3107e-01, + 1.3827e-01, 3.4122e-01, 2.2950e-02, 9.8721e-01, + 4.8321e-01, 8.6787e-01, 6.2517e-01, 5.1338e-01, + 8.8793e-01, 6.6596e-01, 6.0825e-01, 9.4586e-01, + 6.2170e-01, 7.0521e-01, 1.7779e-01, 8.1480e-01, + 7.3632e-01, 7.0682e-01, 5.9327e-02, 3.1923e-01, + 7.6294e-01, 8.6778e-01, 7.4956e-01, 3.3441e-01, + 5.7045e-02, 5.6280e-01, 4.9676e-01, 4.1326e-01, + 5.9257e-01, 9.5921e-01, 1.2747e-01, 8.1687e-01, + 5.1016e-01, 3.5676e-01, 5.2429e-01, 9.7885e-01, + 1.5599e-01, 9.5171e-01, 3.7502e-03, 3.6002e-01, + 6.0546e-01, 9.9878e-01, 9.1985e-01, 5.7490e-01, + 4.5907e-01, 3.5069e-02, 9.8653e-01, 9.7455e-01, + 6.2178e-01, 7.2946e-02, 2.4594e-01, 1.5277e-01, + 7.8208e-01, 3.1965e-01, 9.0671e-01, 7.4361e-01, + 1.5947e-01, 7.7474e-01, 2.8499e-01, 5.6960e-01, + 5.5471e-01, 1.7479e-01, 5.0218e-01, 9.8562e-01, + 6.8947e-01, 3.4734e-01, 2.5316e-01, 4.1212e-01, + 8.9755e-02, 1.5165e-01, 7.4017e-01, 1.2175e-01, + 1.8502e-01, 7.8411e-01, 5.7160e-01, 9.2566e-01, + 2.0186e-01, 2.8193e-01, 6.3665e-01, 4.8082e-01, + 5.8762e-01, 7.5002e-01, 7.5287e-01, 2.1272e-01, + 7.0649e-01, 4.6356e-01, 7.9673e-01, 6.7600e-02, + 8.0324e-01, 7.4938e-01, 1.5113e-01, 9.3034e-03, + 1.8397e-01, 4.1201e-01, 9.3876e-01, 5.1078e-01, + 9.6300e-01, 7.4361e-01, 5.2908e-01, 5.6847e-01, + 9.4865e-01, 8.6867e-01, 9.8734e-01, 8.2798e-02, + 2.7453e-01, 8.7811e-01, 8.1549e-02, 7.5651e-01, + 8.8527e-01, 2.5916e-01, 9.3804e-01, 8.8769e-02, + 6.5843e-01, 7.1280e-01, 7.4733e-01, 8.4278e-01, + 9.4306e-02, 3.4855e-01, 3.6923e-01, 5.2801e-01, + 3.5479e-01, 7.6427e-01, 8.6350e-01, 8.9582e-01, + 5.0220e-01, 5.0060e-01, 5.3680e-01, 1.1208e-01, + 5.7576e-01, 7.6430e-01, 5.7555e-01, 5.8240e-01, + 2.2192e-01, 1.9720e-01, 1.9796e-01, 1.7826e-01, + 5.1031e-01, 6.0345e-01, 6.0780e-01, 3.3075e-01, + 7.5456e-01, 1.5925e-01, 5.9667e-01, 6.0470e-01, + 3.3668e-01, 9.2265e-02, 3.4059e-01, 3.0964e-01, + 7.2838e-01, 1.1446e-01, 5.1217e-01, 1.8042e-01, + 5.6532e-01, 3.9903e-01, 9.1478e-01, 5.5361e-01, + 6.9311e-01, 3.5533e-01, 6.0366e-01, 1.6747e-01, + 8.2851e-01, 3.1336e-01, 2.6558e-01, 6.2869e-02, + 8.0341e-01, 2.6676e-01, 1.2992e-01, 6.6329e-01, + 4.5308e-01, 1.2271e-02, 9.0200e-01, 8.1114e-01, + 1.9246e-01, 7.8270e-01, 9.7264e-01, 7.6296e-01, + 3.9219e-01, 1.8942e-01, 7.9924e-02, 3.6218e-01, + 8.3925e-01, 9.4399e-01, 3.8968e-02, 1.4799e-01, + 4.6923e-01, 5.6256e-01, 3.1602e-01, 1.4438e-01, + 6.8883e-01, 4.7218e-01, 9.9266e-01, 4.9855e-01, + 8.3918e-01, 7.7844e-01, 3.5122e-01, 9.9153e-02, + 8.1764e-01, 5.4243e-02, 3.4209e-01, 1.8529e-02, + 9.1887e-01, 4.4449e-01, 7.7983e-01, 1.7256e-01, + 9.9816e-01, 6.0125e-01, 2.6970e-02, 5.0364e-01, + 6.7695e-01, 9.0214e-01, 4.7416e-01, 5.0448e-01, + 2.7249e-01, 6.9798e-01, 7.8632e-01, 7.4111e-01, + 7.8624e-01, 4.5545e-01, 6.8036e-01, 6.2030e-01, + 1.4065e-02, 2.2507e-01, 3.0552e-01, 3.2135e-01, + 7.0066e-01, 2.0238e-01, 6.8231e-01, 2.5313e-01, + 3.5273e-01, 4.7153e-02, 6.4807e-01, 1.1778e-01, + 9.4661e-02, 6.0636e-01, 2.5697e-01, 1.3635e-01, + 8.6819e-01, 6.6326e-01, 2.8635e-01, 4.0010e-01, + 3.3971e-01, 9.5972e-01, 6.2596e-01, 9.9963e-01, + 9.7307e-01, 1.6734e-01, 5.3424e-02, 5.5741e-01, + 4.0894e-01, 8.8019e-01, 8.3831e-01, 4.6774e-02, + 7.5041e-01, 2.7236e-01, 2.2185e-01, 2.6223e-01, + 8.4859e-01, 9.7958e-01, 9.1309e-01, 6.6954e-01, + 7.2329e-01, 1.1151e-01, 8.3584e-02, 5.7305e-01, + 1.0986e-01, 5.4961e-01, 2.6916e-01, 8.8619e-01, + 5.4081e-01, 9.2680e-01, 1.5231e-01, 5.0414e-01, + 5.9220e-01, 1.4815e-01, 7.2665e-01, 9.2504e-01, + 5.2573e-01, 3.2436e-02, 9.4962e-02, 6.4277e-01, + 9.9252e-01, 6.9223e-01, 3.8798e-01, 2.0939e-01, + 8.2775e-01, 7.6169e-01, 8.5089e-01, 2.7587e-01, + 2.0360e-01, 1.6886e-01, 8.7825e-01, 1.6879e-01, + 3.1510e-03, 4.6880e-01, 8.0777e-01, 4.4160e-01, + 8.4465e-01, 5.9578e-02, 7.0169e-01, 4.3114e-01, + 7.1841e-01, 5.4612e-01, 2.6982e-01, 4.4678e-01, + 3.1014e-01, 6.8810e-01, 9.7878e-01, 3.4804e-01, + 3.3573e-01, 4.7867e-01, 5.0425e-01, 2.4231e-01, + 5.2775e-01, 3.3611e-01, 2.6111e-01, 7.3952e-01, + 8.4297e-01, 9.0409e-01, 3.6516e-01, 2.2077e-01, + 6.6859e-01, 4.0213e-01, 5.2519e-01, 8.2468e-01, + 7.6980e-01, 9.4835e-02, 1.7087e-01, 2.6707e-01, + 3.4409e-01, 9.4803e-01, 4.8875e-01, 8.2901e-01, + 5.0371e-01, 9.1676e-01, 8.4760e-01, 3.7325e-01, + 9.1492e-01, 2.7756e-01, 7.8704e-01, 9.6423e-01, + 6.6825e-01, 5.5767e-01, 1.6778e-01, 2.1423e-01, + 7.6494e-01, 4.1423e-01, 5.8547e-01, 4.9735e-01, + 5.9344e-01, 7.4411e-01, 1.6778e-01, 4.3753e-01, + 1.2092e-01, 5.8899e-01, 4.4759e-01, 9.2795e-01, + 7.8552e-01, 3.6512e-01, 2.7770e-01, 9.7002e-01, + 8.5269e-01, 1.7249e-01, 4.4557e-02, 7.9337e-01, + 3.9258e-01, 1.6638e-01, 8.7393e-02, 4.2894e-01, + 9.7344e-01, 8.6539e-01, 3.9129e-01, 9.8888e-01, + 8.5705e-01, 5.2376e-01, 9.1048e-01, 7.8188e-01, + 8.3763e-02, 4.9184e-01, 6.4964e-01, 1.8151e-01, + 7.0035e-01, 5.1668e-01, 3.6723e-01, 9.4863e-01, + 9.2009e-01, 2.9091e-01, 6.0006e-01, 1.4881e-01, + 8.7263e-01, 5.5714e-01, 8.9518e-01, 1.9135e-01, + 2.8367e-01, 6.0469e-01, 6.3090e-02, 4.5934e-01, + 8.5825e-01, 6.9705e-01, 2.5107e-01, 4.2451e-01, + 2.0143e-01, 8.4879e-01, 9.2691e-01, 4.7860e-01, + 5.7185e-01, 6.4853e-01, 1.2931e-01, 1.5035e-01, + 3.4904e-02, 6.9460e-01, 5.3142e-01, 4.6962e-01, + 9.9578e-01, 8.9967e-01, 9.7289e-01, 8.0918e-01, + 2.6973e-01, 4.3641e-01, 4.0857e-01, 1.2828e-01, + 3.9004e-01, 6.2152e-01, 1.4185e-02, 9.0961e-01, + 4.8715e-01, 8.0070e-02, 1.6869e-01, 8.1943e-01, + 2.0505e-02, 9.3012e-01, 3.0873e-02, 3.6259e-01, + 3.9670e-01, 6.9117e-01, 6.7714e-01, 5.8222e-01, + 5.7660e-01, 9.3747e-01, 5.4393e-01, 3.3248e-01]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.9318, 0.2708, 0.1659, ..., 0.9519, 0.7638, 0.9831]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 0.05549430847167969 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '189208', '-ss', '10000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 7.102759838104248} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), + col_indices=tensor([ 669, 3273, 5792, 9781, 3401, 2980, 8019, 7237, 2538, + 4477, 7482, 497, 1165, 1179, 8217, 7349, 5272, 9560, + 8988, 3708, 8899, 64, 4583, 4111, 7600, 3699, 4957, + 769, 1357, 74, 9202, 6103, 1121, 2235, 1229, 8638, + 4717, 7116, 8280, 5249, 1887, 4346, 1096, 6559, 370, + 5939, 6193, 450, 6742, 1437, 140, 922, 1107, 8788, + 4404, 1605, 3671, 5699, 8839, 9178, 3700, 366, 8176, + 7767, 6692, 8391, 2732, 4473, 1417, 6192, 3118, 3857, + 273, 6678, 6556, 2830, 9847, 1396, 4143, 8999, 1311, + 8607, 1524, 3289, 5756, 8868, 728, 8554, 1884, 115, + 5427, 9570, 4892, 5097, 1696, 9631, 4966, 79, 3458, + 519, 9574, 1822, 5669, 9689, 8411, 558, 8678, 6709, + 5081, 7029, 1222, 8895, 1768, 2808, 3701, 4049, 5985, + 6253, 6668, 8422, 3407, 5174, 7407, 2942, 436, 8501, + 6672, 4879, 4449, 8978, 3400, 9616, 1307, 3169, 6194, + 2284, 5731, 493, 7503, 8153, 9796, 6669, 8815, 4507, + 830, 2850, 9032, 9835, 36, 4609, 3470, 4714, 7348, + 2579, 6237, 1285, 6036, 1434, 3877, 8840, 1315, 6757, + 5979, 4458, 6295, 5680, 7250, 6818, 8485, 5605, 2108, + 1990, 9545, 3032, 4803, 4652, 5757, 602, 7629, 5018, + 2164, 2299, 6627, 8125, 548, 7490, 5291, 1196, 4922, + 5597, 1037, 8723, 7524, 3156, 8006, 9164, 4837, 1574, + 9474, 196, 2709, 5027, 7362, 5428, 8882, 1006, 4942, + 6577, 4559, 4029, 5103, 5135, 7267, 9100, 3712, 3529, + 9906, 8790, 8889, 9307, 5905, 587, 5795, 3356, 1530, + 9666, 82, 3292, 465, 5326, 5409, 3479, 2895, 6288, + 1994, 8050, 6791, 444, 9261, 9497, 8672, 191, 5685, + 2068, 5269, 3261, 9705, 6750, 9937, 9481, 88, 4039, + 1220, 2662, 9483, 5718, 3005, 4069, 1861, 3105, 9677, + 1215, 1219, 6942, 398, 2930, 3720, 5702, 9719, 1250, + 6838, 1879, 9671, 3377, 6020, 7993, 5317, 1984, 7155, + 7823, 5633, 4799, 3007, 4564, 4502, 4136, 9180, 8977, + 3724, 5070, 1244, 6337, 5698, 9110, 4445, 6809, 6634, + 5960, 5272, 9823, 9539, 5995, 2389, 8932, 2260, 9860, + 2985, 4669, 2719, 1786, 2375, 7495, 4369, 1869, 8586, + 3194, 7035, 4202, 3585, 7260, 8519, 462, 2526, 5041, + 7512, 1123, 3655, 6401, 8203, 5900, 6265, 8181, 8652, + 3766, 9778, 9596, 8715, 5766, 9029, 8783, 5335, 9566, + 1925, 6685, 118, 2966, 9066, 7638, 361, 9102, 3467, + 5579, 8844, 3229, 6691, 3634, 6412, 4554, 4019, 1726, + 1126, 6963, 6444, 1932, 5799, 7498, 8031, 9526, 6026, + 3004, 7190, 3306, 561, 9137, 4570, 130, 2226, 4985, + 578, 1712, 7945, 291, 1491, 6026, 3960, 1488, 8488, + 8308, 413, 4604, 6420, 272, 7793, 7487, 1911, 7684, + 165, 1386, 5709, 6913, 778, 9637, 4201, 8151, 9785, + 4991, 7608, 699, 9340, 2490, 5602, 6067, 4035, 34, + 3065, 1355, 5394, 2103, 119, 8595, 619, 8230, 6218, + 5316, 3381, 6568, 6873, 6320, 5322, 8921, 6403, 1018, + 7158, 4435, 753, 2535, 9363, 1754, 5141, 5970, 1713, + 2102, 7085, 1777, 9298, 2893, 2325, 280, 7493, 1984, + 2866, 3881, 187, 139, 3738, 8423, 6252, 7865, 1612, + 4794, 7749, 9625, 6088, 4829, 7886, 8816, 7872, 3553, + 7037, 462, 6369, 2797, 3594, 3706, 7595, 4319, 4553, + 1352, 2368, 3754, 5055, 9129, 2408, 5171, 4034, 8903, + 4301, 2899, 1031, 9137, 9130, 2887, 3050, 9748, 3002, + 4368, 1377, 14, 9835, 927, 1320, 8179, 5332, 2335, + 7473, 152, 1539, 8802, 4610, 7466, 3565, 7828, 8078, + 5603, 1111, 6957, 9253, 4303, 8691, 8941, 1151, 9521, + 4891, 8745, 2551, 776, 2431, 8334, 9221, 2900, 3488, + 3271, 6684, 8803, 6459, 510, 4225, 1421, 6583, 9483, + 5947, 7453, 3332, 7059, 805, 2231, 1381, 2035, 7583, + 6428, 5084, 5016, 9893, 1993, 2796, 2349, 77, 8708, + 9727, 3995, 7354, 2557, 8055, 1208, 4079, 1301, 1025, + 5791, 5768, 5492, 8780, 5653, 2073, 7129, 4067, 1016, + 1874, 4143, 6625, 6573, 171, 6311, 4357, 6817, 9985, + 5649, 8320, 3035, 9034, 4854, 4850, 4130, 230, 590, + 6434, 3310, 3821, 3484, 9256, 9819, 6426, 9101, 6546, + 9009, 3368, 3909, 9693, 6094, 8984, 8087, 841, 9319, + 9195, 7558, 7551, 9483, 9262, 1377, 6670, 8551, 719, + 2742, 7937, 3408, 9296, 3889, 4180, 2345, 2489, 2943, + 5352, 8372, 1011, 179, 8341, 9121, 8999, 3688, 6051, + 3269, 3959, 9841, 491, 4252, 4924, 8412, 2213, 7473, + 1225, 2673, 7194, 9127, 5222, 5573, 9146, 9491, 3900, + 1874, 4646, 7313, 2461, 7397, 2032, 1704, 240, 3146, + 9980, 184, 6465, 6659, 8935, 5850, 5168, 9151, 9678, + 4403, 5955, 804, 3478, 4032, 5790, 7883, 9176, 3272, + 6037, 1365, 4083, 8763, 1301, 1991, 513, 6850, 8878, + 2479, 3221, 9922, 1290, 2545, 3139, 7216, 9904, 7355, + 7635, 9068, 6518, 2208, 245, 6714, 3520, 3655, 7440, + 6470, 9416, 2926, 350, 4914, 8248, 8850, 4839, 9550, + 7474, 654, 7282, 6100, 8225, 5294, 2426, 5204, 7208, + 3916, 517, 588, 9882, 8712, 1943, 3935, 6884, 2183, + 9557, 5740, 1560, 3589, 8891, 1608, 3275, 5120, 7287, + 3495, 2888, 7, 8544, 4952, 7830, 4564, 8184, 7998, + 7658, 450, 3735, 1224, 9752, 4453, 1944, 8155, 1494, + 7153, 2740, 6538, 861, 3754, 7065, 7073, 2713, 7693, + 1251, 1423, 5641, 1615, 4884, 7109, 5653, 8673, 3932, + 5449, 5004, 7327, 3492, 2611, 506, 9862, 9330, 128, + 6638, 8767, 3105, 6047, 4833, 7180, 2548, 2096, 1493, + 2097, 537, 7125, 4678, 1882, 3953, 4426, 9718, 2323, + 2777, 8065, 3689, 1010, 1744, 2813, 620, 1120, 7302, + 2681, 4571, 3149, 89, 9446, 7410, 7861, 7945, 9771, + 2292, 2880, 8244, 1030, 2878, 379, 7121, 3243, 7554, + 6058, 7529, 804, 6025, 1204, 3358, 7738, 95, 6048, + 5680, 600, 8908, 7072, 2717, 5881, 6510, 7369, 1263, + 8744, 2195, 8992, 109, 900, 832, 9237, 6993, 583, + 8220, 6946, 7613, 7852, 3837, 8801, 1961, 1761, 592, + 4950, 4194, 9365, 7777, 4853, 8786, 9249, 3676, 2706, + 6237, 8426, 9876, 2294, 7641, 1970, 9815, 2918, 5305, + 8163, 6323, 1039, 3892, 725, 2962, 5654, 7689, 8212, + 2255, 440, 9742, 5932, 8122, 8142, 307, 2390, 3465, + 8923, 1417, 5164, 5076, 6776, 99, 9075, 8998, 7451, + 7010, 6432, 2375, 3077, 5809, 952, 9730, 3421, 8737, + 5844, 7586, 4727, 1388, 4968, 7262, 1509, 8249, 3516, + 8980, 4632, 1362, 709, 5861, 7077, 476, 2975, 4142, + 9186, 1750, 3910, 2408, 6682, 5820, 2100, 2802, 6566, + 4924, 5113, 1654, 6463, 8225, 7447, 9082, 9264, 1892, + 4377, 955, 4193, 532, 3309, 9803, 3933, 8896, 6328, + 3194, 4576, 5657, 5170, 5751, 9029, 6816, 1102, 4263, + 7949, 6500, 5410, 8005, 7682, 3589, 8923, 8988, 2184, + 9612, 6265, 4189, 3679, 9905, 7708, 7535, 5898, 840, + 181]), + values=tensor([6.2729e-01, 7.3269e-01, 1.4011e-01, 5.7256e-01, + 4.6404e-01, 8.6419e-01, 4.8553e-01, 5.2299e-01, + 2.2259e-01, 7.2459e-02, 3.9711e-01, 2.2592e-01, + 3.7829e-01, 5.3997e-01, 4.6560e-01, 9.9296e-01, + 6.7545e-01, 8.8184e-01, 9.9893e-01, 9.7721e-01, + 2.1983e-02, 8.9118e-01, 9.8011e-01, 3.0738e-01, + 7.6876e-01, 4.5732e-01, 9.6540e-01, 3.2112e-01, + 9.6402e-01, 8.9816e-01, 5.8684e-01, 6.9535e-01, + 6.7614e-01, 6.0590e-01, 2.9041e-01, 3.5443e-01, + 6.0474e-01, 3.0400e-01, 8.0883e-01, 2.6429e-01, + 6.1099e-01, 5.4707e-01, 7.2220e-01, 1.1165e-02, + 2.1338e-01, 1.6191e-01, 1.6317e-01, 8.6093e-01, + 8.1123e-01, 6.2055e-01, 1.3716e-01, 1.1630e-01, + 5.1404e-02, 8.9678e-02, 1.0958e-01, 4.8818e-01, + 9.7979e-01, 5.6995e-01, 3.8885e-01, 4.1000e-02, + 1.4109e-01, 9.2410e-01, 6.5508e-01, 5.0456e-01, + 2.4713e-01, 2.0393e-01, 9.1910e-01, 5.6309e-01, + 6.1609e-01, 1.4722e-01, 4.5299e-01, 8.7540e-01, + 8.9103e-01, 4.2814e-01, 5.3777e-01, 4.2699e-01, + 4.0868e-01, 2.4948e-02, 1.7498e-01, 9.8681e-01, + 7.7659e-01, 9.3437e-01, 4.3417e-01, 4.6672e-01, + 3.4370e-01, 4.5948e-01, 1.6391e-01, 4.9629e-02, + 7.8435e-01, 6.9200e-01, 3.2121e-01, 5.7188e-01, + 5.1763e-02, 3.5376e-01, 7.0938e-03, 7.9743e-01, + 5.3623e-01, 9.8474e-01, 6.2362e-01, 6.7182e-01, + 1.8283e-01, 4.1708e-01, 6.4726e-01, 2.5054e-01, + 1.1171e-01, 1.5578e-02, 4.5836e-01, 6.4168e-01, + 6.7429e-01, 2.2225e-01, 4.0102e-01, 4.2040e-01, + 6.6684e-01, 3.5071e-01, 2.1170e-01, 3.7533e-01, + 5.6750e-01, 2.0781e-01, 2.4007e-02, 7.8323e-01, + 5.3139e-01, 7.8923e-01, 8.0063e-03, 7.6172e-01, + 8.3808e-01, 8.8415e-01, 3.5045e-01, 8.0754e-01, + 7.2230e-01, 5.5223e-01, 8.8528e-01, 2.0912e-01, + 7.9720e-01, 2.0831e-01, 4.1355e-01, 5.8970e-01, + 9.4705e-01, 2.9442e-01, 8.6625e-02, 3.7290e-01, + 6.5613e-01, 3.9679e-01, 9.3502e-01, 3.6180e-01, + 4.6194e-01, 5.8367e-01, 7.1396e-02, 2.8825e-01, + 3.1681e-01, 7.6159e-01, 9.0903e-01, 6.1205e-02, + 6.6068e-03, 6.7888e-01, 9.2596e-01, 4.4799e-01, + 8.5587e-01, 7.2830e-01, 2.3655e-01, 5.2882e-01, + 4.7850e-01, 6.7400e-01, 3.5985e-01, 4.5315e-01, + 2.2708e-01, 7.1507e-01, 7.9339e-01, 4.4797e-01, + 5.4571e-01, 7.0024e-01, 9.1251e-01, 4.7261e-01, + 1.4885e-01, 9.5311e-01, 3.4245e-01, 4.0990e-01, + 7.8251e-01, 3.1655e-01, 8.2037e-01, 3.0109e-01, + 7.6031e-01, 2.6836e-01, 6.3985e-01, 3.6537e-01, + 8.6178e-01, 2.2921e-01, 6.5026e-01, 3.7107e-01, + 6.4690e-01, 5.1384e-01, 3.9093e-01, 1.9385e-01, + 6.0012e-01, 6.5105e-01, 1.2912e-01, 7.3366e-01, + 4.6448e-01, 4.9470e-01, 4.6330e-01, 1.4815e-01, + 1.1715e-01, 2.2752e-02, 8.5846e-01, 8.3793e-01, + 1.1339e-01, 6.0680e-01, 1.9977e-01, 7.4165e-01, + 9.6287e-01, 9.8254e-01, 7.9096e-01, 5.9999e-02, + 1.0208e-01, 1.8576e-02, 5.5092e-01, 5.2338e-01, + 4.1915e-01, 8.4881e-01, 1.9820e-01, 2.8250e-02, + 3.6828e-01, 4.3113e-01, 1.6525e-01, 3.0452e-02, + 9.2968e-01, 4.0898e-01, 6.7724e-01, 7.1939e-01, + 3.4321e-01, 1.8026e-01, 6.7853e-01, 2.5134e-01, + 1.5397e-01, 5.9862e-01, 8.5165e-01, 7.7047e-01, + 5.0775e-01, 9.3422e-02, 5.1094e-01, 1.7550e-01, + 1.3980e-01, 4.5491e-01, 7.7817e-01, 6.7138e-01, + 2.9636e-01, 5.2681e-01, 2.4524e-01, 4.9996e-01, + 6.3922e-01, 3.7008e-01, 5.3156e-01, 4.4374e-01, + 7.6642e-01, 9.4398e-01, 2.4797e-01, 2.7961e-01, + 4.8147e-01, 3.4135e-01, 9.7353e-01, 6.0490e-01, + 5.0593e-01, 5.1149e-01, 1.1033e-01, 2.0210e-02, + 9.6719e-01, 9.4683e-02, 6.4283e-01, 2.5575e-01, + 4.1408e-02, 4.7515e-01, 6.4545e-01, 6.6491e-01, + 2.4035e-01, 2.6893e-01, 5.8955e-01, 7.6850e-01, + 7.0816e-01, 7.0011e-01, 3.6507e-01, 4.9171e-01, + 1.5873e-01, 2.8284e-02, 1.7687e-01, 6.7565e-01, + 4.2655e-01, 3.8086e-01, 4.1332e-01, 7.1159e-01, + 8.0834e-01, 8.8106e-01, 6.1511e-01, 6.4173e-01, + 8.4008e-01, 1.4103e-01, 1.1837e-01, 5.3656e-01, + 2.9911e-01, 2.1830e-01, 7.6785e-02, 5.5486e-01, + 8.2098e-01, 8.7106e-01, 1.5375e-01, 3.9215e-01, + 5.4586e-01, 5.9053e-01, 7.5743e-01, 7.8766e-01, + 7.0938e-02, 2.8004e-02, 6.1547e-01, 2.7101e-01, + 8.8474e-01, 6.6229e-01, 9.4397e-01, 3.5876e-02, + 4.6401e-01, 1.9432e-01, 8.1651e-01, 5.7533e-01, + 9.7767e-01, 1.8401e-01, 1.4113e-01, 8.9552e-01, + 4.3863e-01, 2.9166e-01, 8.7681e-01, 7.3428e-01, + 6.6903e-03, 5.6369e-01, 8.8054e-01, 5.7105e-01, + 3.1705e-01, 7.8119e-01, 4.8018e-01, 2.6116e-01, + 5.4542e-01, 2.4433e-01, 9.6123e-01, 3.8911e-01, + 3.9970e-01, 1.0950e-01, 3.2153e-01, 7.4721e-01, + 1.4703e-01, 7.5921e-01, 9.4508e-01, 8.2200e-02, + 7.2335e-01, 4.8722e-01, 9.5258e-01, 2.9134e-01, + 6.1280e-01, 1.0707e-01, 9.2884e-01, 7.8170e-02, + 4.4927e-01, 8.2911e-01, 5.2247e-01, 4.1389e-02, + 5.9969e-01, 4.0325e-01, 3.6622e-01, 9.9662e-01, + 7.0803e-02, 2.5996e-01, 1.5595e-01, 7.4166e-01, + 9.6366e-01, 8.9608e-01, 5.1862e-01, 8.8883e-02, + 5.1180e-01, 8.9567e-02, 7.2407e-02, 4.6614e-01, + 3.1970e-01, 1.4377e-01, 7.8798e-02, 4.9036e-01, + 3.2420e-01, 5.5533e-01, 2.9683e-01, 7.0536e-01, + 3.8860e-01, 2.9802e-01, 3.2794e-01, 3.9565e-01, + 3.9728e-01, 6.5104e-01, 1.3085e-01, 2.4474e-01, + 7.3609e-01, 1.4047e-01, 4.5618e-01, 5.0260e-01, + 5.8306e-01, 8.8976e-01, 6.7250e-01, 9.5130e-01, + 3.4386e-01, 6.9455e-01, 2.2297e-01, 5.7352e-01, + 2.8992e-01, 5.3568e-01, 8.5388e-01, 1.1626e-01, + 9.2313e-01, 1.8447e-01, 6.7212e-01, 6.5107e-01, + 9.8333e-01, 7.9954e-01, 5.9670e-01, 7.8798e-01, + 4.1953e-01, 6.1565e-01, 5.6520e-02, 8.6847e-01, + 4.9179e-01, 4.5910e-01, 3.1671e-01, 5.6622e-01, + 6.6271e-01, 4.7549e-01, 6.2129e-01, 8.4983e-01, + 1.1296e-01, 6.4333e-01, 3.4967e-01, 7.9033e-01, + 2.7481e-01, 5.5575e-02, 4.0509e-02, 1.0579e-01, + 1.9117e-01, 2.3979e-01, 9.3613e-01, 9.6471e-01, + 4.2167e-01, 4.0105e-01, 5.0373e-02, 4.7076e-01, + 6.4992e-01, 3.8353e-01, 6.7114e-01, 1.7533e-01, + 8.2416e-01, 1.8514e-01, 1.7767e-02, 7.5403e-01, + 4.5672e-01, 1.3093e-01, 9.6986e-01, 7.1249e-01, + 3.9783e-01, 6.1905e-01, 8.7266e-01, 5.3731e-01, + 4.7423e-01, 8.0470e-01, 4.5452e-02, 4.7610e-01, + 2.2803e-01, 4.0530e-02, 4.1858e-02, 5.9514e-01, + 6.3205e-01, 6.0096e-01, 6.2022e-01, 8.1543e-01, + 5.1111e-01, 3.5180e-01, 5.4909e-01, 1.8459e-01, + 8.2028e-01, 1.1355e-02, 9.8226e-01, 8.7594e-01, + 6.8888e-01, 1.3915e-01, 5.3615e-01, 9.8624e-02, + 7.9793e-01, 4.1909e-01, 6.9968e-01, 9.5834e-01, + 5.8875e-01, 6.3159e-01, 3.8897e-01, 5.5712e-01, + 3.6204e-01, 9.8684e-01, 9.4012e-01, 2.7852e-01, + 4.4663e-01, 2.1708e-01, 6.8324e-01, 9.1279e-01, + 5.7231e-01, 7.1679e-01, 6.4524e-01, 6.7973e-01, + 2.1853e-01, 3.7827e-01, 3.8642e-02, 3.2938e-01, + 1.0284e-01, 3.7775e-01, 7.6478e-01, 6.0212e-02, + 2.1677e-01, 2.4655e-01, 6.0212e-01, 4.5151e-01, + 2.7481e-01, 9.8650e-01, 1.8648e-01, 1.5425e-01, + 8.0152e-01, 4.0228e-01, 7.1217e-01, 7.9542e-01, + 8.1777e-01, 2.3085e-01, 9.0356e-01, 5.1097e-01, + 1.7850e-01, 9.6780e-01, 8.5295e-01, 3.4071e-01, + 6.0767e-01, 3.5130e-01, 1.3407e-01, 1.4702e-01, + 3.6553e-01, 1.8709e-01, 1.6797e-01, 6.3116e-02, + 1.2918e-01, 4.1737e-01, 6.1060e-01, 6.4813e-01, + 1.8052e-02, 2.1266e-01, 5.6231e-01, 7.2320e-01, + 6.2235e-01, 4.5211e-01, 9.8902e-02, 8.0451e-01, + 7.7029e-01, 9.0034e-01, 7.9279e-01, 9.6039e-01, + 7.1891e-02, 4.7688e-01, 7.3555e-02, 6.4202e-01, + 3.9391e-01, 6.3140e-01, 1.9083e-01, 6.3775e-01, + 9.1027e-01, 6.4262e-01, 9.2598e-01, 2.1720e-01, + 7.8104e-01, 9.6831e-01, 6.5850e-01, 7.1365e-01, + 7.6756e-01, 7.5621e-01, 9.8870e-01, 1.3543e-02, + 9.8327e-02, 7.0130e-01, 5.7681e-01, 8.2024e-01, + 4.2123e-01, 2.7949e-01, 1.3116e-01, 9.2471e-01, + 6.6288e-01, 2.5985e-01, 9.7250e-01, 7.6245e-01, + 5.8311e-01, 7.1110e-01, 2.6468e-01, 5.6444e-01, + 8.4572e-03, 9.7073e-01, 7.4248e-01, 3.1398e-01, + 5.1773e-01, 4.7306e-01, 8.2435e-01, 4.9155e-01, + 7.8421e-01, 7.6197e-01, 9.0214e-01, 2.2417e-01, + 7.7195e-01, 3.6346e-01, 1.4458e-01, 7.6308e-01, + 6.3007e-01, 6.7815e-01, 2.1750e-01, 3.6172e-02, + 6.3774e-01, 6.2986e-01, 5.8031e-01, 5.7544e-01, + 1.3225e-01, 2.3535e-01, 4.4704e-01, 2.9656e-01, + 3.9964e-01, 1.5101e-01, 8.4983e-03, 5.6408e-01, + 5.9586e-01, 4.1728e-01, 4.0219e-02, 3.7802e-01, + 7.4307e-01, 6.5303e-01, 8.4581e-01, 6.1331e-01, + 5.3329e-01, 7.9341e-01, 4.1881e-01, 9.2960e-01, + 7.6497e-01, 5.5511e-01, 7.5763e-01, 7.9308e-01, + 6.9361e-01, 4.0626e-01, 6.8179e-01, 6.0305e-01, + 3.6152e-01, 8.4239e-02, 5.0495e-01, 5.8407e-02, + 6.8271e-01, 1.0964e-02, 3.3375e-01, 9.9418e-01, + 1.2562e-01, 1.2689e-01, 9.7371e-01, 9.3259e-01, + 1.7314e-01, 6.9581e-01, 1.8214e-01, 6.3245e-01, + 1.4618e-01, 9.6599e-01, 9.9474e-01, 9.8922e-01, + 6.1581e-01, 5.1813e-01, 4.5752e-01, 2.8704e-01, + 1.3009e-01, 6.2271e-01, 4.6080e-01, 6.5566e-01, + 2.7874e-01, 5.3746e-01, 8.0974e-01, 3.8211e-01, + 9.1333e-01, 2.3807e-02, 2.0105e-02, 8.0921e-01, + 9.2665e-01, 9.9128e-01, 1.2658e-01, 2.3710e-01, + 1.0020e-03, 5.9876e-01, 1.8658e-01, 5.8241e-01, + 4.1649e-01, 3.5493e-01, 3.3137e-01, 9.8297e-01, + 4.7033e-01, 7.5666e-01, 5.0930e-01, 6.8124e-01, + 4.1325e-02, 7.9368e-01, 7.2321e-01, 6.0061e-01, + 3.1876e-01, 9.9416e-01, 5.8169e-04, 7.4319e-01, + 3.3099e-01, 3.7974e-01, 7.1934e-02, 6.3701e-01, + 9.1148e-01, 3.1094e-01, 2.9625e-01, 1.8294e-01, + 8.6434e-01, 1.9260e-01, 4.9349e-01, 7.5786e-02, + 3.1607e-01, 9.4322e-01, 6.6033e-01, 5.6365e-01, + 3.0118e-01, 4.5157e-02, 2.0546e-01, 8.2876e-01, + 5.7725e-01, 3.6310e-01, 4.3402e-01, 2.0801e-01, + 3.9103e-01, 5.1079e-01, 9.0076e-01, 4.9366e-01, + 2.9850e-01, 7.2022e-01, 1.0559e-02, 4.6160e-01, + 5.4946e-02, 9.5719e-01, 8.5226e-01, 6.0667e-01, + 3.8093e-01, 2.9014e-01, 9.1948e-01, 3.3194e-01, + 1.9100e-01, 8.8089e-01, 6.8021e-01, 6.7095e-01, + 6.0126e-02, 6.2320e-01, 8.5566e-01, 4.1364e-01, + 1.9345e-01, 6.9092e-01, 5.4235e-01, 9.4123e-01, + 2.4836e-01, 8.0057e-01, 4.1002e-01, 8.9408e-02, + 8.7253e-01, 4.0866e-01, 5.1572e-01, 9.7529e-01, + 1.2355e-01, 8.0176e-01, 4.7289e-02, 9.3732e-01, + 7.1780e-01, 4.8504e-01, 2.1901e-01, 8.1755e-01, + 9.5949e-01, 3.7654e-01, 2.3246e-01, 5.0447e-01, + 1.0409e-01, 1.3490e-01, 5.6672e-01, 2.2502e-01, + 1.3722e-02, 1.9020e-01, 2.7153e-03, 8.4947e-01, + 5.8939e-01, 9.3802e-01, 9.7891e-01, 1.2499e-01, + 3.4396e-01, 6.1390e-02, 1.7986e-01, 8.5695e-02, + 1.3430e-02, 6.9983e-01, 7.4085e-02, 4.7995e-01, + 1.9388e-01, 3.2656e-01, 7.3759e-01, 5.4533e-02, + 5.2682e-01, 7.6967e-02, 7.8319e-01, 3.7177e-01, + 9.5697e-01, 9.7851e-01, 4.0804e-01, 3.4506e-01, + 2.8498e-01, 7.5580e-01, 7.4582e-02, 1.2315e-01, + 7.5747e-01, 7.0517e-01, 6.3063e-01, 9.6361e-01, + 9.7755e-01, 4.1124e-01, 2.5177e-01, 1.2686e-01, + 8.5456e-01, 5.7157e-01, 9.8108e-02, 3.0588e-01, + 8.0468e-01, 1.5074e-01, 9.7218e-01, 4.7413e-01, + 3.0587e-01, 2.3409e-01, 1.9548e-03, 8.7577e-02, + 4.3825e-01, 6.0466e-01, 9.1757e-01, 9.8141e-01, + 9.6317e-01, 8.7625e-02, 3.4495e-02, 7.6640e-01, + 4.5407e-01, 5.4942e-01, 1.8628e-01, 9.9891e-01, + 6.7663e-01, 9.8264e-02, 7.6553e-01, 6.6958e-01, + 2.2049e-01, 9.6927e-03, 2.7644e-01, 3.9587e-01, + 6.3097e-01, 7.9249e-01, 5.8334e-01, 2.0388e-01, + 8.7468e-01, 3.1819e-01, 4.4348e-01, 2.7880e-01, + 9.5765e-01, 7.5087e-01, 1.4134e-03, 4.9858e-01, + 8.5321e-01, 6.2616e-01, 8.1175e-01, 4.3769e-02, + 9.9726e-01, 3.5035e-02, 3.5457e-01, 3.2828e-01, + 5.5217e-01, 1.2494e-01, 7.6334e-01, 8.1562e-01, + 4.7494e-01, 8.8023e-01, 7.0453e-02, 4.0001e-01, + 3.1775e-01, 6.7118e-01, 4.9255e-01, 9.0360e-01, + 7.8849e-01, 9.6105e-01, 1.2373e-01, 4.8654e-01, + 6.3311e-01, 6.3369e-01, 2.4116e-01, 3.5376e-01, + 4.7714e-01, 4.0501e-01, 2.6574e-01, 7.7595e-01, + 9.1970e-01, 3.7320e-01, 5.3648e-01, 3.9685e-01, + 9.3524e-01, 2.0156e-01, 2.5406e-01, 9.6295e-01, + 5.8705e-01, 2.2268e-01, 7.8608e-01, 3.9429e-01, + 2.0286e-01, 6.7558e-01, 9.5683e-01, 2.8072e-01, + 9.1529e-01, 8.9882e-01, 2.6319e-01, 8.5254e-01, + 4.6633e-01, 1.9828e-01, 6.1942e-01, 3.2026e-01, + 1.1683e-01, 4.5824e-01, 8.4724e-01, 4.2830e-01, + 5.7214e-01, 3.7014e-01, 6.5405e-01, 6.4887e-01, + 2.2660e-01, 1.3989e-01, 3.4615e-01, 4.6773e-01, + 5.8001e-01, 1.8772e-01, 1.5619e-01, 4.0782e-01, + 7.5697e-01, 1.3234e-01, 8.6283e-01, 9.8274e-01, + 5.9024e-01, 5.3646e-01, 7.6153e-01, 7.1883e-01, + 9.3585e-01, 6.5195e-01, 2.2257e-02, 9.5115e-01, + 1.8153e-01, 7.1176e-01, 5.5621e-01, 9.1616e-02, + 3.9359e-01, 8.2000e-01, 1.0519e-01, 8.0766e-01, + 9.9239e-01, 8.5723e-01, 5.7034e-01, 8.2097e-01, + 1.3267e-01, 6.1833e-01, 5.6266e-01, 1.2467e-01, + 9.2567e-01, 1.0889e-01, 4.2614e-01, 9.5967e-02, + 9.6981e-01, 1.6191e-01, 7.3978e-01, 3.9748e-01, + 4.0224e-02, 8.8819e-01, 9.4310e-02, 1.2376e-01, + 7.6514e-02, 6.3316e-01, 9.1811e-01, 3.3660e-01, + 3.3721e-01, 5.7014e-01, 3.8001e-01, 5.1381e-01, + 7.8842e-01, 1.2570e-01, 8.1672e-01, 3.7175e-01, + 7.5008e-01, 2.9488e-02, 3.8041e-02, 2.3842e-01, + 2.3666e-01, 5.2995e-01, 4.4768e-01, 2.5264e-01, + 9.0564e-01, 3.4766e-01, 2.5763e-01, 6.1550e-01]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.4272, 0.4478, 0.5565, ..., 0.4220, 0.4867, 0.3940]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 7.102759838104248 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '279705', '-ss', '10000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.192691802978516} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 999, 999, 1000]), + col_indices=tensor([8952, 4000, 8166, 6597, 532, 6376, 6026, 9869, 7520, + 7179, 9261, 3880, 1825, 3183, 7673, 9449, 3683, 5956, + 1175, 9188, 3143, 3107, 7411, 4454, 602, 8234, 1772, + 7128, 697, 2579, 6192, 4803, 5677, 9960, 6436, 8271, + 7262, 970, 7301, 4426, 5443, 1245, 6562, 2078, 17, + 5156, 8485, 7276, 8067, 1486, 267, 1867, 2441, 2368, + 9094, 5268, 7382, 3883, 3736, 9730, 4478, 9182, 3080, + 3707, 1066, 4867, 2125, 6033, 2824, 3938, 8278, 1321, + 9817, 7979, 8727, 7687, 7915, 1214, 440, 5708, 5546, + 1111, 6567, 4866, 6297, 7245, 887, 2038, 4920, 2063, + 7927, 3268, 9646, 7587, 1863, 7946, 3596, 8591, 6781, + 7806, 9483, 1512, 3170, 9606, 4349, 2224, 451, 5245, + 4275, 2218, 1928, 3938, 364, 232, 3259, 3441, 8386, + 7579, 4888, 5900, 1901, 64, 199, 7448, 6195, 3174, + 3236, 8078, 6653, 1848, 3168, 1121, 3927, 5660, 4727, + 9512, 6481, 3551, 862, 305, 4340, 9131, 448, 1868, + 1150, 5339, 8301, 5390, 7716, 694, 2337, 622, 2979, + 6037, 4736, 1952, 5071, 2430, 2740, 920, 3292, 2201, + 6260, 8263, 8823, 8025, 8857, 5589, 6916, 6949, 6589, + 8185, 175, 3471, 5202, 9772, 2312, 7182, 1717, 7475, + 6068, 2334, 6417, 3655, 9800, 889, 253, 8367, 8765, + 6721, 6687, 2801, 8665, 2089, 6262, 1372, 8492, 4529, + 577, 2887, 61, 5460, 6067, 4062, 6111, 3584, 9452, + 5467, 2060, 877, 1231, 8941, 3078, 1406, 9681, 4349, + 8995, 4108, 3169, 3536, 599, 808, 216, 1045, 7476, + 118, 5373, 1705, 6476, 9055, 3423, 2513, 8743, 2070, + 3551, 3613, 3258, 7352, 9447, 908, 6360, 3702, 175, + 5227, 2614, 8048, 6329, 9842, 8071, 3162, 4559, 4957, + 9543, 4242, 2056, 4144, 9812, 6189, 8552, 1334, 8989, + 1341, 4418, 3240, 3860, 6744, 3583, 7263, 5364, 5783, + 281, 536, 2291, 101, 8394, 819, 8377, 1736, 7515, + 1698, 8880, 621, 7126, 306, 5036, 8953, 2037, 3764, + 5238, 4588, 547, 2080, 3133, 4721, 1404, 4382, 6483, + 364, 5201, 7106, 9087, 278, 1615, 5081, 9022, 5647, + 6859, 7777, 7201, 2862, 4501, 1625, 9418, 8793, 3062, + 7779, 7619, 249, 1017, 9394, 652, 7245, 6598, 6677, + 8056, 7739, 2584, 2710, 5836, 2439, 9676, 552, 753, + 1890, 9204, 3806, 280, 5975, 6539, 8803, 4939, 8180, + 8972, 1922, 3111, 6708, 8063, 843, 8554, 8192, 5252, + 1294, 6690, 2359, 4858, 5680, 7832, 2435, 7255, 9141, + 5661, 1145, 4606, 8502, 5241, 7839, 5585, 9311, 6977, + 3341, 4344, 5135, 880, 4279, 9071, 6398, 5804, 3668, + 9083, 2767, 1972, 9411, 9585, 9619, 3734, 5608, 4456, + 2712, 1619, 6062, 9539, 4547, 4066, 3381, 6204, 5829, + 1408, 8823, 8487, 9492, 6285, 9366, 304, 6949, 2130, + 5644, 5852, 5247, 2441, 507, 1362, 6464, 1943, 4566, + 4183, 9823, 9431, 3679, 7214, 6603, 2011, 6442, 8396, + 1474, 9058, 8407, 3097, 8137, 4939, 8142, 4167, 2297, + 6796, 3268, 8842, 9047, 506, 1644, 958, 2841, 8103, + 8807, 3190, 3921, 8205, 1359, 1320, 1313, 5985, 6264, + 9688, 7030, 3687, 8214, 9200, 8543, 8874, 9918, 3292, + 971, 1150, 12, 7721, 4843, 4655, 8118, 5951, 6341, + 3367, 5211, 3698, 5665, 6802, 311, 8944, 3871, 7380, + 1011, 1091, 6264, 2890, 7828, 4121, 8780, 8171, 5582, + 2487, 4088, 7245, 9121, 1475, 8032, 4892, 8481, 5781, + 2248, 7069, 9818, 1470, 8306, 290, 2398, 5807, 9442, + 3261, 2507, 2542, 9400, 146, 8598, 3116, 2240, 7102, + 9117, 5552, 2599, 3964, 4563, 6377, 4358, 2759, 3003, + 4038, 9137, 1151, 6472, 7773, 5238, 2731, 4173, 797, + 9566, 2707, 3580, 7994, 6794, 4036, 9990, 2244, 6453, + 2584, 8829, 9928, 4918, 4552, 1248, 3083, 2138, 3711, + 6676, 1954, 9299, 751, 9072, 8549, 3638, 3355, 8110, + 5838, 5956, 5829, 7581, 7230, 6974, 4178, 2501, 7620, + 3349, 7921, 9398, 8191, 526, 2316, 5467, 2362, 8661, + 5836, 9284, 5880, 4520, 5412, 5818, 7360, 2561, 2163, + 1419, 516, 4204, 1357, 4964, 2143, 7988, 9421, 4192, + 6075, 5232, 2382, 190, 2160, 4498, 3582, 7060, 4067, + 8832, 2519, 8074, 75, 2040, 7026, 2270, 2454, 3151, + 6754, 6128, 4864, 678, 2068, 7671, 3287, 4393, 6230, + 4141, 589, 9321, 5856, 5100, 949, 6882, 8430, 8774, + 2852, 6631, 7249, 7598, 8415, 2890, 3208, 4485, 9774, + 844, 2538, 5517, 8566, 3061, 4943, 1204, 7334, 603, + 1059, 5669, 7784, 6606, 8140, 8880, 7569, 6357, 1677, + 8060, 2276, 5176, 9288, 3726, 1205, 7679, 5004, 6724, + 4886, 1466, 9199, 9820, 1880, 856, 6733, 6005, 7606, + 9888, 3802, 1598, 5109, 1099, 257, 5705, 1491, 8717, + 8777, 340, 9514, 6111, 8977, 2088, 9572, 9799, 9085, + 8261, 67, 6996, 5276, 5212, 7381, 7754, 1731, 1151, + 2202, 664, 4664, 730, 831, 8074, 5175, 6613, 6734, + 6507, 2635, 8670, 2143, 8491, 7815, 2364, 9192, 8216, + 9671, 5069, 6574, 4597, 1439, 3233, 8936, 1122, 5241, + 7348, 4745, 6153, 2266, 3100, 9485, 8854, 8203, 5843, + 3322, 8284, 1824, 8965, 436, 9138, 2544, 6346, 2189, + 8690, 6203, 9601, 704, 8008, 9572, 677, 606, 5002, + 5710, 471, 6555, 7890, 6468, 1470, 4733, 2943, 6214, + 8234, 6199, 9968, 7234, 9500, 5185, 2919, 7000, 3791, + 2826, 7280, 4730, 9794, 1349, 2563, 1049, 4820, 3367, + 9543, 6774, 6136, 7295, 5145, 2152, 4761, 8582, 9375, + 319, 9447, 3340, 9425, 9559, 1116, 3732, 3610, 8427, + 9125, 1583, 1179, 7513, 5682, 9159, 241, 7984, 2293, + 3096, 3564, 3439, 2160, 8809, 9412, 7225, 1103, 9859, + 2289, 470, 3862, 5409, 2677, 2610, 1395, 2798, 2036, + 8168, 6913, 5376, 4906, 4747, 6428, 7591, 8164, 6849, + 2172, 81, 3394, 1456, 2103, 4980, 5120, 1434, 983, + 7931, 9343, 7415, 7679, 999, 1068, 3274, 8997, 2725, + 441, 411, 7933, 1003, 4519, 361, 4611, 3295, 8883, + 1465, 6331, 9338, 45, 5625, 6206, 6833, 2020, 3343, + 8451, 1048, 4752, 7366, 7152, 7566, 1669, 8462, 5182, + 7214, 7342, 7539, 3321, 619, 717, 8923, 530, 3482, + 5501, 7823, 5803, 8146, 5242, 6287, 6550, 2253, 8722, + 7178, 7449, 2026, 3537, 6705, 7065, 6435, 106, 8292, + 2198, 1874, 9805, 9582, 4954, 8722, 3049, 311, 3280, + 7342, 7761, 9051, 2171, 3069, 2124, 7388, 3664, 4062, + 2685, 6071, 7944, 2785, 8698, 883, 4873, 7645, 2810, + 2063, 7924, 3670, 6947, 9774, 2476, 6878, 6227, 4296, + 5746, 3133, 1635, 699, 7633, 4675, 2663, 323, 4267, + 6089, 779, 3222, 31, 9957, 1311, 8344, 2224, 5480, + 5329, 4616, 5394, 5932, 6025, 6656, 4043, 4590, 3624, + 7644, 2721, 7452, 5063, 1603, 231, 5078, 4764, 8810, + 1897, 9824, 3546, 8099, 7057, 3188, 6863, 4616, 8965, + 3807, 4031, 6190, 2213, 1928, 4075, 999, 1021, 5541, + 9055]), + values=tensor([6.9021e-01, 2.6494e-01, 8.6904e-01, 6.1119e-01, + 5.3447e-01, 5.9746e-01, 1.3103e-01, 7.6542e-01, + 2.7449e-01, 4.8776e-01, 3.7944e-01, 5.9667e-01, + 5.0080e-01, 9.7087e-01, 6.0515e-02, 3.4796e-01, + 1.9513e-01, 4.2481e-03, 6.0086e-01, 9.0850e-01, + 8.6957e-02, 7.2780e-01, 3.2540e-01, 8.0855e-01, + 2.0093e-01, 7.5193e-01, 6.5520e-01, 2.0556e-01, + 1.9036e-01, 6.6375e-01, 5.1418e-01, 6.8871e-01, + 4.1430e-01, 3.7771e-01, 9.1043e-01, 8.2144e-02, + 8.9391e-01, 2.2392e-01, 3.8724e-01, 7.3980e-01, + 9.2229e-01, 6.5016e-01, 2.6737e-01, 7.9846e-01, + 5.0336e-01, 8.1942e-02, 7.3018e-02, 2.8059e-02, + 5.8586e-01, 4.8189e-02, 9.1110e-03, 6.7474e-01, + 2.4410e-01, 6.0846e-01, 6.7598e-01, 2.5246e-02, + 8.3369e-01, 3.6420e-01, 1.0160e-02, 4.2093e-01, + 5.6656e-01, 9.7199e-01, 3.0686e-01, 5.9587e-01, + 8.1818e-01, 7.4731e-01, 4.7909e-01, 3.5376e-01, + 4.5246e-01, 4.3801e-01, 4.1419e-01, 6.9403e-02, + 2.4639e-01, 5.5338e-02, 1.4805e-01, 8.8478e-02, + 3.3491e-01, 7.1203e-02, 5.8558e-01, 7.5183e-01, + 9.5173e-01, 2.7971e-01, 4.4284e-01, 4.5204e-01, + 3.1782e-01, 8.4286e-01, 7.9427e-01, 3.4835e-01, + 9.8082e-01, 2.1853e-01, 6.2534e-01, 5.9584e-01, + 2.6834e-01, 2.8874e-01, 8.6305e-01, 1.3411e-01, + 8.4825e-01, 3.9467e-01, 1.0367e-01, 7.2007e-01, + 5.8375e-01, 7.9120e-01, 6.7044e-01, 1.4679e-01, + 4.8278e-01, 7.0316e-01, 5.5202e-01, 3.5939e-01, + 4.1124e-01, 1.4507e-01, 9.1288e-01, 1.6695e-01, + 2.9452e-01, 1.9779e-01, 6.8077e-01, 5.5683e-01, + 8.9496e-02, 6.0423e-01, 9.4298e-02, 7.6601e-01, + 3.6445e-01, 4.6071e-01, 6.7016e-01, 9.2399e-02, + 6.0505e-01, 6.7426e-01, 5.3761e-01, 5.0130e-01, + 1.9624e-01, 6.9980e-01, 7.3370e-01, 6.4631e-01, + 9.0546e-01, 3.3420e-01, 3.3065e-01, 5.9336e-01, + 8.9448e-01, 8.3937e-01, 3.3441e-01, 2.3028e-02, + 4.3796e-01, 3.3782e-01, 9.8037e-01, 3.3054e-01, + 7.9836e-01, 7.5184e-01, 8.3353e-01, 9.4721e-01, + 9.1431e-01, 4.9030e-01, 2.4945e-01, 7.4274e-01, + 1.6174e-01, 1.3313e-01, 1.4827e-03, 9.9424e-01, + 3.8576e-01, 8.8554e-01, 5.9676e-01, 9.2759e-01, + 3.3991e-01, 6.2610e-01, 4.0877e-01, 4.2900e-01, + 4.5137e-02, 8.9195e-01, 4.1368e-01, 8.6278e-01, + 1.0556e-01, 9.7864e-01, 8.1699e-01, 2.6514e-01, + 2.7527e-01, 9.8235e-01, 5.4621e-01, 5.6385e-01, + 4.1602e-01, 3.0271e-01, 6.4653e-01, 7.1380e-01, + 1.0594e-01, 7.8515e-01, 2.8439e-01, 5.7238e-01, + 9.2610e-01, 2.6277e-01, 8.1736e-01, 2.0732e-01, + 7.0628e-01, 8.6999e-01, 9.1036e-02, 6.6737e-01, + 5.5567e-01, 8.1035e-01, 8.7453e-01, 1.8492e-01, + 1.9537e-01, 7.6366e-01, 6.4800e-01, 3.5352e-01, + 1.5043e-01, 3.5364e-02, 4.2615e-01, 3.2155e-01, + 2.4376e-01, 2.5069e-01, 5.2658e-01, 8.0086e-01, + 7.7663e-01, 6.3489e-01, 5.8258e-01, 5.4888e-01, + 7.5488e-01, 6.9768e-01, 3.6104e-01, 8.8427e-04, + 4.5213e-01, 2.8577e-01, 2.8619e-01, 2.9793e-01, + 2.9937e-01, 6.2428e-01, 4.5005e-01, 5.9825e-01, + 7.4638e-01, 3.3929e-01, 3.9970e-01, 3.9800e-01, + 3.8389e-01, 4.8231e-01, 5.6456e-02, 1.2928e-01, + 6.5330e-01, 9.1622e-01, 4.6852e-01, 3.6000e-02, + 8.7926e-01, 4.7800e-02, 6.8565e-01, 4.1381e-02, + 5.5927e-01, 6.8543e-01, 6.8545e-01, 8.8616e-01, + 2.9807e-02, 8.1468e-01, 6.1063e-01, 5.5566e-01, + 9.4726e-01, 2.1762e-02, 5.8385e-01, 6.7073e-01, + 3.3283e-02, 4.7096e-01, 7.8371e-01, 3.0060e-01, + 3.9184e-01, 9.7716e-01, 7.4200e-01, 2.7027e-01, + 1.1125e-04, 3.9202e-01, 5.9210e-01, 5.0785e-01, + 5.4634e-01, 3.7514e-01, 2.4891e-01, 3.0456e-01, + 6.5497e-01, 9.4974e-01, 7.6803e-01, 8.1229e-01, + 8.8187e-01, 6.0880e-01, 8.2083e-02, 1.5656e-01, + 6.6665e-01, 8.7158e-01, 4.2618e-01, 5.6251e-01, + 8.3536e-01, 9.7124e-01, 1.8108e-01, 8.2899e-01, + 9.1553e-01, 3.9430e-01, 8.9998e-01, 1.9012e-01, + 6.8518e-01, 4.8339e-01, 8.2522e-01, 4.4773e-01, + 9.1372e-01, 9.7072e-01, 8.0657e-02, 9.5106e-03, + 6.1564e-01, 7.6053e-01, 5.9682e-01, 1.0497e-01, + 3.0736e-01, 2.1734e-01, 4.0924e-01, 4.4851e-01, + 2.9939e-01, 9.0104e-01, 6.1371e-01, 3.1504e-01, + 3.7298e-01, 1.8350e-01, 8.8489e-01, 5.6146e-01, + 9.3832e-01, 8.5583e-01, 7.9017e-01, 7.2342e-01, + 4.9658e-01, 4.2914e-01, 4.2011e-01, 1.1432e-01, + 8.5825e-02, 3.7515e-01, 4.7402e-01, 3.3258e-01, + 2.6866e-01, 1.3750e-01, 8.2397e-01, 6.9852e-02, + 3.4150e-01, 9.4441e-01, 1.2748e-01, 4.5960e-01, + 4.7030e-01, 7.9737e-01, 9.6600e-01, 9.9113e-01, + 2.2881e-01, 4.9952e-02, 6.3082e-01, 6.6610e-01, + 9.9033e-01, 7.6301e-01, 6.0189e-01, 2.2890e-01, + 2.8764e-01, 1.1288e-01, 7.1805e-01, 6.1911e-01, + 1.6911e-01, 5.0612e-01, 5.0980e-01, 2.7104e-01, + 7.7033e-01, 1.4709e-01, 3.8285e-01, 1.9758e-01, + 9.7692e-01, 2.0252e-01, 1.3576e-01, 5.9482e-01, + 4.6062e-01, 2.2658e-01, 9.3619e-01, 1.4065e-01, + 9.5016e-01, 3.9461e-01, 1.4931e-01, 1.9422e-02, + 6.3961e-01, 7.1243e-01, 2.0281e-01, 5.6959e-01, + 6.2530e-01, 2.7959e-01, 8.7650e-01, 9.4001e-02, + 2.9309e-01, 4.7514e-01, 2.7278e-01, 4.9113e-01, + 7.6886e-02, 3.4814e-01, 5.1059e-01, 2.6430e-01, + 8.3288e-02, 8.9817e-01, 9.0972e-01, 5.1965e-01, + 3.8288e-01, 5.2763e-01, 8.3820e-01, 7.2633e-02, + 6.9137e-01, 5.7207e-01, 6.9966e-01, 5.5597e-01, + 2.3496e-02, 6.9673e-01, 8.5223e-01, 6.0371e-01, + 2.2841e-01, 8.8026e-01, 1.5762e-01, 8.5663e-01, + 1.0839e-02, 9.9699e-01, 6.3255e-01, 2.7027e-01, + 8.2796e-01, 4.2669e-01, 7.2641e-01, 2.0806e-01, + 9.5672e-01, 5.8838e-01, 2.1049e-01, 1.9808e-01, + 1.6176e-01, 6.5233e-01, 7.8844e-01, 5.8046e-01, + 1.3680e-01, 8.0943e-01, 1.9157e-01, 4.2986e-01, + 6.3052e-01, 7.1615e-01, 2.6878e-01, 7.8997e-01, + 6.7314e-01, 6.3196e-01, 7.9154e-01, 4.9725e-01, + 9.1566e-01, 2.2627e-01, 3.2786e-01, 8.1764e-01, + 4.7210e-01, 5.5515e-01, 6.0145e-01, 1.4357e-02, + 8.1100e-01, 3.8395e-01, 3.8342e-01, 7.6662e-01, + 4.3084e-01, 9.6058e-01, 8.3922e-02, 6.6857e-01, + 8.9712e-02, 9.1497e-01, 4.3132e-01, 6.1332e-01, + 4.9678e-01, 4.4038e-01, 3.0533e-01, 4.2072e-01, + 9.3282e-01, 4.7686e-01, 6.3890e-01, 3.7317e-01, + 4.8358e-01, 8.8682e-01, 5.6572e-01, 4.1761e-01, + 7.6652e-03, 6.7885e-01, 7.1170e-01, 6.6835e-01, + 4.8988e-01, 4.6220e-01, 9.8191e-01, 6.9759e-01, + 4.8281e-01, 5.4214e-01, 8.2354e-01, 7.7899e-01, + 3.5689e-01, 7.6049e-01, 1.0611e-01, 1.0681e-01, + 1.7387e-01, 1.4750e-01, 9.4994e-01, 3.1736e-01, + 8.2294e-01, 4.0109e-01, 3.5677e-01, 3.8062e-01, + 9.1137e-01, 5.2391e-01, 9.9066e-01, 9.3521e-01, + 5.9154e-01, 3.8119e-01, 4.4447e-01, 1.3827e-01, + 5.9704e-01, 4.1350e-01, 4.7667e-01, 1.3318e-01, + 9.4496e-01, 2.7844e-01, 8.9444e-01, 6.8493e-01, + 3.6281e-01, 6.2923e-01, 4.4846e-01, 4.9145e-01, + 4.0848e-01, 5.2789e-01, 6.8349e-01, 8.3098e-01, + 3.7655e-01, 9.5767e-01, 5.4283e-01, 5.6569e-01, + 6.9416e-01, 9.8685e-01, 4.5627e-01, 1.6481e-01, + 4.2808e-01, 2.0602e-02, 5.6870e-01, 2.5733e-01, + 7.8495e-01, 9.1720e-01, 5.7174e-01, 1.2028e-01, + 5.7304e-01, 2.8855e-01, 5.6472e-01, 1.2898e-01, + 6.2866e-01, 9.7365e-01, 5.5967e-02, 7.7710e-01, + 7.4851e-01, 2.5569e-01, 6.0528e-01, 3.3695e-01, + 5.6405e-01, 9.2411e-01, 2.6299e-01, 2.4215e-01, + 6.8728e-01, 4.4106e-01, 2.8442e-01, 6.6217e-01, + 8.7020e-01, 6.1069e-01, 6.2397e-01, 1.1008e-01, + 2.7446e-02, 4.9098e-01, 1.2525e-02, 1.2965e-01, + 3.4990e-01, 5.8782e-01, 3.1021e-01, 3.2855e-01, + 2.5425e-01, 8.5780e-01, 4.3205e-01, 4.0140e-01, + 9.4921e-01, 2.8895e-01, 1.3664e-01, 5.4369e-01, + 1.3138e-01, 3.8208e-01, 2.5228e-01, 1.2853e-01, + 8.8617e-01, 2.0333e-01, 3.5159e-01, 7.2213e-01, + 9.9955e-02, 2.7135e-01, 9.5831e-01, 3.8118e-01, + 9.1375e-01, 6.2030e-03, 8.3011e-01, 3.1173e-01, + 4.9222e-01, 2.2401e-01, 1.3662e-02, 3.7139e-01, + 8.0654e-01, 5.4896e-01, 4.1262e-01, 1.8721e-01, + 7.7430e-02, 8.0972e-02, 5.0091e-01, 4.6883e-01, + 1.7023e-01, 1.8393e-01, 9.5285e-01, 5.7148e-01, + 6.9912e-01, 3.9318e-01, 7.4717e-01, 5.2313e-01, + 4.9731e-02, 4.5290e-01, 3.7548e-01, 9.6320e-01, + 5.1588e-01, 3.8349e-01, 7.3780e-01, 2.3311e-01, + 4.0890e-01, 3.2506e-01, 5.5615e-02, 2.9904e-01, + 8.2626e-01, 9.3003e-01, 1.2220e-01, 9.4114e-02, + 7.0027e-01, 7.3137e-01, 4.4929e-01, 5.5520e-01, + 4.0184e-01, 5.4932e-02, 4.8883e-01, 3.6205e-01, + 6.5451e-01, 3.4122e-01, 5.2936e-01, 1.1556e-01, + 5.9763e-02, 2.6121e-01, 2.5086e-01, 7.1156e-01, + 4.2264e-01, 1.4160e-02, 5.6807e-01, 4.5961e-01, + 7.2037e-01, 1.8238e-01, 3.0287e-02, 5.9799e-01, + 2.2550e-01, 3.5091e-01, 2.5029e-01, 5.2054e-01, + 3.2325e-01, 1.5222e-01, 6.3257e-02, 1.2849e-01, + 4.8715e-01, 9.2972e-01, 8.2158e-01, 1.0913e-01, + 7.7983e-01, 4.0809e-01, 2.7056e-01, 5.4364e-01, + 7.1329e-01, 5.9023e-02, 2.3800e-02, 9.3218e-01, + 9.3150e-01, 3.6454e-01, 7.2436e-01, 6.1873e-01, + 5.3740e-01, 5.0529e-01, 8.6148e-02, 4.1804e-01, + 8.0293e-01, 5.1850e-01, 9.3091e-01, 9.8654e-02, + 1.0539e-01, 8.0444e-01, 2.1966e-01, 5.5457e-01, + 8.7033e-01, 3.6440e-01, 3.9487e-01, 6.9752e-01, + 7.2524e-02, 6.6343e-01, 9.7866e-01, 7.8611e-01, + 6.4857e-01, 7.0267e-01, 3.4511e-01, 9.9013e-02, + 6.2771e-01, 9.1286e-01, 5.3326e-01, 6.2374e-01, + 9.4684e-01, 8.8022e-02, 7.0509e-01, 9.1168e-01, + 3.7023e-01, 1.8339e-01, 9.1427e-01, 8.3401e-01, + 6.8658e-01, 6.1568e-01, 7.6375e-01, 5.4908e-01, + 8.3087e-01, 3.9498e-01, 5.7352e-01, 4.6879e-01, + 6.5833e-01, 6.5259e-01, 5.0829e-01, 2.0479e-01, + 2.9408e-01, 6.1872e-01, 9.5146e-01, 3.5305e-02, + 5.2991e-01, 9.4404e-01, 5.9917e-02, 9.2284e-01, + 3.5918e-01, 8.6231e-03, 8.7401e-01, 9.3098e-01, + 3.0548e-01, 7.0431e-01, 8.9211e-01, 2.4648e-01, + 4.2458e-01, 9.1205e-01, 1.2130e-01, 8.7176e-01, + 9.0386e-01, 5.2306e-01, 6.3604e-01, 6.1930e-01, + 8.2531e-01, 1.0289e-01, 4.5119e-01, 6.7952e-01, + 8.9554e-01, 8.3142e-01, 8.2380e-01, 4.1571e-01, + 8.2644e-01, 1.2717e-02, 2.6499e-01, 8.0200e-01, + 2.4798e-01, 2.8711e-01, 4.5776e-01, 4.3801e-01, + 3.1192e-03, 6.9631e-01, 5.3407e-02, 1.6257e-01, + 6.9635e-01, 6.6998e-01, 8.4720e-01, 3.3243e-01, + 7.2922e-01, 3.6090e-01, 2.2898e-01, 2.9594e-01, + 6.8091e-01, 2.1217e-01, 9.8868e-01, 1.4633e-01, + 8.4921e-01, 7.7243e-02, 5.9675e-01, 4.8946e-01, + 9.6285e-01, 3.6923e-01, 8.4080e-01, 6.3500e-02, + 2.9872e-02, 6.1151e-01, 7.2200e-02, 8.0859e-01, + 3.4433e-01, 1.2536e-01, 2.1054e-01, 9.5582e-01, + 2.6041e-01, 7.7947e-02, 1.9011e-01, 2.2693e-01, + 2.3351e-01, 7.6995e-01, 8.3425e-01, 1.6202e-01, + 8.3173e-01, 8.7492e-01, 7.3985e-01, 8.2109e-01, + 8.6781e-02, 2.7681e-01, 8.2058e-01, 7.1643e-01, + 9.4730e-01, 5.0349e-01, 7.6573e-01, 3.0347e-01, + 5.4480e-02, 2.5138e-01, 7.5252e-01, 7.2319e-01, + 9.7687e-01, 7.8910e-01, 5.9541e-01, 1.8523e-01, + 3.1381e-01, 9.8509e-01, 7.2709e-01, 8.7484e-01, + 9.6507e-01, 2.3023e-01, 6.4537e-01, 6.1581e-01, + 2.8341e-01, 5.7248e-01, 5.0137e-01, 4.1691e-01, + 6.3468e-01, 3.1422e-01, 2.5091e-01, 6.7273e-01, + 4.4779e-01, 8.2945e-01, 9.3750e-01, 5.1588e-01, + 2.0285e-01, 3.6308e-01, 3.5611e-01, 5.4065e-01, + 4.8746e-01, 6.5741e-02, 8.7308e-01, 7.8992e-01, + 8.8977e-01, 2.5722e-01, 2.9273e-01, 5.9995e-01, + 7.0971e-01, 1.9099e-02, 1.0801e-02, 1.6717e-01, + 7.4491e-01, 2.7112e-01, 4.9981e-02, 4.7593e-01, + 1.5556e-01, 7.8769e-01, 5.8034e-01, 8.9890e-01, + 7.9945e-01, 2.8180e-01, 5.1082e-01, 6.1444e-01, + 3.7184e-01, 4.0382e-03, 2.1606e-02, 4.3808e-01, + 5.0513e-01, 6.3717e-01, 9.3086e-01, 7.8150e-01, + 7.9119e-01, 9.9653e-01, 2.2193e-01, 5.7006e-01, + 3.8318e-01, 3.0525e-01, 3.7836e-01, 1.0429e-01, + 5.6076e-01, 9.9794e-01, 1.1212e-01, 5.4908e-01, + 2.6159e-01, 4.7710e-01, 9.0573e-01, 5.5417e-01, + 3.3196e-01, 8.1578e-02, 3.7247e-01, 4.0187e-01, + 5.5198e-01, 4.4530e-01, 9.6819e-02, 2.8385e-01, + 8.7880e-01, 1.2411e-01, 7.6113e-01, 1.6076e-01, + 6.1742e-01, 8.2361e-01, 7.5982e-01, 9.4500e-02, + 8.8119e-01, 4.6913e-02, 1.6702e-01, 1.5461e-02, + 4.3414e-01, 5.2958e-01, 1.7767e-01, 8.4862e-01, + 6.8289e-02, 4.2057e-01, 1.4544e-01, 6.3535e-01, + 4.5003e-01, 9.0562e-01, 5.2552e-01, 3.8356e-02, + 1.7539e-01, 9.2623e-01, 1.1373e-02, 9.3857e-01, + 1.1486e-01, 1.8618e-01, 5.3666e-01, 7.4373e-01, + 8.2920e-01, 7.2840e-01, 3.2981e-01, 8.6552e-01, + 2.8637e-01, 4.2375e-02, 3.1103e-01, 4.4349e-01, + 6.1835e-01, 9.1394e-01, 1.7645e-01, 1.6782e-01, + 2.1151e-01, 1.5871e-01, 1.0135e-01, 2.3550e-01, + 4.2094e-01, 7.0734e-01, 6.7606e-01, 8.2297e-01, + 2.8533e-01, 8.8901e-01, 2.8296e-01, 8.0720e-01, + 6.8096e-01, 5.3266e-01, 4.2825e-01, 5.4890e-01, + 7.7546e-01, 3.2703e-01, 2.1498e-02, 3.2856e-01, + 1.8357e-01, 7.1752e-01, 7.0180e-01, 6.4785e-01, + 3.1735e-01, 1.2403e-01, 5.3043e-01, 6.6860e-01, + 8.2441e-01, 9.8910e-01, 9.9001e-01, 5.2653e-01, + 8.2241e-01, 1.7261e-01, 5.2411e-01, 4.5643e-01, + 5.9400e-01, 5.3555e-01, 1.3555e-01, 4.4974e-01, + 3.5391e-02, 3.2882e-02, 2.3493e-01, 4.9364e-01, + 5.0618e-01, 9.3427e-01, 8.4335e-03, 6.7023e-01, + 7.1920e-01, 3.4899e-01, 8.9985e-01, 2.4044e-01, + 1.2979e-01, 2.7126e-01, 3.1386e-01, 7.7817e-02, + 6.6896e-01, 9.4509e-01, 1.4801e-01, 6.1207e-01]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.3844, 0.6738, 0.8785, ..., 0.1267, 0.6920, 0.7757]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 10.192691802978516 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 999, 999, 1000]), + col_indices=tensor([8952, 4000, 8166, 6597, 532, 6376, 6026, 9869, 7520, + 7179, 9261, 3880, 1825, 3183, 7673, 9449, 3683, 5956, + 1175, 9188, 3143, 3107, 7411, 4454, 602, 8234, 1772, + 7128, 697, 2579, 6192, 4803, 5677, 9960, 6436, 8271, + 7262, 970, 7301, 4426, 5443, 1245, 6562, 2078, 17, + 5156, 8485, 7276, 8067, 1486, 267, 1867, 2441, 2368, + 9094, 5268, 7382, 3883, 3736, 9730, 4478, 9182, 3080, + 3707, 1066, 4867, 2125, 6033, 2824, 3938, 8278, 1321, + 9817, 7979, 8727, 7687, 7915, 1214, 440, 5708, 5546, + 1111, 6567, 4866, 6297, 7245, 887, 2038, 4920, 2063, + 7927, 3268, 9646, 7587, 1863, 7946, 3596, 8591, 6781, + 7806, 9483, 1512, 3170, 9606, 4349, 2224, 451, 5245, + 4275, 2218, 1928, 3938, 364, 232, 3259, 3441, 8386, + 7579, 4888, 5900, 1901, 64, 199, 7448, 6195, 3174, + 3236, 8078, 6653, 1848, 3168, 1121, 3927, 5660, 4727, + 9512, 6481, 3551, 862, 305, 4340, 9131, 448, 1868, + 1150, 5339, 8301, 5390, 7716, 694, 2337, 622, 2979, + 6037, 4736, 1952, 5071, 2430, 2740, 920, 3292, 2201, + 6260, 8263, 8823, 8025, 8857, 5589, 6916, 6949, 6589, + 8185, 175, 3471, 5202, 9772, 2312, 7182, 1717, 7475, + 6068, 2334, 6417, 3655, 9800, 889, 253, 8367, 8765, + 6721, 6687, 2801, 8665, 2089, 6262, 1372, 8492, 4529, + 577, 2887, 61, 5460, 6067, 4062, 6111, 3584, 9452, + 5467, 2060, 877, 1231, 8941, 3078, 1406, 9681, 4349, + 8995, 4108, 3169, 3536, 599, 808, 216, 1045, 7476, + 118, 5373, 1705, 6476, 9055, 3423, 2513, 8743, 2070, + 3551, 3613, 3258, 7352, 9447, 908, 6360, 3702, 175, + 5227, 2614, 8048, 6329, 9842, 8071, 3162, 4559, 4957, + 9543, 4242, 2056, 4144, 9812, 6189, 8552, 1334, 8989, + 1341, 4418, 3240, 3860, 6744, 3583, 7263, 5364, 5783, + 281, 536, 2291, 101, 8394, 819, 8377, 1736, 7515, + 1698, 8880, 621, 7126, 306, 5036, 8953, 2037, 3764, + 5238, 4588, 547, 2080, 3133, 4721, 1404, 4382, 6483, + 364, 5201, 7106, 9087, 278, 1615, 5081, 9022, 5647, + 6859, 7777, 7201, 2862, 4501, 1625, 9418, 8793, 3062, + 7779, 7619, 249, 1017, 9394, 652, 7245, 6598, 6677, + 8056, 7739, 2584, 2710, 5836, 2439, 9676, 552, 753, + 1890, 9204, 3806, 280, 5975, 6539, 8803, 4939, 8180, + 8972, 1922, 3111, 6708, 8063, 843, 8554, 8192, 5252, + 1294, 6690, 2359, 4858, 5680, 7832, 2435, 7255, 9141, + 5661, 1145, 4606, 8502, 5241, 7839, 5585, 9311, 6977, + 3341, 4344, 5135, 880, 4279, 9071, 6398, 5804, 3668, + 9083, 2767, 1972, 9411, 9585, 9619, 3734, 5608, 4456, + 2712, 1619, 6062, 9539, 4547, 4066, 3381, 6204, 5829, + 1408, 8823, 8487, 9492, 6285, 9366, 304, 6949, 2130, + 5644, 5852, 5247, 2441, 507, 1362, 6464, 1943, 4566, + 4183, 9823, 9431, 3679, 7214, 6603, 2011, 6442, 8396, + 1474, 9058, 8407, 3097, 8137, 4939, 8142, 4167, 2297, + 6796, 3268, 8842, 9047, 506, 1644, 958, 2841, 8103, + 8807, 3190, 3921, 8205, 1359, 1320, 1313, 5985, 6264, + 9688, 7030, 3687, 8214, 9200, 8543, 8874, 9918, 3292, + 971, 1150, 12, 7721, 4843, 4655, 8118, 5951, 6341, + 3367, 5211, 3698, 5665, 6802, 311, 8944, 3871, 7380, + 1011, 1091, 6264, 2890, 7828, 4121, 8780, 8171, 5582, + 2487, 4088, 7245, 9121, 1475, 8032, 4892, 8481, 5781, + 2248, 7069, 9818, 1470, 8306, 290, 2398, 5807, 9442, + 3261, 2507, 2542, 9400, 146, 8598, 3116, 2240, 7102, + 9117, 5552, 2599, 3964, 4563, 6377, 4358, 2759, 3003, + 4038, 9137, 1151, 6472, 7773, 5238, 2731, 4173, 797, + 9566, 2707, 3580, 7994, 6794, 4036, 9990, 2244, 6453, + 2584, 8829, 9928, 4918, 4552, 1248, 3083, 2138, 3711, + 6676, 1954, 9299, 751, 9072, 8549, 3638, 3355, 8110, + 5838, 5956, 5829, 7581, 7230, 6974, 4178, 2501, 7620, + 3349, 7921, 9398, 8191, 526, 2316, 5467, 2362, 8661, + 5836, 9284, 5880, 4520, 5412, 5818, 7360, 2561, 2163, + 1419, 516, 4204, 1357, 4964, 2143, 7988, 9421, 4192, + 6075, 5232, 2382, 190, 2160, 4498, 3582, 7060, 4067, + 8832, 2519, 8074, 75, 2040, 7026, 2270, 2454, 3151, + 6754, 6128, 4864, 678, 2068, 7671, 3287, 4393, 6230, + 4141, 589, 9321, 5856, 5100, 949, 6882, 8430, 8774, + 2852, 6631, 7249, 7598, 8415, 2890, 3208, 4485, 9774, + 844, 2538, 5517, 8566, 3061, 4943, 1204, 7334, 603, + 1059, 5669, 7784, 6606, 8140, 8880, 7569, 6357, 1677, + 8060, 2276, 5176, 9288, 3726, 1205, 7679, 5004, 6724, + 4886, 1466, 9199, 9820, 1880, 856, 6733, 6005, 7606, + 9888, 3802, 1598, 5109, 1099, 257, 5705, 1491, 8717, + 8777, 340, 9514, 6111, 8977, 2088, 9572, 9799, 9085, + 8261, 67, 6996, 5276, 5212, 7381, 7754, 1731, 1151, + 2202, 664, 4664, 730, 831, 8074, 5175, 6613, 6734, + 6507, 2635, 8670, 2143, 8491, 7815, 2364, 9192, 8216, + 9671, 5069, 6574, 4597, 1439, 3233, 8936, 1122, 5241, + 7348, 4745, 6153, 2266, 3100, 9485, 8854, 8203, 5843, + 3322, 8284, 1824, 8965, 436, 9138, 2544, 6346, 2189, + 8690, 6203, 9601, 704, 8008, 9572, 677, 606, 5002, + 5710, 471, 6555, 7890, 6468, 1470, 4733, 2943, 6214, + 8234, 6199, 9968, 7234, 9500, 5185, 2919, 7000, 3791, + 2826, 7280, 4730, 9794, 1349, 2563, 1049, 4820, 3367, + 9543, 6774, 6136, 7295, 5145, 2152, 4761, 8582, 9375, + 319, 9447, 3340, 9425, 9559, 1116, 3732, 3610, 8427, + 9125, 1583, 1179, 7513, 5682, 9159, 241, 7984, 2293, + 3096, 3564, 3439, 2160, 8809, 9412, 7225, 1103, 9859, + 2289, 470, 3862, 5409, 2677, 2610, 1395, 2798, 2036, + 8168, 6913, 5376, 4906, 4747, 6428, 7591, 8164, 6849, + 2172, 81, 3394, 1456, 2103, 4980, 5120, 1434, 983, + 7931, 9343, 7415, 7679, 999, 1068, 3274, 8997, 2725, + 441, 411, 7933, 1003, 4519, 361, 4611, 3295, 8883, + 1465, 6331, 9338, 45, 5625, 6206, 6833, 2020, 3343, + 8451, 1048, 4752, 7366, 7152, 7566, 1669, 8462, 5182, + 7214, 7342, 7539, 3321, 619, 717, 8923, 530, 3482, + 5501, 7823, 5803, 8146, 5242, 6287, 6550, 2253, 8722, + 7178, 7449, 2026, 3537, 6705, 7065, 6435, 106, 8292, + 2198, 1874, 9805, 9582, 4954, 8722, 3049, 311, 3280, + 7342, 7761, 9051, 2171, 3069, 2124, 7388, 3664, 4062, + 2685, 6071, 7944, 2785, 8698, 883, 4873, 7645, 2810, + 2063, 7924, 3670, 6947, 9774, 2476, 6878, 6227, 4296, + 5746, 3133, 1635, 699, 7633, 4675, 2663, 323, 4267, + 6089, 779, 3222, 31, 9957, 1311, 8344, 2224, 5480, + 5329, 4616, 5394, 5932, 6025, 6656, 4043, 4590, 3624, + 7644, 2721, 7452, 5063, 1603, 231, 5078, 4764, 8810, + 1897, 9824, 3546, 8099, 7057, 3188, 6863, 4616, 8965, + 3807, 4031, 6190, 2213, 1928, 4075, 999, 1021, 5541, + 9055]), + values=tensor([6.9021e-01, 2.6494e-01, 8.6904e-01, 6.1119e-01, + 5.3447e-01, 5.9746e-01, 1.3103e-01, 7.6542e-01, + 2.7449e-01, 4.8776e-01, 3.7944e-01, 5.9667e-01, + 5.0080e-01, 9.7087e-01, 6.0515e-02, 3.4796e-01, + 1.9513e-01, 4.2481e-03, 6.0086e-01, 9.0850e-01, + 8.6957e-02, 7.2780e-01, 3.2540e-01, 8.0855e-01, + 2.0093e-01, 7.5193e-01, 6.5520e-01, 2.0556e-01, + 1.9036e-01, 6.6375e-01, 5.1418e-01, 6.8871e-01, + 4.1430e-01, 3.7771e-01, 9.1043e-01, 8.2144e-02, + 8.9391e-01, 2.2392e-01, 3.8724e-01, 7.3980e-01, + 9.2229e-01, 6.5016e-01, 2.6737e-01, 7.9846e-01, + 5.0336e-01, 8.1942e-02, 7.3018e-02, 2.8059e-02, + 5.8586e-01, 4.8189e-02, 9.1110e-03, 6.7474e-01, + 2.4410e-01, 6.0846e-01, 6.7598e-01, 2.5246e-02, + 8.3369e-01, 3.6420e-01, 1.0160e-02, 4.2093e-01, + 5.6656e-01, 9.7199e-01, 3.0686e-01, 5.9587e-01, + 8.1818e-01, 7.4731e-01, 4.7909e-01, 3.5376e-01, + 4.5246e-01, 4.3801e-01, 4.1419e-01, 6.9403e-02, + 2.4639e-01, 5.5338e-02, 1.4805e-01, 8.8478e-02, + 3.3491e-01, 7.1203e-02, 5.8558e-01, 7.5183e-01, + 9.5173e-01, 2.7971e-01, 4.4284e-01, 4.5204e-01, + 3.1782e-01, 8.4286e-01, 7.9427e-01, 3.4835e-01, + 9.8082e-01, 2.1853e-01, 6.2534e-01, 5.9584e-01, + 2.6834e-01, 2.8874e-01, 8.6305e-01, 1.3411e-01, + 8.4825e-01, 3.9467e-01, 1.0367e-01, 7.2007e-01, + 5.8375e-01, 7.9120e-01, 6.7044e-01, 1.4679e-01, + 4.8278e-01, 7.0316e-01, 5.5202e-01, 3.5939e-01, + 4.1124e-01, 1.4507e-01, 9.1288e-01, 1.6695e-01, + 2.9452e-01, 1.9779e-01, 6.8077e-01, 5.5683e-01, + 8.9496e-02, 6.0423e-01, 9.4298e-02, 7.6601e-01, + 3.6445e-01, 4.6071e-01, 6.7016e-01, 9.2399e-02, + 6.0505e-01, 6.7426e-01, 5.3761e-01, 5.0130e-01, + 1.9624e-01, 6.9980e-01, 7.3370e-01, 6.4631e-01, + 9.0546e-01, 3.3420e-01, 3.3065e-01, 5.9336e-01, + 8.9448e-01, 8.3937e-01, 3.3441e-01, 2.3028e-02, + 4.3796e-01, 3.3782e-01, 9.8037e-01, 3.3054e-01, + 7.9836e-01, 7.5184e-01, 8.3353e-01, 9.4721e-01, + 9.1431e-01, 4.9030e-01, 2.4945e-01, 7.4274e-01, + 1.6174e-01, 1.3313e-01, 1.4827e-03, 9.9424e-01, + 3.8576e-01, 8.8554e-01, 5.9676e-01, 9.2759e-01, + 3.3991e-01, 6.2610e-01, 4.0877e-01, 4.2900e-01, + 4.5137e-02, 8.9195e-01, 4.1368e-01, 8.6278e-01, + 1.0556e-01, 9.7864e-01, 8.1699e-01, 2.6514e-01, + 2.7527e-01, 9.8235e-01, 5.4621e-01, 5.6385e-01, + 4.1602e-01, 3.0271e-01, 6.4653e-01, 7.1380e-01, + 1.0594e-01, 7.8515e-01, 2.8439e-01, 5.7238e-01, + 9.2610e-01, 2.6277e-01, 8.1736e-01, 2.0732e-01, + 7.0628e-01, 8.6999e-01, 9.1036e-02, 6.6737e-01, + 5.5567e-01, 8.1035e-01, 8.7453e-01, 1.8492e-01, + 1.9537e-01, 7.6366e-01, 6.4800e-01, 3.5352e-01, + 1.5043e-01, 3.5364e-02, 4.2615e-01, 3.2155e-01, + 2.4376e-01, 2.5069e-01, 5.2658e-01, 8.0086e-01, + 7.7663e-01, 6.3489e-01, 5.8258e-01, 5.4888e-01, + 7.5488e-01, 6.9768e-01, 3.6104e-01, 8.8427e-04, + 4.5213e-01, 2.8577e-01, 2.8619e-01, 2.9793e-01, + 2.9937e-01, 6.2428e-01, 4.5005e-01, 5.9825e-01, + 7.4638e-01, 3.3929e-01, 3.9970e-01, 3.9800e-01, + 3.8389e-01, 4.8231e-01, 5.6456e-02, 1.2928e-01, + 6.5330e-01, 9.1622e-01, 4.6852e-01, 3.6000e-02, + 8.7926e-01, 4.7800e-02, 6.8565e-01, 4.1381e-02, + 5.5927e-01, 6.8543e-01, 6.8545e-01, 8.8616e-01, + 2.9807e-02, 8.1468e-01, 6.1063e-01, 5.5566e-01, + 9.4726e-01, 2.1762e-02, 5.8385e-01, 6.7073e-01, + 3.3283e-02, 4.7096e-01, 7.8371e-01, 3.0060e-01, + 3.9184e-01, 9.7716e-01, 7.4200e-01, 2.7027e-01, + 1.1125e-04, 3.9202e-01, 5.9210e-01, 5.0785e-01, + 5.4634e-01, 3.7514e-01, 2.4891e-01, 3.0456e-01, + 6.5497e-01, 9.4974e-01, 7.6803e-01, 8.1229e-01, + 8.8187e-01, 6.0880e-01, 8.2083e-02, 1.5656e-01, + 6.6665e-01, 8.7158e-01, 4.2618e-01, 5.6251e-01, + 8.3536e-01, 9.7124e-01, 1.8108e-01, 8.2899e-01, + 9.1553e-01, 3.9430e-01, 8.9998e-01, 1.9012e-01, + 6.8518e-01, 4.8339e-01, 8.2522e-01, 4.4773e-01, + 9.1372e-01, 9.7072e-01, 8.0657e-02, 9.5106e-03, + 6.1564e-01, 7.6053e-01, 5.9682e-01, 1.0497e-01, + 3.0736e-01, 2.1734e-01, 4.0924e-01, 4.4851e-01, + 2.9939e-01, 9.0104e-01, 6.1371e-01, 3.1504e-01, + 3.7298e-01, 1.8350e-01, 8.8489e-01, 5.6146e-01, + 9.3832e-01, 8.5583e-01, 7.9017e-01, 7.2342e-01, + 4.9658e-01, 4.2914e-01, 4.2011e-01, 1.1432e-01, + 8.5825e-02, 3.7515e-01, 4.7402e-01, 3.3258e-01, + 2.6866e-01, 1.3750e-01, 8.2397e-01, 6.9852e-02, + 3.4150e-01, 9.4441e-01, 1.2748e-01, 4.5960e-01, + 4.7030e-01, 7.9737e-01, 9.6600e-01, 9.9113e-01, + 2.2881e-01, 4.9952e-02, 6.3082e-01, 6.6610e-01, + 9.9033e-01, 7.6301e-01, 6.0189e-01, 2.2890e-01, + 2.8764e-01, 1.1288e-01, 7.1805e-01, 6.1911e-01, + 1.6911e-01, 5.0612e-01, 5.0980e-01, 2.7104e-01, + 7.7033e-01, 1.4709e-01, 3.8285e-01, 1.9758e-01, + 9.7692e-01, 2.0252e-01, 1.3576e-01, 5.9482e-01, + 4.6062e-01, 2.2658e-01, 9.3619e-01, 1.4065e-01, + 9.5016e-01, 3.9461e-01, 1.4931e-01, 1.9422e-02, + 6.3961e-01, 7.1243e-01, 2.0281e-01, 5.6959e-01, + 6.2530e-01, 2.7959e-01, 8.7650e-01, 9.4001e-02, + 2.9309e-01, 4.7514e-01, 2.7278e-01, 4.9113e-01, + 7.6886e-02, 3.4814e-01, 5.1059e-01, 2.6430e-01, + 8.3288e-02, 8.9817e-01, 9.0972e-01, 5.1965e-01, + 3.8288e-01, 5.2763e-01, 8.3820e-01, 7.2633e-02, + 6.9137e-01, 5.7207e-01, 6.9966e-01, 5.5597e-01, + 2.3496e-02, 6.9673e-01, 8.5223e-01, 6.0371e-01, + 2.2841e-01, 8.8026e-01, 1.5762e-01, 8.5663e-01, + 1.0839e-02, 9.9699e-01, 6.3255e-01, 2.7027e-01, + 8.2796e-01, 4.2669e-01, 7.2641e-01, 2.0806e-01, + 9.5672e-01, 5.8838e-01, 2.1049e-01, 1.9808e-01, + 1.6176e-01, 6.5233e-01, 7.8844e-01, 5.8046e-01, + 1.3680e-01, 8.0943e-01, 1.9157e-01, 4.2986e-01, + 6.3052e-01, 7.1615e-01, 2.6878e-01, 7.8997e-01, + 6.7314e-01, 6.3196e-01, 7.9154e-01, 4.9725e-01, + 9.1566e-01, 2.2627e-01, 3.2786e-01, 8.1764e-01, + 4.7210e-01, 5.5515e-01, 6.0145e-01, 1.4357e-02, + 8.1100e-01, 3.8395e-01, 3.8342e-01, 7.6662e-01, + 4.3084e-01, 9.6058e-01, 8.3922e-02, 6.6857e-01, + 8.9712e-02, 9.1497e-01, 4.3132e-01, 6.1332e-01, + 4.9678e-01, 4.4038e-01, 3.0533e-01, 4.2072e-01, + 9.3282e-01, 4.7686e-01, 6.3890e-01, 3.7317e-01, + 4.8358e-01, 8.8682e-01, 5.6572e-01, 4.1761e-01, + 7.6652e-03, 6.7885e-01, 7.1170e-01, 6.6835e-01, + 4.8988e-01, 4.6220e-01, 9.8191e-01, 6.9759e-01, + 4.8281e-01, 5.4214e-01, 8.2354e-01, 7.7899e-01, + 3.5689e-01, 7.6049e-01, 1.0611e-01, 1.0681e-01, + 1.7387e-01, 1.4750e-01, 9.4994e-01, 3.1736e-01, + 8.2294e-01, 4.0109e-01, 3.5677e-01, 3.8062e-01, + 9.1137e-01, 5.2391e-01, 9.9066e-01, 9.3521e-01, + 5.9154e-01, 3.8119e-01, 4.4447e-01, 1.3827e-01, + 5.9704e-01, 4.1350e-01, 4.7667e-01, 1.3318e-01, + 9.4496e-01, 2.7844e-01, 8.9444e-01, 6.8493e-01, + 3.6281e-01, 6.2923e-01, 4.4846e-01, 4.9145e-01, + 4.0848e-01, 5.2789e-01, 6.8349e-01, 8.3098e-01, + 3.7655e-01, 9.5767e-01, 5.4283e-01, 5.6569e-01, + 6.9416e-01, 9.8685e-01, 4.5627e-01, 1.6481e-01, + 4.2808e-01, 2.0602e-02, 5.6870e-01, 2.5733e-01, + 7.8495e-01, 9.1720e-01, 5.7174e-01, 1.2028e-01, + 5.7304e-01, 2.8855e-01, 5.6472e-01, 1.2898e-01, + 6.2866e-01, 9.7365e-01, 5.5967e-02, 7.7710e-01, + 7.4851e-01, 2.5569e-01, 6.0528e-01, 3.3695e-01, + 5.6405e-01, 9.2411e-01, 2.6299e-01, 2.4215e-01, + 6.8728e-01, 4.4106e-01, 2.8442e-01, 6.6217e-01, + 8.7020e-01, 6.1069e-01, 6.2397e-01, 1.1008e-01, + 2.7446e-02, 4.9098e-01, 1.2525e-02, 1.2965e-01, + 3.4990e-01, 5.8782e-01, 3.1021e-01, 3.2855e-01, + 2.5425e-01, 8.5780e-01, 4.3205e-01, 4.0140e-01, + 9.4921e-01, 2.8895e-01, 1.3664e-01, 5.4369e-01, + 1.3138e-01, 3.8208e-01, 2.5228e-01, 1.2853e-01, + 8.8617e-01, 2.0333e-01, 3.5159e-01, 7.2213e-01, + 9.9955e-02, 2.7135e-01, 9.5831e-01, 3.8118e-01, + 9.1375e-01, 6.2030e-03, 8.3011e-01, 3.1173e-01, + 4.9222e-01, 2.2401e-01, 1.3662e-02, 3.7139e-01, + 8.0654e-01, 5.4896e-01, 4.1262e-01, 1.8721e-01, + 7.7430e-02, 8.0972e-02, 5.0091e-01, 4.6883e-01, + 1.7023e-01, 1.8393e-01, 9.5285e-01, 5.7148e-01, + 6.9912e-01, 3.9318e-01, 7.4717e-01, 5.2313e-01, + 4.9731e-02, 4.5290e-01, 3.7548e-01, 9.6320e-01, + 5.1588e-01, 3.8349e-01, 7.3780e-01, 2.3311e-01, + 4.0890e-01, 3.2506e-01, 5.5615e-02, 2.9904e-01, + 8.2626e-01, 9.3003e-01, 1.2220e-01, 9.4114e-02, + 7.0027e-01, 7.3137e-01, 4.4929e-01, 5.5520e-01, + 4.0184e-01, 5.4932e-02, 4.8883e-01, 3.6205e-01, + 6.5451e-01, 3.4122e-01, 5.2936e-01, 1.1556e-01, + 5.9763e-02, 2.6121e-01, 2.5086e-01, 7.1156e-01, + 4.2264e-01, 1.4160e-02, 5.6807e-01, 4.5961e-01, + 7.2037e-01, 1.8238e-01, 3.0287e-02, 5.9799e-01, + 2.2550e-01, 3.5091e-01, 2.5029e-01, 5.2054e-01, + 3.2325e-01, 1.5222e-01, 6.3257e-02, 1.2849e-01, + 4.8715e-01, 9.2972e-01, 8.2158e-01, 1.0913e-01, + 7.7983e-01, 4.0809e-01, 2.7056e-01, 5.4364e-01, + 7.1329e-01, 5.9023e-02, 2.3800e-02, 9.3218e-01, + 9.3150e-01, 3.6454e-01, 7.2436e-01, 6.1873e-01, + 5.3740e-01, 5.0529e-01, 8.6148e-02, 4.1804e-01, + 8.0293e-01, 5.1850e-01, 9.3091e-01, 9.8654e-02, + 1.0539e-01, 8.0444e-01, 2.1966e-01, 5.5457e-01, + 8.7033e-01, 3.6440e-01, 3.9487e-01, 6.9752e-01, + 7.2524e-02, 6.6343e-01, 9.7866e-01, 7.8611e-01, + 6.4857e-01, 7.0267e-01, 3.4511e-01, 9.9013e-02, + 6.2771e-01, 9.1286e-01, 5.3326e-01, 6.2374e-01, + 9.4684e-01, 8.8022e-02, 7.0509e-01, 9.1168e-01, + 3.7023e-01, 1.8339e-01, 9.1427e-01, 8.3401e-01, + 6.8658e-01, 6.1568e-01, 7.6375e-01, 5.4908e-01, + 8.3087e-01, 3.9498e-01, 5.7352e-01, 4.6879e-01, + 6.5833e-01, 6.5259e-01, 5.0829e-01, 2.0479e-01, + 2.9408e-01, 6.1872e-01, 9.5146e-01, 3.5305e-02, + 5.2991e-01, 9.4404e-01, 5.9917e-02, 9.2284e-01, + 3.5918e-01, 8.6231e-03, 8.7401e-01, 9.3098e-01, + 3.0548e-01, 7.0431e-01, 8.9211e-01, 2.4648e-01, + 4.2458e-01, 9.1205e-01, 1.2130e-01, 8.7176e-01, + 9.0386e-01, 5.2306e-01, 6.3604e-01, 6.1930e-01, + 8.2531e-01, 1.0289e-01, 4.5119e-01, 6.7952e-01, + 8.9554e-01, 8.3142e-01, 8.2380e-01, 4.1571e-01, + 8.2644e-01, 1.2717e-02, 2.6499e-01, 8.0200e-01, + 2.4798e-01, 2.8711e-01, 4.5776e-01, 4.3801e-01, + 3.1192e-03, 6.9631e-01, 5.3407e-02, 1.6257e-01, + 6.9635e-01, 6.6998e-01, 8.4720e-01, 3.3243e-01, + 7.2922e-01, 3.6090e-01, 2.2898e-01, 2.9594e-01, + 6.8091e-01, 2.1217e-01, 9.8868e-01, 1.4633e-01, + 8.4921e-01, 7.7243e-02, 5.9675e-01, 4.8946e-01, + 9.6285e-01, 3.6923e-01, 8.4080e-01, 6.3500e-02, + 2.9872e-02, 6.1151e-01, 7.2200e-02, 8.0859e-01, + 3.4433e-01, 1.2536e-01, 2.1054e-01, 9.5582e-01, + 2.6041e-01, 7.7947e-02, 1.9011e-01, 2.2693e-01, + 2.3351e-01, 7.6995e-01, 8.3425e-01, 1.6202e-01, + 8.3173e-01, 8.7492e-01, 7.3985e-01, 8.2109e-01, + 8.6781e-02, 2.7681e-01, 8.2058e-01, 7.1643e-01, + 9.4730e-01, 5.0349e-01, 7.6573e-01, 3.0347e-01, + 5.4480e-02, 2.5138e-01, 7.5252e-01, 7.2319e-01, + 9.7687e-01, 7.8910e-01, 5.9541e-01, 1.8523e-01, + 3.1381e-01, 9.8509e-01, 7.2709e-01, 8.7484e-01, + 9.6507e-01, 2.3023e-01, 6.4537e-01, 6.1581e-01, + 2.8341e-01, 5.7248e-01, 5.0137e-01, 4.1691e-01, + 6.3468e-01, 3.1422e-01, 2.5091e-01, 6.7273e-01, + 4.4779e-01, 8.2945e-01, 9.3750e-01, 5.1588e-01, + 2.0285e-01, 3.6308e-01, 3.5611e-01, 5.4065e-01, + 4.8746e-01, 6.5741e-02, 8.7308e-01, 7.8992e-01, + 8.8977e-01, 2.5722e-01, 2.9273e-01, 5.9995e-01, + 7.0971e-01, 1.9099e-02, 1.0801e-02, 1.6717e-01, + 7.4491e-01, 2.7112e-01, 4.9981e-02, 4.7593e-01, + 1.5556e-01, 7.8769e-01, 5.8034e-01, 8.9890e-01, + 7.9945e-01, 2.8180e-01, 5.1082e-01, 6.1444e-01, + 3.7184e-01, 4.0382e-03, 2.1606e-02, 4.3808e-01, + 5.0513e-01, 6.3717e-01, 9.3086e-01, 7.8150e-01, + 7.9119e-01, 9.9653e-01, 2.2193e-01, 5.7006e-01, + 3.8318e-01, 3.0525e-01, 3.7836e-01, 1.0429e-01, + 5.6076e-01, 9.9794e-01, 1.1212e-01, 5.4908e-01, + 2.6159e-01, 4.7710e-01, 9.0573e-01, 5.5417e-01, + 3.3196e-01, 8.1578e-02, 3.7247e-01, 4.0187e-01, + 5.5198e-01, 4.4530e-01, 9.6819e-02, 2.8385e-01, + 8.7880e-01, 1.2411e-01, 7.6113e-01, 1.6076e-01, + 6.1742e-01, 8.2361e-01, 7.5982e-01, 9.4500e-02, + 8.8119e-01, 4.6913e-02, 1.6702e-01, 1.5461e-02, + 4.3414e-01, 5.2958e-01, 1.7767e-01, 8.4862e-01, + 6.8289e-02, 4.2057e-01, 1.4544e-01, 6.3535e-01, + 4.5003e-01, 9.0562e-01, 5.2552e-01, 3.8356e-02, + 1.7539e-01, 9.2623e-01, 1.1373e-02, 9.3857e-01, + 1.1486e-01, 1.8618e-01, 5.3666e-01, 7.4373e-01, + 8.2920e-01, 7.2840e-01, 3.2981e-01, 8.6552e-01, + 2.8637e-01, 4.2375e-02, 3.1103e-01, 4.4349e-01, + 6.1835e-01, 9.1394e-01, 1.7645e-01, 1.6782e-01, + 2.1151e-01, 1.5871e-01, 1.0135e-01, 2.3550e-01, + 4.2094e-01, 7.0734e-01, 6.7606e-01, 8.2297e-01, + 2.8533e-01, 8.8901e-01, 2.8296e-01, 8.0720e-01, + 6.8096e-01, 5.3266e-01, 4.2825e-01, 5.4890e-01, + 7.7546e-01, 3.2703e-01, 2.1498e-02, 3.2856e-01, + 1.8357e-01, 7.1752e-01, 7.0180e-01, 6.4785e-01, + 3.1735e-01, 1.2403e-01, 5.3043e-01, 6.6860e-01, + 8.2441e-01, 9.8910e-01, 9.9001e-01, 5.2653e-01, + 8.2241e-01, 1.7261e-01, 5.2411e-01, 4.5643e-01, + 5.9400e-01, 5.3555e-01, 1.3555e-01, 4.4974e-01, + 3.5391e-02, 3.2882e-02, 2.3493e-01, 4.9364e-01, + 5.0618e-01, 9.3427e-01, 8.4335e-03, 6.7023e-01, + 7.1920e-01, 3.4899e-01, 8.9985e-01, 2.4044e-01, + 1.2979e-01, 2.7126e-01, 3.1386e-01, 7.7817e-02, + 6.6896e-01, 9.4509e-01, 1.4801e-01, 6.1207e-01]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.3844, 0.6738, 0.8785, ..., 0.1267, 0.6920, 0.7757]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 10.192691802978516 seconds + +[18.55, 17.99, 18.16, 18.03, 18.22, 17.84, 17.97, 17.8, 18.22, 18.03] +[73.24] +13.685040473937988 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 279705, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.192691802978516, 'TIME_S_1KI': 0.03644086377783206, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1002.2923643112182, 'W': 73.24} +[18.55, 17.99, 18.16, 18.03, 18.22, 17.84, 17.97, 17.8, 18.22, 18.03, 18.98, 18.15, 18.06, 17.9, 17.97, 18.02, 18.2, 18.05, 17.87, 17.78] +325.11999999999995 +16.255999999999997 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 279705, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.192691802978516, 'TIME_S_1KI': 0.03644086377783206, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1002.2923643112182, 'W': 73.24, 'J_1KI': 3.5833909451429835, 'W_1KI': 0.2618473034089487, 'W_D': 56.983999999999995, 'J_D': 779.8283463668822, 'W_D_1KI': 0.20372892869272982, 'J_D_1KI': 0.0007283707073263969} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_500000_1e-05.json b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_500000_1e-05.json new file mode 100644 index 0000000..8eef901 --- /dev/null +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_500000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 8355, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.90480637550354, "TIME_S_1KI": 1.305183288510298, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1307.563270778656, "W": 87.44, "J_1KI": 156.5006906976249, "W_1KI": 10.4655894673848, "W_D": 70.932, "J_D": 1060.7053742322921, "W_D_1KI": 8.489766606822261, "J_D_1KI": 1.0161300546765126} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_500000_1e-05.output b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_500000_1e-05.output new file mode 100644 index 0000000..03135d2 --- /dev/null +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_500000_1e-05.output @@ -0,0 +1,68 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '500000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 1.2567212581634521} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 5, 9, ..., 2499992, + 2499996, 2500000]), + col_indices=tensor([164554, 277712, 289036, ..., 389470, 409865, + 491502]), + values=tensor([0.0126, 0.9348, 0.8595, ..., 0.3584, 0.7345, 0.5238]), + size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.0175, 0.7668, 0.4852, ..., 0.2657, 0.5513, 0.9738]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 2500000 +Density: 1e-05 +Time: 1.2567212581634521 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '8355', '-ss', '500000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.90480637550354} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 10, 12, ..., 2499995, + 2499997, 2500000]), + col_indices=tensor([ 72448, 73110, 121261, ..., 13350, 176428, + 278854]), + values=tensor([0.1918, 0.3445, 0.8471, ..., 0.5873, 0.4603, 0.6922]), + size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.8369, 0.9252, 0.2721, ..., 0.2352, 0.7861, 0.2173]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 2500000 +Density: 1e-05 +Time: 10.90480637550354 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 10, 12, ..., 2499995, + 2499997, 2500000]), + col_indices=tensor([ 72448, 73110, 121261, ..., 13350, 176428, + 278854]), + values=tensor([0.1918, 0.3445, 0.8471, ..., 0.5873, 0.4603, 0.6922]), + size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.8369, 0.9252, 0.2721, ..., 0.2352, 0.7861, 0.2173]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 2500000 +Density: 1e-05 +Time: 10.90480637550354 seconds + +[18.48, 21.5, 18.34, 18.43, 18.27, 18.03, 18.28, 18.13, 18.03, 18.78] +[87.44] +14.953834295272827 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 8355, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.90480637550354, 'TIME_S_1KI': 1.305183288510298, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1307.563270778656, 'W': 87.44} +[18.48, 21.5, 18.34, 18.43, 18.27, 18.03, 18.28, 18.13, 18.03, 18.78, 18.48, 18.09, 18.1, 17.9, 18.11, 18.02, 17.99, 17.84, 18.15, 18.16] +330.15999999999997 +16.508 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 8355, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.90480637550354, 'TIME_S_1KI': 1.305183288510298, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1307.563270778656, 'W': 87.44, 'J_1KI': 156.5006906976249, 'W_1KI': 10.4655894673848, 'W_D': 70.932, 'J_D': 1060.7053742322921, 'W_D_1KI': 8.489766606822261, 'J_D_1KI': 1.0161300546765126} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_50000_0.0001.json b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_50000_0.0001.json new file mode 100644 index 0000000..035895d --- /dev/null +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_50000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 77922, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.570462703704834, "TIME_S_1KI": 0.13565440701861906, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1209.7638923931122, "W": 83.24, "J_1KI": 15.525318811030418, "W_1KI": 1.0682477349144015, "W_D": 66.53899999999999, "J_D": 967.0408413736818, "W_D_1KI": 0.8539180205846871, "J_D_1KI": 0.010958625556129042} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_50000_0.0001.output b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_50000_0.0001.output new file mode 100644 index 0000000..70de4f5 --- /dev/null +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_50000_0.0001.output @@ -0,0 +1,85 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.14919304847717285} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 9, ..., 249989, 249995, + 250000]), + col_indices=tensor([ 8787, 10800, 12548, ..., 22776, 32520, 35593]), + values=tensor([0.0395, 0.0216, 0.0459, ..., 0.9233, 0.0886, 0.1442]), + size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) +tensor([0.0084, 0.2765, 0.2672, ..., 0.0856, 0.1416, 0.8826]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 250000 +Density: 0.0001 +Time: 0.14919304847717285 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '70378', '-ss', '50000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 9.483437538146973} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 7, 9, ..., 249988, 249997, + 250000]), + col_indices=tensor([ 1665, 9567, 9654, ..., 4112, 18670, 38091]), + values=tensor([0.4890, 0.0494, 0.7903, ..., 0.9513, 0.0590, 0.1377]), + size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) +tensor([0.5003, 0.9747, 0.2176, ..., 0.9666, 0.4758, 0.9002]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 250000 +Density: 0.0001 +Time: 9.483437538146973 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '77922', '-ss', '50000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.570462703704834} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2, 7, ..., 249995, 249999, + 250000]), + col_indices=tensor([18420, 40988, 3727, ..., 33621, 36384, 44487]), + values=tensor([0.1861, 0.8144, 0.1628, ..., 0.4774, 0.5715, 0.3216]), + size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) +tensor([0.6272, 0.7644, 0.0884, ..., 0.9496, 0.3089, 0.8679]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 250000 +Density: 0.0001 +Time: 10.570462703704834 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2, 7, ..., 249995, 249999, + 250000]), + col_indices=tensor([18420, 40988, 3727, ..., 33621, 36384, 44487]), + values=tensor([0.1861, 0.8144, 0.1628, ..., 0.4774, 0.5715, 0.3216]), + size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) +tensor([0.6272, 0.7644, 0.0884, ..., 0.9496, 0.3089, 0.8679]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 250000 +Density: 0.0001 +Time: 10.570462703704834 seconds + +[18.59, 17.97, 19.57, 18.3, 18.09, 17.87, 18.02, 21.06, 18.56, 17.89] +[83.24] +14.533444166183472 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 77922, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.570462703704834, 'TIME_S_1KI': 0.13565440701861906, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1209.7638923931122, 'W': 83.24} +[18.59, 17.97, 19.57, 18.3, 18.09, 17.87, 18.02, 21.06, 18.56, 17.89, 18.2, 17.85, 17.83, 21.57, 17.96, 18.06, 18.27, 18.3, 18.38, 18.04] +334.02 +16.701 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 77922, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.570462703704834, 'TIME_S_1KI': 0.13565440701861906, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1209.7638923931122, 'W': 83.24, 'J_1KI': 15.525318811030418, 'W_1KI': 1.0682477349144015, 'W_D': 66.53899999999999, 'J_D': 967.0408413736818, 'W_D_1KI': 0.8539180205846871, 'J_D_1KI': 0.010958625556129042} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_50000_0.001.json b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_50000_0.001.json new file mode 100644 index 0000000..f58be3b --- /dev/null +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_50000_0.001.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 17357, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.690638303756714, "TIME_S_1KI": 0.6159266177194627, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1295.2395059108735, "W": 87.56, "J_1KI": 74.62346637730447, "W_1KI": 5.044650573255747, "W_D": 71.326, "J_D": 1055.0965394997595, "W_D_1KI": 4.109350694244396, "J_D_1KI": 0.23675466349279234} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_50000_0.001.output b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_50000_0.001.output new file mode 100644 index 0000000..ec20a71 --- /dev/null +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_50000_0.001.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '0.001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.6049323081970215} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 46, 103, ..., 2499893, + 2499950, 2500000]), + col_indices=tensor([ 214, 217, 3424, ..., 47339, 47927, 48505]), + values=tensor([0.8463, 0.5755, 0.1058, ..., 0.4565, 0.0843, 0.4040]), + size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.2070, 0.0126, 0.4112, ..., 0.3463, 0.8132, 0.3234]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 2500000 +Density: 0.001 +Time: 0.6049323081970215 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '17357', '-ss', '50000', '-sd', '0.001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.690638303756714} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 47, 101, ..., 2499901, + 2499949, 2500000]), + col_indices=tensor([ 511, 725, 819, ..., 47217, 48788, 49222]), + values=tensor([0.0511, 0.3894, 0.2647, ..., 0.8233, 0.9615, 0.4045]), + size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.7118, 0.9063, 0.7110, ..., 0.7333, 0.4959, 0.7807]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 2500000 +Density: 0.001 +Time: 10.690638303756714 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 47, 101, ..., 2499901, + 2499949, 2500000]), + col_indices=tensor([ 511, 725, 819, ..., 47217, 48788, 49222]), + values=tensor([0.0511, 0.3894, 0.2647, ..., 0.8233, 0.9615, 0.4045]), + size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.7118, 0.9063, 0.7110, ..., 0.7333, 0.4959, 0.7807]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 2500000 +Density: 0.001 +Time: 10.690638303756714 seconds + +[18.27, 17.74, 18.29, 17.77, 18.01, 17.85, 17.88, 17.79, 18.2, 17.88] +[87.56] +14.792593717575073 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 17357, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.690638303756714, 'TIME_S_1KI': 0.6159266177194627, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1295.2395059108735, 'W': 87.56} +[18.27, 17.74, 18.29, 17.77, 18.01, 17.85, 17.88, 17.79, 18.2, 17.88, 18.2, 18.34, 18.01, 17.89, 18.13, 18.46, 18.22, 17.9, 17.95, 18.15] +324.68 +16.234 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 17357, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.690638303756714, 'TIME_S_1KI': 0.6159266177194627, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1295.2395059108735, 'W': 87.56, 'J_1KI': 74.62346637730447, 'W_1KI': 5.044650573255747, 'W_D': 71.326, 'J_D': 1055.0965394997595, 'W_D_1KI': 4.109350694244396, 'J_D_1KI': 0.23675466349279234} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_50000_1e-05.json b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_50000_1e-05.json new file mode 100644 index 0000000..3c6e8be --- /dev/null +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_50000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 112508, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.720516443252563, "TIME_S_1KI": 0.09528670355221462, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1090.2722121667862, "W": 75.82, "J_1KI": 9.69061944187779, "W_1KI": 0.6739076332349699, "W_D": 59.38549999999999, "J_D": 853.9483046113252, "W_D_1KI": 0.5278335762790201, "J_D_1KI": 0.004691520392141182} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_50000_1e-05.output b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_50000_1e-05.output new file mode 100644 index 0000000..b66333e --- /dev/null +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_10_10_10_synthetic_50000_1e-05.output @@ -0,0 +1,81 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.11333847045898438} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2, 2, ..., 24996, 24999, 25000]), + col_indices=tensor([ 9502, 18497, 7204, ..., 33396, 45910, 109]), + values=tensor([0.5325, 0.6011, 0.4727, ..., 0.6967, 0.0269, 0.7415]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.7210, 0.8240, 0.5786, ..., 0.5702, 0.4441, 0.2533]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 0.11333847045898438 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '92642', '-ss', '50000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 8.645956993103027} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 1, ..., 25000, 25000, 25000]), + col_indices=tensor([35285, 1305, 12700, ..., 6399, 17561, 45264]), + values=tensor([0.6896, 0.7157, 0.5414, ..., 0.3157, 0.2585, 0.8046]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.8892, 0.5178, 0.0901, ..., 0.0600, 0.1718, 0.0275]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 8.645956993103027 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '112508', '-ss', '50000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.720516443252563} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 25000, 25000, 25000]), + col_indices=tensor([27684, 39939, 2715, ..., 47308, 11944, 42221]), + values=tensor([0.6561, 0.5911, 0.5622, ..., 0.2806, 0.4491, 0.6100]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.8957, 0.2813, 0.1993, ..., 0.7019, 0.9944, 0.8970]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 10.720516443252563 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 25000, 25000, 25000]), + col_indices=tensor([27684, 39939, 2715, ..., 47308, 11944, 42221]), + values=tensor([0.6561, 0.5911, 0.5622, ..., 0.2806, 0.4491, 0.6100]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.8957, 0.2813, 0.1993, ..., 0.7019, 0.9944, 0.8970]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 10.720516443252563 seconds + +[18.48, 18.01, 18.17, 19.64, 18.03, 18.42, 18.45, 18.1, 18.26, 18.04] +[75.82] +14.379744291305542 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 112508, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.720516443252563, 'TIME_S_1KI': 0.09528670355221462, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1090.2722121667862, 'W': 75.82} +[18.48, 18.01, 18.17, 19.64, 18.03, 18.42, 18.45, 18.1, 18.26, 18.04, 18.62, 18.47, 18.04, 18.06, 17.8, 18.08, 18.08, 18.67, 17.82, 18.04] +328.69000000000005 +16.434500000000003 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 112508, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.720516443252563, 'TIME_S_1KI': 0.09528670355221462, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1090.2722121667862, 'W': 75.82, 'J_1KI': 9.69061944187779, 'W_1KI': 0.6739076332349699, 'W_D': 59.38549999999999, 'J_D': 853.9483046113252, 'W_D_1KI': 0.5278335762790201, 'J_D_1KI': 0.004691520392141182} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_20_10_10_synthetic_30000_0.0001.json b/pytorch/output_synthetic_16core/xeon_4216_16_csr_20_10_10_synthetic_30000_0.0001.json new file mode 100644 index 0000000..1a2b755 --- /dev/null +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_20_10_10_synthetic_30000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 234425, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 90000, "MATRIX_DENSITY": 0.0001, "TIME_S": 21.312235116958618, "TIME_S_1KI": 0.09091280843322434, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2054.109435153008, "W": 83.45000000000002, "J_1KI": 8.762330959381499, "W_1KI": 0.3559773914898156, "W_D": 67.21450000000002, "J_D": 1654.4749985511307, "W_D_1KI": 0.2867206995840888, "J_D_1KI": 0.0012230807276702091} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_20_10_10_synthetic_30000_0.0001.output b/pytorch/output_synthetic_16core/xeon_4216_16_csr_20_10_10_synthetic_30000_0.0001.output new file mode 100644 index 0000000..06a3a12 --- /dev/null +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_20_10_10_synthetic_30000_0.0001.output @@ -0,0 +1,81 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '30000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 90000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.10643196105957031} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 6, 9, ..., 89992, 89998, 90000]), + col_indices=tensor([ 7924, 12206, 12582, ..., 21107, 10373, 19571]), + values=tensor([0.8274, 0.6462, 0.9289, ..., 0.2542, 0.4328, 0.6143]), + size=(30000, 30000), nnz=90000, layout=torch.sparse_csr) +tensor([0.4141, 0.4229, 0.5665, ..., 0.1440, 0.7095, 0.1472]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 90000 +Density: 0.0001 +Time: 0.10643196105957031 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '197309', '-ss', '30000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 90000, "MATRIX_DENSITY": 0.0001, "TIME_S": 17.675063133239746} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 4, 9, ..., 89992, 89999, 90000]), + col_indices=tensor([ 929, 2315, 11088, ..., 21381, 23338, 19838]), + values=tensor([0.3872, 0.2873, 0.0227, ..., 0.4746, 0.4839, 0.3522]), + size=(30000, 30000), nnz=90000, layout=torch.sparse_csr) +tensor([0.1013, 0.5431, 0.3309, ..., 0.2751, 0.1147, 0.0007]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 90000 +Density: 0.0001 +Time: 17.675063133239746 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '234425', '-ss', '30000', '-sd', '0.0001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 90000, "MATRIX_DENSITY": 0.0001, "TIME_S": 21.312235116958618} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 4, 10, ..., 89994, 89997, 90000]), + col_indices=tensor([ 6200, 14122, 21980, ..., 11781, 19689, 21155]), + values=tensor([0.5859, 0.7824, 0.3581, ..., 0.7747, 0.1479, 0.5181]), + size=(30000, 30000), nnz=90000, layout=torch.sparse_csr) +tensor([0.3266, 0.0767, 0.6789, ..., 0.9087, 0.9799, 0.8849]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 90000 +Density: 0.0001 +Time: 21.312235116958618 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 4, 10, ..., 89994, 89997, 90000]), + col_indices=tensor([ 6200, 14122, 21980, ..., 11781, 19689, 21155]), + values=tensor([0.5859, 0.7824, 0.3581, ..., 0.7747, 0.1479, 0.5181]), + size=(30000, 30000), nnz=90000, layout=torch.sparse_csr) +tensor([0.3266, 0.0767, 0.6789, ..., 0.9087, 0.9799, 0.8849]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 90000 +Density: 0.0001 +Time: 21.312235116958618 seconds + +[18.37, 18.49, 18.06, 17.95, 17.95, 17.71, 18.07, 17.8, 17.94, 17.81] +[83.45] +24.61485242843628 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 234425, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 90000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 21.312235116958618, 'TIME_S_1KI': 0.09091280843322434, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2054.109435153008, 'W': 83.45000000000002} +[18.37, 18.49, 18.06, 17.95, 17.95, 17.71, 18.07, 17.8, 17.94, 17.81, 18.28, 18.06, 18.16, 17.86, 18.06, 17.97, 18.34, 17.89, 18.12, 18.1] +324.71 +16.2355 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 234425, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 90000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 21.312235116958618, 'TIME_S_1KI': 0.09091280843322434, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2054.109435153008, 'W': 83.45000000000002, 'J_1KI': 8.762330959381499, 'W_1KI': 0.3559773914898156, 'W_D': 67.21450000000002, 'J_D': 1654.4749985511307, 'W_D_1KI': 0.2867206995840888, 'J_D_1KI': 0.0012230807276702091} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_20_10_10_synthetic_30000_0.001.json b/pytorch/output_synthetic_16core/xeon_4216_16_csr_20_10_10_synthetic_30000_0.001.json new file mode 100644 index 0000000..e69de29 diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_20_10_10_synthetic_30000_0.001.output b/pytorch/output_synthetic_16core/xeon_4216_16_csr_20_10_10_synthetic_30000_0.001.output new file mode 100644 index 0000000..355226c --- /dev/null +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_20_10_10_synthetic_30000_0.001.output @@ -0,0 +1,77 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '30000', '-sd', '0.001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 900000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.2140212059020996} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 34, 62, ..., 899934, 899967, + 900000]), + col_indices=tensor([ 1559, 1711, 3295, ..., 29804, 29893, 29964]), + values=tensor([0.7225, 0.7366, 0.0675, ..., 0.3495, 0.2204, 0.5611]), + size=(30000, 30000), nnz=900000, layout=torch.sparse_csr) +tensor([0.1783, 0.4759, 0.5239, ..., 0.8363, 0.1566, 0.5506]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 900000 +Density: 0.001 +Time: 0.2140212059020996 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '98121', '-ss', '30000', '-sd', '0.001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 900000, "MATRIX_DENSITY": 0.001, "TIME_S": 19.3143093585968} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 29, 64, ..., 899940, 899966, + 900000]), + col_indices=tensor([ 612, 701, 1017, ..., 29770, 29777, 29834]), + values=tensor([0.4034, 0.5977, 0.8788, ..., 0.6466, 0.3405, 0.9207]), + size=(30000, 30000), nnz=900000, layout=torch.sparse_csr) +tensor([0.7678, 0.0123, 0.5496, ..., 0.4589, 0.2646, 0.8857]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 900000 +Density: 0.001 +Time: 19.3143093585968 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '106684', '-ss', '30000', '-sd', '0.001', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 900000, "MATRIX_DENSITY": 0.001, "TIME_S": 20.90600872039795} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 21, 51, ..., 899936, 899963, + 900000]), + col_indices=tensor([ 855, 2329, 2453, ..., 28070, 28293, 29379]), + values=tensor([0.2478, 0.6443, 0.3087, ..., 0.2033, 0.4619, 0.6203]), + size=(30000, 30000), nnz=900000, layout=torch.sparse_csr) +tensor([0.3161, 0.0015, 0.4480, ..., 0.6517, 0.7843, 0.6370]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 900000 +Density: 0.001 +Time: 20.90600872039795 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 21, 51, ..., 899936, 899963, + 900000]), + col_indices=tensor([ 855, 2329, 2453, ..., 28070, 28293, 29379]), + values=tensor([0.2478, 0.6443, 0.3087, ..., 0.2033, 0.4619, 0.6203]), + size=(30000, 30000), nnz=900000, layout=torch.sparse_csr) +tensor([0.3161, 0.0015, 0.4480, ..., 0.6517, 0.7843, 0.6370]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 900000 +Density: 0.001 +Time: 20.90600872039795 seconds + diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_20_10_10_synthetic_30000_1e-05.json b/pytorch/output_synthetic_16core/xeon_4216_16_csr_20_10_10_synthetic_30000_1e-05.json new file mode 100644 index 0000000..21aeca6 --- /dev/null +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_20_10_10_synthetic_30000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 303288, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 9000, "MATRIX_DENSITY": 1e-05, "TIME_S": 21.079484939575195, "TIME_S_1KI": 0.06950319478375404, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1922.1091361045835, "W": 78.6, "J_1KI": 6.337570679039671, "W_1KI": 0.2591596106670887, "W_D": 62.18274999999999, "J_D": 1520.636537953019, "W_D_1KI": 0.20502871857772148, "J_D_1KI": 0.0006760198839971298} diff --git a/pytorch/output_synthetic_16core/xeon_4216_16_csr_20_10_10_synthetic_30000_1e-05.output b/pytorch/output_synthetic_16core/xeon_4216_16_csr_20_10_10_synthetic_30000_1e-05.output new file mode 100644 index 0000000..d8910fb --- /dev/null +++ b/pytorch/output_synthetic_16core/xeon_4216_16_csr_20_10_10_synthetic_30000_1e-05.output @@ -0,0 +1,81 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '30000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 9000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.08539462089538574} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 9000, 9000, 9000]), + col_indices=tensor([ 8168, 26166, 15021, ..., 3965, 14348, 3180]), + values=tensor([0.0414, 0.9204, 0.6909, ..., 0.5705, 0.2524, 0.4947]), + size=(30000, 30000), nnz=9000, layout=torch.sparse_csr) +tensor([0.9721, 0.7014, 0.8881, ..., 0.4193, 0.5170, 0.9013]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 9000 +Density: 1e-05 +Time: 0.08539462089538574 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '245917', '-ss', '30000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 9000, "MATRIX_DENSITY": 1e-05, "TIME_S": 17.02755308151245} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 2, ..., 9000, 9000, 9000]), + col_indices=tensor([ 9352, 11930, 17471, ..., 19597, 20552, 1111]), + values=tensor([0.4298, 0.4908, 0.5157, ..., 0.6454, 0.4570, 0.2738]), + size=(30000, 30000), nnz=9000, layout=torch.sparse_csr) +tensor([0.3622, 0.2189, 0.3857, ..., 0.2935, 0.6447, 0.7890]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 9000 +Density: 1e-05 +Time: 17.02755308151245 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:16}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '303288', '-ss', '30000', '-sd', '1e-05', '-c', '16'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 9000, "MATRIX_DENSITY": 1e-05, "TIME_S": 21.079484939575195} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 1, ..., 8999, 9000, 9000]), + col_indices=tensor([20060, 11216, 16521, ..., 22127, 15786, 9820]), + values=tensor([0.3604, 0.7216, 0.9721, ..., 0.8443, 0.2707, 0.5761]), + size=(30000, 30000), nnz=9000, layout=torch.sparse_csr) +tensor([0.4467, 0.9917, 0.2567, ..., 0.4911, 0.0150, 0.9779]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 9000 +Density: 1e-05 +Time: 21.079484939575195 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 1, ..., 8999, 9000, 9000]), + col_indices=tensor([20060, 11216, 16521, ..., 22127, 15786, 9820]), + values=tensor([0.3604, 0.7216, 0.9721, ..., 0.8443, 0.2707, 0.5761]), + size=(30000, 30000), nnz=9000, layout=torch.sparse_csr) +tensor([0.4467, 0.9917, 0.2567, ..., 0.4911, 0.0150, 0.9779]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 9000 +Density: 1e-05 +Time: 21.079484939575195 seconds + +[18.69, 17.92, 17.95, 17.83, 18.17, 17.93, 17.96, 17.93, 18.28, 17.85] +[78.6] +24.454314708709717 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 303288, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 9000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 21.079484939575195, 'TIME_S_1KI': 0.06950319478375404, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1922.1091361045835, 'W': 78.6} +[18.69, 17.92, 17.95, 17.83, 18.17, 17.93, 17.96, 17.93, 18.28, 17.85, 18.57, 17.96, 18.0, 18.17, 18.14, 18.05, 18.17, 20.58, 18.66, 18.18] +328.345 +16.417250000000003 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 303288, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 9000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 21.079484939575195, 'TIME_S_1KI': 0.06950319478375404, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1922.1091361045835, 'W': 78.6, 'J_1KI': 6.337570679039671, 'W_1KI': 0.2591596106670887, 'W_D': 62.18274999999999, 'J_D': 1520.636537953019, 'W_D_1KI': 0.20502871857772148, 'J_D_1KI': 0.0006760198839971298} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_100000_0.0001.json b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_100000_0.0001.json new file mode 100644 index 0000000..27d9946 --- /dev/null +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_100000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 24.691206455230713, "TIME_S_1KI": 24.691206455230713, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 647.4072245025635, "W": 22.90104020202067, "J_1KI": 647.4072245025635, "W_1KI": 22.90104020202067, "W_D": 3.140040202020675, "J_D": 88.76822598814977, "W_D_1KI": 3.140040202020675, "J_D_1KI": 3.140040202020675} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_100000_0.0001.output b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_100000_0.0001.output new file mode 100644 index 0000000..d5446f7 --- /dev/null +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_100000_0.0001.output @@ -0,0 +1,45 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 100000 -sd 0.0001 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 24.691206455230713} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 11, 21, ..., 999980, + 999990, 1000000]), + col_indices=tensor([ 5106, 13656, 15471, ..., 68202, 79637, 95576]), + values=tensor([0.9862, 0.5796, 0.7870, ..., 0.3201, 0.7080, 0.2748]), + size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.6105, 0.8083, 0.7150, ..., 0.7011, 0.0810, 0.6416]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 1000000 +Density: 0.0001 +Time: 24.691206455230713 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 11, 21, ..., 999980, + 999990, 1000000]), + col_indices=tensor([ 5106, 13656, 15471, ..., 68202, 79637, 95576]), + values=tensor([0.9862, 0.5796, 0.7870, ..., 0.3201, 0.7080, 0.2748]), + size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.6105, 0.8083, 0.7150, ..., 0.7011, 0.0810, 0.6416]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 1000000 +Density: 0.0001 +Time: 24.691206455230713 seconds + +[20.64, 20.52, 20.48, 20.68, 20.48, 20.48, 20.52, 20.48, 20.28, 20.36] +[20.64, 20.84, 21.24, 24.56, 26.2, 27.16, 28.16, 26.08, 25.68, 24.72, 24.72, 24.48, 24.6, 24.6, 24.72, 24.68, 24.6, 24.52, 24.52, 24.8, 24.72, 24.6, 24.48, 24.48, 24.52, 24.44, 24.64] +28.269773721694946 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 24.691206455230713, 'TIME_S_1KI': 24.691206455230713, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 647.4072245025635, 'W': 22.90104020202067} +[20.64, 20.52, 20.48, 20.68, 20.48, 20.48, 20.52, 20.48, 20.28, 20.36, 20.6, 20.56, 20.64, 22.68, 24.64, 25.4, 25.4, 25.36, 24.48, 22.68] +395.2199999999999 +19.760999999999996 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 24.691206455230713, 'TIME_S_1KI': 24.691206455230713, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 647.4072245025635, 'W': 22.90104020202067, 'J_1KI': 647.4072245025635, 'W_1KI': 22.90104020202067, 'W_D': 3.140040202020675, 'J_D': 88.76822598814977, 'W_D_1KI': 3.140040202020675, 'J_D_1KI': 3.140040202020675} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_100000_1e-05.json b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_100000_1e-05.json new file mode 100644 index 0000000..75a4f33 --- /dev/null +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_100000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 3170, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.487157583236694, "TIME_S_1KI": 3.3082516035446985, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 325.83638416290285, "W": 22.27932516765204, "J_1KI": 102.78750289050564, "W_1KI": 7.028178286325565, "W_D": 3.710325167652041, "J_D": 54.263714344978354, "W_D_1KI": 1.170449579700959, "J_D_1KI": 0.36922699675109116} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_100000_1e-05.output b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_100000_1e-05.output new file mode 100644 index 0000000..2086467 --- /dev/null +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_100000_1e-05.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 100000 -sd 1e-05 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 3.3119447231292725} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 1, ..., 99999, 99999, + 100000]), + col_indices=tensor([34080, 20424, 38945, ..., 64155, 47978, 44736]), + values=tensor([0.5824, 0.7466, 0.8758, ..., 0.8278, 0.8938, 0.7712]), + size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) +tensor([0.9015, 0.6308, 0.7799, ..., 0.6045, 0.4908, 0.8218]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 100000 +Density: 1e-05 +Time: 3.3119447231292725 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 3170 -ss 100000 -sd 1e-05 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.487157583236694} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 1, ..., 99997, 99999, + 100000]), + col_indices=tensor([62540, 50524, 43651, ..., 12394, 59846, 74659]), + values=tensor([0.6601, 0.8101, 0.4564, ..., 0.4320, 0.9061, 0.8749]), + size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) +tensor([0.2783, 0.8812, 0.6091, ..., 0.5557, 0.0745, 0.6879]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 100000 +Density: 1e-05 +Time: 10.487157583236694 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 1, ..., 99997, 99999, + 100000]), + col_indices=tensor([62540, 50524, 43651, ..., 12394, 59846, 74659]), + values=tensor([0.6601, 0.8101, 0.4564, ..., 0.4320, 0.9061, 0.8749]), + size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) +tensor([0.2783, 0.8812, 0.6091, ..., 0.5557, 0.0745, 0.6879]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 100000 +Density: 1e-05 +Time: 10.487157583236694 seconds + +[20.76, 20.76, 20.76, 20.8, 20.84, 20.72, 20.6, 20.36, 20.36, 20.32] +[20.32, 20.36, 20.48, 22.0, 23.24, 25.44, 26.04, 26.48, 26.08, 24.6, 24.44, 24.44, 24.4, 24.6] +14.625056266784668 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 3170, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.487157583236694, 'TIME_S_1KI': 3.3082516035446985, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 325.83638416290285, 'W': 22.27932516765204} +[20.76, 20.76, 20.76, 20.8, 20.84, 20.72, 20.6, 20.36, 20.36, 20.32, 20.04, 20.16, 20.24, 20.6, 20.72, 20.72, 20.88, 20.72, 21.08, 21.0] +371.38 +18.569 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 3170, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.487157583236694, 'TIME_S_1KI': 3.3082516035446985, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 325.83638416290285, 'W': 22.27932516765204, 'J_1KI': 102.78750289050564, 'W_1KI': 7.028178286325565, 'W_D': 3.710325167652041, 'J_D': 54.263714344978354, 'W_D_1KI': 1.170449579700959, 'J_D_1KI': 0.36922699675109116} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.0001.json b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.0001.json new file mode 100644 index 0000000..25fcf70 --- /dev/null +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 32170, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.42804479598999, "TIME_S_1KI": 0.32415432999658034, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 291.8528582954407, "W": 21.456480473872652, "J_1KI": 9.07220572879828, "W_1KI": 0.666971727506144, "W_D": 3.1474804738726547, "J_D": 42.81229504752161, "W_D_1KI": 0.09783899514680307, "J_D_1KI": 0.0030413116303016183} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.0001.output b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.0001.output new file mode 100644 index 0000000..034e4a3 --- /dev/null +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.0001.output @@ -0,0 +1,62 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 10000 -sd 0.0001 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.3263826370239258} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 1, ..., 10000, 10000, 10000]), + col_indices=tensor([1982, 558, 3662, ..., 629, 5634, 6549]), + values=tensor([0.5250, 0.9307, 0.0448, ..., 0.0150, 0.4421, 0.4831]), + size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) +tensor([0.5546, 0.0630, 0.8785, ..., 0.4779, 0.8090, 0.6189]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000 +Density: 0.0001 +Time: 0.3263826370239258 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 32170 -ss 10000 -sd 0.0001 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.42804479598999} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 2, ..., 9996, 9999, 10000]), + col_indices=tensor([8155, 9480, 4094, ..., 6796, 6921, 3902]), + values=tensor([0.0915, 0.3699, 0.5728, ..., 0.9057, 0.8661, 0.7356]), + size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) +tensor([0.3327, 0.6532, 0.3155, ..., 0.1421, 0.0155, 0.6755]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000 +Density: 0.0001 +Time: 10.42804479598999 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 2, ..., 9996, 9999, 10000]), + col_indices=tensor([8155, 9480, 4094, ..., 6796, 6921, 3902]), + values=tensor([0.0915, 0.3699, 0.5728, ..., 0.9057, 0.8661, 0.7356]), + size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) +tensor([0.3327, 0.6532, 0.3155, ..., 0.1421, 0.0155, 0.6755]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000 +Density: 0.0001 +Time: 10.42804479598999 seconds + +[20.24, 20.16, 19.96, 20.2, 20.32, 20.28, 20.4, 20.32, 20.32, 20.36] +[20.36, 20.24, 20.48, 22.52, 23.04, 24.76, 25.6, 25.52, 24.28, 23.12, 23.12, 23.16, 23.44] +13.602084398269653 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 32170, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.42804479598999, 'TIME_S_1KI': 0.32415432999658034, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 291.8528582954407, 'W': 21.456480473872652} +[20.24, 20.16, 19.96, 20.2, 20.32, 20.28, 20.4, 20.32, 20.32, 20.36, 20.52, 20.48, 20.64, 20.48, 20.48, 20.32, 20.48, 20.36, 20.32, 20.2] +366.17999999999995 +18.308999999999997 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 32170, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.42804479598999, 'TIME_S_1KI': 0.32415432999658034, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 291.8528582954407, 'W': 21.456480473872652, 'J_1KI': 9.07220572879828, 'W_1KI': 0.666971727506144, 'W_D': 3.1474804738726547, 'J_D': 42.81229504752161, 'W_D_1KI': 0.09783899514680307, 'J_D_1KI': 0.0030413116303016183} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.001.json b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.001.json new file mode 100644 index 0000000..6de6107 --- /dev/null +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.001.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 4747, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.586360931396484, "TIME_S_1KI": 2.2301160588574858, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 326.0044006347656, "W": 22.3162197944069, "J_1KI": 68.67587963656321, "W_1KI": 4.701120664505352, "W_D": 3.9862197944068996, "J_D": 58.23231742858882, "W_D_1KI": 0.8397345258914893, "J_D_1KI": 0.17689794099251935} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.001.output b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.001.output new file mode 100644 index 0000000..0876b19 --- /dev/null +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.001.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 10000 -sd 0.001 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 2.2116076946258545} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 9, 19, ..., 99984, 99990, + 100000]), + col_indices=tensor([ 365, 990, 1421, ..., 6204, 7506, 8345]), + values=tensor([0.4012, 0.2163, 0.0214, ..., 0.4427, 0.7190, 0.8381]), + size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) +tensor([0.6373, 0.6560, 0.2779, ..., 0.6662, 0.5919, 0.8676]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 100000 +Density: 0.001 +Time: 2.2116076946258545 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 4747 -ss 10000 -sd 0.001 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.586360931396484} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 12, 23, ..., 99976, 99989, + 100000]), + col_indices=tensor([ 145, 447, 695, ..., 7955, 8009, 9128]), + values=tensor([0.3182, 0.0478, 0.7097, ..., 0.3986, 0.2793, 0.7202]), + size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) +tensor([0.3264, 0.5290, 0.7390, ..., 0.4961, 0.6761, 0.4965]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 100000 +Density: 0.001 +Time: 10.586360931396484 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 12, 23, ..., 99976, 99989, + 100000]), + col_indices=tensor([ 145, 447, 695, ..., 7955, 8009, 9128]), + values=tensor([0.3182, 0.0478, 0.7097, ..., 0.3986, 0.2793, 0.7202]), + size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) +tensor([0.3264, 0.5290, 0.7390, ..., 0.4961, 0.6761, 0.4965]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 100000 +Density: 0.001 +Time: 10.586360931396484 seconds + +[20.56, 20.48, 20.36, 20.48, 20.4, 20.2, 20.32, 20.48, 20.52, 20.6] +[20.44, 20.44, 20.44, 21.8, 24.32, 26.12, 27.12, 27.16, 25.36, 24.28, 24.24, 24.12, 23.96, 23.84] +14.608406066894531 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 4747, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.586360931396484, 'TIME_S_1KI': 2.2301160588574858, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 326.0044006347656, 'W': 22.3162197944069} +[20.56, 20.48, 20.36, 20.48, 20.4, 20.2, 20.32, 20.48, 20.52, 20.6, 20.28, 20.08, 20.4, 20.32, 20.2, 20.36, 20.36, 20.4, 20.28, 20.48] +366.6 +18.330000000000002 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 4747, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.586360931396484, 'TIME_S_1KI': 2.2301160588574858, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 326.0044006347656, 'W': 22.3162197944069, 'J_1KI': 68.67587963656321, 'W_1KI': 4.701120664505352, 'W_D': 3.9862197944068996, 'J_D': 58.23231742858882, 'W_D_1KI': 0.8397345258914893, 'J_D_1KI': 0.17689794099251935} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.01.json b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.01.json new file mode 100644 index 0000000..9af62e4 --- /dev/null +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.01.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 21.214847326278687, "TIME_S_1KI": 21.214847326278687, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 593.507265138626, "W": 22.813207511083125, "J_1KI": 593.507265138626, "W_1KI": 22.813207511083125, "W_D": 4.622207511083129, "J_D": 120.25111933398253, "W_D_1KI": 4.622207511083129, "J_D_1KI": 4.622207511083129} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.01.output b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.01.output new file mode 100644 index 0000000..a8afaf9 --- /dev/null +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.01.output @@ -0,0 +1,45 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 10000 -sd 0.01 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 21.214847326278687} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 111, 190, ..., 999805, + 999902, 1000000]), + col_indices=tensor([ 3, 255, 407, ..., 9480, 9499, 9966]), + values=tensor([0.6179, 0.1045, 0.6429, ..., 0.5216, 0.7550, 0.7148]), + size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.6572, 0.8503, 0.2699, ..., 0.6176, 0.8577, 0.2518]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000000 +Density: 0.01 +Time: 21.214847326278687 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 111, 190, ..., 999805, + 999902, 1000000]), + col_indices=tensor([ 3, 255, 407, ..., 9480, 9499, 9966]), + values=tensor([0.6179, 0.1045, 0.6429, ..., 0.5216, 0.7550, 0.7148]), + size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.6572, 0.8503, 0.2699, ..., 0.6176, 0.8577, 0.2518]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000000 +Density: 0.01 +Time: 21.214847326278687 seconds + +[20.56, 20.64, 20.64, 20.52, 20.36, 20.4, 19.92, 19.96, 20.0, 20.08] +[20.04, 20.08, 23.16, 25.4, 27.72, 28.8, 28.8, 29.48, 25.64, 25.4, 24.0, 23.96, 23.64, 23.72, 23.92, 24.04, 24.32, 24.36, 24.04, 24.0, 23.84, 24.08, 24.28, 24.28, 24.28] +26.015949964523315 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 21.214847326278687, 'TIME_S_1KI': 21.214847326278687, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 593.507265138626, 'W': 22.813207511083125} +[20.56, 20.64, 20.64, 20.52, 20.36, 20.4, 19.92, 19.96, 20.0, 20.08, 19.76, 19.76, 19.96, 20.28, 20.4, 20.36, 20.4, 20.0, 19.92, 20.2] +363.81999999999994 +18.190999999999995 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 21.214847326278687, 'TIME_S_1KI': 21.214847326278687, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 593.507265138626, 'W': 22.813207511083125, 'J_1KI': 593.507265138626, 'W_1KI': 22.813207511083125, 'W_D': 4.622207511083129, 'J_D': 120.25111933398253, 'W_D_1KI': 4.622207511083129, 'J_D_1KI': 4.622207511083129} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.05.json b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.05.json new file mode 100644 index 0000000..4f5ecb3 --- /dev/null +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.05.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 106.68757820129395, "TIME_S_1KI": 106.68757820129395, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2614.243714923859, "W": 23.06903562044379, "J_1KI": 2614.243714923859, "W_1KI": 23.06903562044379, "W_D": 4.456035620443789, "J_D": 504.9696617529395, "W_D_1KI": 4.456035620443789, "J_D_1KI": 4.456035620443789} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.05.output b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.05.output new file mode 100644 index 0000000..4e8e799 --- /dev/null +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_0.05.output @@ -0,0 +1,45 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 10000 -sd 0.05 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 106.68757820129395} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 529, 1008, ..., 4999026, + 4999478, 5000000]), + col_indices=tensor([ 75, 122, 128, ..., 9908, 9909, 9916]), + values=tensor([0.8571, 0.2596, 0.0411, ..., 0.7048, 0.9398, 0.3732]), + size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.2354, 0.1436, 0.6485, ..., 0.5167, 0.9065, 0.2719]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000000 +Density: 0.05 +Time: 106.68757820129395 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 529, 1008, ..., 4999026, + 4999478, 5000000]), + col_indices=tensor([ 75, 122, 128, ..., 9908, 9909, 9916]), + values=tensor([0.8571, 0.2596, 0.0411, ..., 0.7048, 0.9398, 0.3732]), + size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.2354, 0.1436, 0.6485, ..., 0.5167, 0.9065, 0.2719]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000000 +Density: 0.05 +Time: 106.68757820129395 seconds + +[20.52, 20.6, 20.8, 20.84, 20.8, 20.6, 20.68, 20.68, 20.4, 20.56] +[20.56, 20.64, 20.92, 22.0, 23.8, 25.56, 26.6, 26.56, 26.4, 25.36, 24.52, 24.6, 24.56, 24.6, 24.32, 24.4, 24.4, 24.32, 24.24, 24.44, 24.6, 24.36, 24.32, 24.36, 24.48, 24.6, 24.76, 24.72, 24.64, 24.6, 24.48, 24.56, 24.64, 24.64, 24.44, 24.48, 24.36, 24.16, 24.16, 24.24, 24.28, 24.16, 24.2, 24.36, 24.44, 24.44, 24.32, 24.0, 24.0, 24.0, 24.28, 24.44, 24.56, 24.48, 24.48, 24.32, 24.52, 24.52, 24.36, 24.4, 24.4, 24.32, 24.36, 24.32, 24.68, 24.72, 24.6, 24.6, 24.64, 24.6, 24.72, 24.64, 24.64, 24.68, 24.68, 24.52, 24.4, 24.32, 24.2, 24.16, 24.24, 24.2, 24.2, 24.4, 24.52, 24.56, 24.8, 24.8, 24.56, 24.44, 24.4, 23.84, 23.76, 23.88, 24.0, 24.0, 24.16, 24.2, 24.36, 24.2, 24.16, 24.2, 24.24, 24.16, 24.16, 24.4, 24.32, 24.56] +113.32262682914734 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 106.68757820129395, 'TIME_S_1KI': 106.68757820129395, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2614.243714923859, 'W': 23.06903562044379} +[20.52, 20.6, 20.8, 20.84, 20.8, 20.6, 20.68, 20.68, 20.4, 20.56, 20.4, 20.52, 20.72, 20.84, 20.96, 20.84, 20.8, 20.52, 20.64, 20.56] +372.26 +18.613 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 106.68757820129395, 'TIME_S_1KI': 106.68757820129395, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2614.243714923859, 'W': 23.06903562044379, 'J_1KI': 2614.243714923859, 'W_1KI': 23.06903562044379, 'W_D': 4.456035620443789, 'J_D': 504.9696617529395, 'W_D_1KI': 4.456035620443789, 'J_D_1KI': 4.456035620443789} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_1e-05.json b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_1e-05.json new file mode 100644 index 0000000..69bee1d --- /dev/null +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 145400, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.376285076141357, "TIME_S_1KI": 0.07136372129395707, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 324.9616888427734, "W": 22.159348523127505, "J_1KI": 2.2349497169379187, "W_1KI": 0.15240267209853856, "W_D": 3.711348523127505, "J_D": 54.42606233215331, "W_D_1KI": 0.02552509300637899, "J_D_1KI": 0.00017555084598610036} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_1e-05.output b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_1e-05.output new file mode 100644 index 0000000..d251499 --- /dev/null +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_10000_1e-05.output @@ -0,0 +1,1521 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 10000 -sd 1e-05 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.08243966102600098} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), + col_indices=tensor([ 252, 7839, 5648, 3465, 7349, 4902, 9434, 7529, 7692, + 165, 3611, 104, 550, 6486, 7084, 9069, 7958, 6919, + 690, 9278, 3067, 6601, 7528, 1640, 3373, 4102, 2924, + 2640, 1739, 407, 8622, 7009, 7252, 6788, 1851, 3757, + 6304, 8203, 5332, 7635, 594, 3806, 4878, 4044, 1441, + 999, 1148, 5958, 9975, 4945, 2434, 1204, 59, 181, + 7425, 800, 8678, 5796, 5760, 120, 6846, 442, 3920, + 1463, 5374, 6614, 1071, 5654, 6755, 4329, 2096, 3557, + 3459, 2406, 5557, 9403, 8210, 6660, 740, 4513, 3423, + 2395, 8647, 3341, 136, 1978, 4301, 975, 3977, 9483, + 1644, 1238, 3590, 4407, 378, 953, 4885, 3832, 7590, + 727, 9280, 2092, 6016, 2681, 4198, 2877, 6915, 4242, + 6915, 8581, 5016, 2122, 9650, 9146, 4295, 9411, 1035, + 3607, 4089, 1201, 5045, 5545, 7311, 3130, 7563, 2568, + 6650, 8830, 9967, 763, 8604, 7974, 6093, 2055, 9735, + 2084, 6764, 9924, 9982, 8233, 9788, 2760, 7451, 647, + 9876, 3730, 1454, 7105, 9740, 3, 6735, 3817, 6148, + 2672, 8936, 3502, 36, 122, 8671, 6286, 16, 4468, + 7863, 6117, 5323, 3322, 1830, 4682, 2100, 8360, 6810, + 1598, 8824, 932, 5248, 3917, 7002, 3906, 3017, 2692, + 1181, 3736, 4511, 4850, 7042, 514, 3936, 2631, 7634, + 8605, 7530, 2136, 1830, 5351, 6593, 8222, 4992, 702, + 8215, 7622, 3843, 1766, 8771, 4771, 6546, 8907, 5810, + 4223, 4783, 1749, 808, 748, 8530, 510, 4005, 9341, + 9392, 5211, 8047, 1297, 1483, 2102, 9250, 9844, 5843, + 7781, 5823, 5125, 7934, 6365, 4344, 2486, 5379, 5512, + 1500, 5968, 9635, 2436, 343, 691, 5998, 6974, 5014, + 8797, 2209, 662, 5712, 468, 4740, 3465, 7884, 1157, + 5482, 4513, 3540, 1871, 3557, 4818, 294, 9373, 9392, + 6804, 446, 4018, 9572, 2746, 8821, 3101, 5524, 4011, + 6392, 4612, 6933, 5523, 6755, 5391, 9534, 6269, 2247, + 26, 3621, 8701, 6455, 4517, 2157, 6077, 8811, 8299, + 1793, 7712, 8935, 4953, 4593, 2233, 1763, 2638, 6120, + 3919, 6685, 8170, 8912, 8472, 2086, 4535, 5619, 680, + 4842, 7676, 6910, 6323, 7473, 2912, 6983, 1773, 3647, + 1488, 4405, 9243, 4961, 5147, 4030, 6029, 7737, 9786, + 8179, 920, 4796, 5800, 5579, 8198, 6536, 9822, 7168, + 4169, 9541, 5653, 1326, 4959, 4059, 87, 6667, 6591, + 1202, 4268, 583, 2119, 8178, 8386, 2346, 9152, 480, + 8393, 1347, 969, 5740, 199, 2706, 9179, 9925, 1569, + 3911, 617, 7052, 7551, 8066, 3096, 422, 6701, 9877, + 1422, 9102, 806, 5587, 9274, 2597, 1463, 9111, 4690, + 6223, 1110, 1661, 1854, 9509, 4300, 4820, 680, 8309, + 83, 406, 145, 2909, 4808, 5417, 5546, 8440, 6714, + 8204, 2476, 3404, 3107, 4637, 7287, 2700, 6764, 9687, + 3766, 7158, 1579, 1642, 2888, 9988, 8451, 7261, 7908, + 9760, 6495, 868, 8055, 2229, 6718, 6854, 7101, 3460, + 1480, 5908, 1710, 1311, 7394, 1535, 5767, 9382, 6035, + 6352, 9940, 3068, 1099, 9199, 844, 2345, 7539, 5311, + 1344, 795, 1299, 1427, 2359, 6210, 1940, 4014, 9343, + 6807, 601, 9305, 6485, 4671, 479, 9989, 6498, 8791, + 4029, 1185, 2150, 1611, 9247, 1386, 6282, 1198, 8207, + 168, 9966, 8935, 7136, 2956, 7945, 3135, 1338, 8120, + 8911, 7324, 7616, 9525, 1089, 2535, 5885, 6794, 4177, + 1549, 6210, 3390, 6804, 2877, 4943, 9928, 8223, 8906, + 8888, 3459, 625, 8152, 4970, 6566, 1431, 3558, 5909, + 4644, 5732, 6646, 2764, 9269, 7042, 4735, 8837, 8508, + 4960, 8021, 8758, 717, 7061, 7250, 2575, 3253, 7578, + 8526, 5442, 8779, 1392, 7075, 7474, 5206, 1365, 4114, + 6910, 8849, 4615, 1920, 8635, 4916, 8961, 314, 6483, + 8460, 8661, 3346, 5713, 2155, 4770, 8480, 6079, 1859, + 4905, 7013, 9809, 7525, 6366, 5580, 800, 3941, 6983, + 5992, 823, 5419, 6585, 5265, 7523, 1529, 1063, 1845, + 508, 440, 3534, 6337, 4197, 3477, 4822, 3503, 5247, + 8192, 1821, 6846, 6103, 7202, 2324, 6837, 3842, 2645, + 5069, 6889, 9598, 2706, 2071, 6669, 5766, 9229, 442, + 2610, 8285, 6236, 5573, 3986, 1231, 4409, 7210, 1785, + 8842, 2784, 8116, 2335, 2665, 4250, 4511, 4655, 5687, + 2034, 7694, 1632, 1903, 2798, 9449, 32, 4346, 3152, + 401, 3235, 6393, 9087, 3028, 428, 8951, 2121, 1980, + 6229, 2463, 8133, 2257, 9417, 6518, 5725, 8271, 9273, + 5432, 3877, 5458, 5090, 6954, 5520, 8694, 6001, 9990, + 3826, 5607, 8624, 5287, 4743, 4098, 5108, 7594, 8810, + 7198, 7629, 7936, 58, 7202, 1568, 4531, 5153, 7169, + 2986, 9248, 8747, 5959, 7564, 3379, 2192, 8481, 333, + 8571, 8198, 2115, 2561, 795, 8427, 7486, 6933, 7082, + 2006, 9398, 6619, 3063, 4813, 8722, 4295, 3600, 7348, + 9286, 2123, 6647, 6207, 8996, 801, 2030, 925, 5992, + 9553, 3423, 9026, 8, 7802, 2458, 9300, 6765, 5796, + 8636, 5723, 7062, 8809, 1599, 598, 8436, 5782, 965, + 461, 5948, 2047, 2459, 5968, 3285, 1989, 9399, 2683, + 9902, 9444, 7797, 9034, 8461, 8558, 7258, 6644, 1630, + 246, 6871, 5933, 5087, 8762, 4315, 5997, 4386, 2172, + 4536, 9311, 9832, 7624, 2977, 3946, 6388, 790, 6935, + 9174, 9391, 4050, 2698, 7708, 7922, 275, 6423, 3266, + 5292, 1182, 8926, 8600, 9081, 5546, 4427, 1370, 6470, + 4267, 4145, 5893, 7704, 6234, 4555, 3422, 8549, 5286, + 7269, 594, 9099, 6281, 2857, 9220, 3671, 9897, 2948, + 4497, 3803, 6350, 7674, 1594, 7639, 2889, 6927, 5836, + 6736, 7455, 916, 7481, 4994, 6720, 6379, 3857, 4222, + 519, 4570, 3697, 4849, 1787, 5768, 9060, 916, 12, + 3578, 2283, 6099, 2525, 10, 5457, 5555, 4678, 2627, + 6632, 2690, 5114, 6385, 338, 4606, 6990, 9683, 4269, + 7335, 5251, 8029, 5687, 4726, 7669, 6989, 2867, 890, + 5989, 7548, 1788, 2014, 8701, 659, 4759, 5429, 6064, + 9106, 1014, 2757, 9766, 8207, 1927, 2784, 6272, 6801, + 3107, 4185, 7396, 6416, 2895, 6501, 1862, 6835, 3353, + 7285, 8443, 5937, 3968, 9162, 903, 8575, 1535, 5003, + 7432, 4678, 2158, 3254, 8555, 4467, 3658, 4909, 8302, + 967, 6993, 2364, 1980, 7994, 2960, 1862, 5699, 9380, + 7802, 836, 6809, 8323, 7040, 1082, 6752, 8264, 6441, + 4214, 7290, 3066, 3737, 1923, 7871, 5838, 2703, 1797, + 8902, 2887, 1148, 4435, 6935, 9604, 7491, 7918, 1891, + 5769, 5780, 9339, 4089, 8820, 8455, 2176, 5092, 7496, + 9986, 7792, 7515, 9400, 3576, 1656, 1034, 4984, 4318, + 516, 1104, 6615, 3729, 9239, 4176, 5109, 4523, 5423, + 4310, 8446, 8954, 6305, 3579, 5848, 5971, 1235, 7513, + 6017, 3772, 197, 9255, 5929, 5514, 5490, 1717, 1881, + 4208, 9867, 7526, 7915, 6579, 5417, 7580, 5540, 7660, + 7530, 7142, 638, 4444, 7450, 5581, 2950, 9703, 1035, + 1395, 2126, 2348, 2840, 2560, 3902, 1786, 6271, 3582, + 5179]), + values=tensor([1.1398e-01, 4.5701e-01, 9.1677e-01, 7.6676e-01, + 4.5397e-01, 7.8607e-01, 6.7699e-01, 4.4824e-01, + 1.1089e-01, 2.2162e-04, 1.7425e-01, 3.1837e-01, + 8.5822e-03, 4.7768e-01, 1.5387e-01, 3.0223e-01, + 4.0371e-01, 4.4123e-01, 7.7609e-01, 6.4492e-01, + 8.2429e-01, 8.3313e-01, 9.8148e-01, 9.1538e-01, + 4.9730e-01, 8.5059e-01, 6.1877e-01, 5.1939e-01, + 5.5798e-01, 5.0091e-01, 4.1061e-01, 9.2937e-01, + 9.5609e-01, 8.7103e-02, 5.0227e-01, 1.0999e-01, + 6.5964e-02, 4.7419e-01, 2.0885e-01, 9.7682e-01, + 3.1682e-01, 5.3352e-01, 1.7838e-01, 3.6944e-01, + 7.7856e-01, 8.1945e-02, 3.2643e-01, 7.1965e-01, + 9.2732e-01, 6.5053e-01, 3.1863e-01, 8.4939e-02, + 3.8327e-02, 9.1600e-01, 4.6334e-01, 2.7798e-03, + 5.5788e-01, 4.2202e-01, 9.7366e-01, 7.3529e-01, + 6.0986e-01, 9.9120e-01, 5.4564e-01, 4.6692e-01, + 7.5075e-01, 9.9939e-01, 1.7701e-01, 1.7010e-01, + 7.2917e-01, 1.0548e-01, 2.3979e-01, 4.0362e-01, + 2.2728e-02, 7.9852e-01, 5.9097e-01, 8.4211e-01, + 2.7317e-01, 7.5793e-01, 4.4763e-01, 8.9137e-01, + 2.1648e-01, 5.3602e-01, 2.5258e-01, 2.7488e-01, + 5.8449e-01, 2.3385e-01, 1.6282e-01, 1.2994e-02, + 6.0808e-01, 7.2198e-01, 4.5666e-02, 4.8221e-01, + 5.3837e-01, 2.4284e-01, 8.5430e-01, 5.3583e-01, + 6.6264e-01, 3.5052e-02, 5.8137e-01, 8.9660e-01, + 9.7719e-01, 5.8996e-01, 8.2914e-01, 2.1977e-01, + 8.9453e-01, 9.1374e-01, 9.3604e-01, 5.8379e-01, + 4.6967e-01, 4.0322e-02, 2.7081e-01, 3.6179e-01, + 8.6877e-01, 2.3540e-01, 9.2958e-01, 8.0094e-01, + 5.1751e-01, 2.4405e-01, 7.8634e-01, 1.0417e-01, + 2.1528e-01, 1.4438e-01, 4.6555e-01, 9.7393e-01, + 9.7512e-01, 7.2696e-01, 4.1536e-01, 8.0871e-01, + 5.9536e-01, 5.9568e-01, 5.0752e-01, 7.5060e-01, + 4.8779e-01, 9.9115e-02, 6.4193e-01, 9.6880e-01, + 9.9615e-01, 9.1596e-01, 7.5914e-01, 5.4084e-02, + 5.5377e-02, 8.6618e-01, 8.1098e-01, 1.5683e-01, + 4.5166e-01, 7.1720e-01, 7.4074e-01, 2.2057e-01, + 7.7304e-01, 3.7224e-01, 5.8425e-01, 4.2210e-01, + 8.8491e-01, 3.7541e-01, 8.1284e-01, 7.6339e-01, + 9.0975e-02, 1.3359e-01, 3.5264e-02, 3.2247e-01, + 3.8566e-01, 3.6076e-01, 7.6483e-03, 3.9528e-01, + 3.2447e-01, 2.0965e-01, 2.2797e-01, 3.4802e-01, + 4.7149e-01, 8.4883e-02, 5.9693e-01, 9.5199e-01, + 8.0506e-01, 5.7482e-01, 8.5519e-01, 3.1827e-01, + 6.4714e-01, 6.1169e-01, 2.0934e-01, 4.1690e-01, + 3.6825e-02, 3.7347e-01, 8.3016e-01, 8.6529e-01, + 2.7912e-01, 1.8435e-01, 8.1002e-01, 7.0997e-01, + 1.9340e-01, 3.6621e-01, 1.5457e-01, 2.3361e-01, + 7.1600e-01, 6.7596e-01, 3.5321e-01, 4.1996e-01, + 2.8372e-01, 7.9354e-01, 5.6871e-01, 4.6209e-02, + 8.5928e-01, 4.4915e-01, 4.1458e-01, 8.0500e-01, + 3.8968e-01, 7.7263e-01, 2.4845e-01, 4.2430e-01, + 8.2861e-01, 3.6574e-01, 2.3914e-01, 8.8428e-01, + 1.0700e-02, 3.9405e-01, 3.1077e-02, 6.1753e-01, + 7.6090e-01, 1.4204e-01, 9.8571e-02, 4.7776e-01, + 7.5835e-01, 7.4891e-01, 4.1702e-01, 7.4036e-01, + 5.1610e-01, 1.5415e-01, 3.2752e-01, 8.2579e-01, + 9.7355e-01, 2.4171e-01, 4.3604e-01, 1.4826e-01, + 7.7730e-01, 3.6806e-01, 6.6672e-01, 4.8489e-01, + 1.4653e-01, 7.8715e-01, 9.0612e-01, 5.3896e-01, + 1.4912e-01, 3.6756e-01, 5.8564e-01, 9.7277e-01, + 9.1323e-02, 2.5754e-01, 8.1067e-01, 8.7861e-01, + 4.2476e-02, 4.0739e-02, 6.4508e-01, 6.3302e-01, + 4.1919e-01, 3.4137e-01, 7.4183e-01, 9.2600e-01, + 7.6754e-01, 6.4006e-01, 6.5888e-01, 8.2627e-01, + 3.6192e-01, 8.3794e-01, 5.9752e-01, 4.6776e-01, + 2.7883e-01, 6.3075e-01, 9.7661e-01, 7.6649e-01, + 5.8900e-01, 6.0578e-01, 7.3006e-01, 3.4738e-01, + 8.9139e-01, 6.6618e-01, 2.3515e-01, 1.8818e-01, + 1.9701e-02, 4.7496e-01, 4.7267e-02, 5.7144e-01, + 2.3268e-01, 5.8053e-01, 5.6927e-01, 1.4274e-01, + 2.1320e-04, 2.2279e-01, 5.0075e-02, 8.0242e-01, + 6.9103e-01, 3.7218e-01, 5.5271e-01, 6.1699e-01, + 8.4592e-01, 3.7016e-01, 2.0105e-01, 4.7011e-01, + 3.7640e-01, 4.1230e-01, 7.0537e-01, 1.2735e-01, + 4.3863e-01, 7.4747e-01, 3.4724e-01, 9.8014e-01, + 2.5834e-01, 3.9635e-01, 4.5503e-01, 3.9827e-01, + 3.0887e-02, 2.2023e-01, 6.9080e-01, 7.6920e-01, + 5.8589e-01, 6.3230e-01, 4.2782e-01, 4.7725e-02, + 7.1669e-01, 6.7426e-01, 2.9678e-01, 7.0318e-01, + 7.7099e-01, 5.6702e-01, 1.8709e-01, 7.4465e-01, + 5.9567e-01, 9.9705e-01, 9.1906e-01, 8.8980e-01, + 9.2834e-01, 4.7402e-02, 8.5015e-01, 8.6636e-01, + 1.7816e-01, 6.0995e-01, 7.7153e-01, 2.7887e-01, + 7.5408e-01, 3.7058e-02, 7.3075e-01, 8.8680e-01, + 4.8675e-01, 8.1393e-01, 1.7963e-01, 6.6882e-02, + 1.0117e-01, 2.9975e-01, 6.4973e-02, 1.2699e-01, + 8.4331e-01, 5.6704e-01, 4.1427e-01, 9.6904e-01, + 8.6781e-01, 1.4923e-01, 4.3881e-01, 9.4444e-03, + 2.7722e-01, 8.0251e-01, 2.7641e-02, 1.7977e-01, + 2.7851e-01, 4.0525e-01, 7.3115e-01, 5.0286e-01, + 1.0425e-01, 6.6263e-01, 1.1008e-01, 2.7001e-01, + 1.4887e-01, 1.1304e-01, 4.9196e-01, 8.2746e-01, + 9.3889e-01, 4.3963e-01, 7.8570e-01, 7.6910e-01, + 5.6108e-01, 5.2922e-02, 5.1490e-01, 4.0716e-01, + 9.5061e-01, 8.3793e-01, 8.8752e-01, 2.8193e-01, + 2.2696e-01, 5.0925e-01, 5.6142e-01, 5.3658e-01, + 6.7385e-01, 9.5147e-01, 1.7414e-01, 3.4050e-01, + 4.2443e-01, 3.4825e-01, 9.2234e-01, 1.4358e-01, + 6.8724e-01, 2.5411e-01, 1.1012e-01, 5.3814e-01, + 8.2895e-01, 8.8965e-01, 3.2104e-01, 4.9204e-01, + 7.0080e-02, 2.0692e-01, 8.5369e-03, 4.1856e-01, + 1.1532e-01, 5.3277e-01, 4.9503e-01, 9.6395e-01, + 2.0702e-01, 9.3586e-01, 1.4136e-01, 1.9169e-01, + 2.3680e-01, 3.8705e-01, 1.1694e-01, 4.6803e-01, + 8.6328e-04, 9.5239e-01, 7.8887e-01, 8.5043e-01, + 1.2684e-01, 8.6429e-01, 9.4349e-01, 3.3252e-01, + 3.1966e-01, 1.5868e-01, 5.3139e-01, 8.4187e-01, + 6.2553e-02, 2.3747e-01, 7.3373e-01, 8.9954e-01, + 2.0646e-01, 5.1753e-01, 2.1982e-01, 8.1967e-01, + 4.4549e-02, 6.7763e-01, 8.7376e-01, 2.3773e-01, + 7.1060e-01, 3.4842e-01, 4.0725e-01, 4.9744e-01, + 1.9944e-01, 4.5739e-01, 6.6146e-02, 3.5634e-01, + 9.9532e-01, 1.9343e-01, 8.2669e-01, 4.6879e-01, + 2.0484e-01, 2.4199e-01, 7.0875e-01, 4.7504e-01, + 5.3929e-01, 7.3912e-01, 8.8178e-01, 3.9528e-01, + 7.5814e-01, 3.1440e-01, 5.5335e-01, 6.8341e-01, + 6.8526e-01, 4.5211e-01, 8.6014e-01, 4.2533e-01, + 7.7686e-01, 9.8740e-01, 6.6787e-01, 3.8617e-01, + 7.1282e-01, 3.4285e-01, 2.4578e-01, 1.6732e-02, + 1.3306e-01, 9.0550e-01, 6.5296e-01, 8.2162e-02, + 8.9173e-01, 4.0778e-01, 5.1374e-02, 5.6948e-01, + 5.9055e-01, 6.4468e-01, 4.9269e-01, 2.8866e-01, + 7.8007e-01, 6.4385e-01, 3.0288e-01, 8.1409e-01, + 2.1734e-01, 3.5483e-01, 4.3751e-01, 3.8616e-01, + 9.5444e-01, 5.5599e-01, 8.6840e-01, 5.9001e-01, + 8.7433e-01, 5.9580e-01, 3.2009e-02, 9.6400e-02, + 8.1664e-01, 6.1383e-01, 1.8644e-01, 4.9923e-01, + 5.6197e-02, 8.0709e-01, 3.5743e-01, 2.8251e-02, + 1.3573e-01, 9.9283e-01, 1.4065e-01, 9.0814e-01, + 4.8452e-02, 8.8843e-01, 1.6080e-01, 4.2915e-01, + 7.8624e-01, 3.4093e-01, 7.2624e-01, 8.5272e-01, + 4.1485e-01, 2.0991e-01, 1.6736e-02, 6.2741e-01, + 6.2117e-01, 7.1089e-02, 3.2588e-01, 1.3331e-01, + 1.6339e-01, 7.4822e-01, 9.0327e-01, 1.8440e-01, + 5.8138e-01, 2.1518e-01, 1.4683e-01, 4.7070e-01, + 3.7685e-01, 6.3560e-01, 8.2158e-01, 1.9214e-01, + 7.1863e-01, 7.7731e-01, 4.1349e-02, 4.1811e-01, + 2.1785e-01, 8.8719e-01, 7.3854e-01, 2.2702e-01, + 1.2780e-01, 1.1562e-01, 2.9558e-01, 7.0063e-01, + 3.0304e-01, 2.2893e-01, 8.6231e-01, 4.1059e-01, + 4.6898e-01, 3.7939e-01, 9.9234e-01, 7.9008e-01, + 1.7271e-02, 7.8224e-02, 3.9120e-01, 7.2943e-01, + 8.9274e-01, 7.2804e-01, 2.9125e-01, 2.9461e-01, + 5.5926e-04, 5.7127e-02, 3.2634e-01, 5.9806e-01, + 6.6821e-01, 9.7015e-01, 4.5580e-01, 5.1612e-01, + 9.8549e-01, 5.1499e-01, 8.7530e-01, 9.7102e-01, + 4.2024e-01, 6.0139e-01, 8.8153e-01, 8.5210e-01, + 3.9449e-01, 9.3593e-01, 4.8778e-02, 5.9719e-01, + 9.6158e-01, 2.5940e-01, 6.1996e-01, 6.8075e-01, + 7.5797e-01, 1.5981e-01, 5.5610e-01, 2.8746e-01, + 8.1320e-02, 2.7118e-01, 5.6972e-02, 6.2419e-01, + 6.7384e-01, 2.7560e-01, 5.8770e-01, 6.8138e-01, + 9.0889e-01, 6.6457e-01, 6.3371e-01, 1.9423e-01, + 3.8710e-01, 2.4285e-01, 7.8363e-01, 4.6299e-01, + 2.0956e-01, 5.7082e-01, 6.5173e-01, 5.7313e-01, + 1.6594e-01, 6.0966e-01, 9.6414e-02, 5.8382e-01, + 8.1047e-01, 8.8127e-01, 9.7669e-01, 1.2448e-01, + 9.8313e-01, 2.3959e-01, 6.9699e-01, 2.2990e-01, + 5.7752e-01, 8.9664e-01, 2.0216e-01, 9.1705e-03, + 9.6705e-02, 3.7369e-02, 7.4901e-02, 4.1642e-01, + 2.8389e-01, 9.0397e-01, 6.5649e-01, 7.7615e-01, + 1.1745e-01, 9.6129e-01, 4.3090e-01, 1.1566e-01, + 1.4618e-01, 6.0785e-01, 7.8769e-01, 9.6897e-01, + 2.7124e-01, 9.2450e-01, 7.8702e-01, 7.1601e-01, + 7.7713e-01, 6.7111e-01, 3.7125e-01, 4.5772e-01, + 6.7504e-02, 1.0098e-01, 5.9474e-01, 6.2316e-01, + 3.3852e-01, 6.0984e-01, 8.2521e-01, 4.4878e-01, + 5.3732e-01, 4.0525e-01, 8.5208e-01, 2.4995e-01, + 9.2809e-01, 4.5984e-01, 5.4973e-01, 1.8787e-01, + 2.4292e-02, 4.9504e-01, 4.0271e-01, 9.8695e-01, + 7.3109e-01, 5.6608e-01, 3.1516e-01, 5.2712e-01, + 7.3263e-01, 9.2175e-02, 4.9851e-01, 6.8842e-01, + 6.5507e-01, 7.9785e-01, 7.9736e-01, 2.0350e-01, + 3.0152e-01, 1.7449e-03, 4.6760e-01, 8.3885e-01, + 7.1918e-01, 7.5664e-01, 2.5782e-01, 9.8605e-01, + 9.3790e-01, 7.4069e-01, 6.5677e-01, 7.9951e-01, + 6.0790e-01, 6.7957e-01, 6.6074e-01, 3.9157e-01, + 9.0328e-01, 6.3894e-01, 4.0108e-01, 3.1656e-01, + 2.9250e-01, 5.6162e-01, 8.1784e-01, 2.2062e-01, + 5.6757e-01, 8.0534e-01, 7.6018e-01, 2.0955e-01, + 4.0000e-01, 7.0074e-01, 7.8129e-01, 6.2359e-01, + 2.8015e-01, 8.1904e-01, 9.5535e-01, 2.1447e-01, + 1.7544e-01, 9.7574e-01, 2.8111e-01, 7.3511e-01, + 5.0578e-03, 2.9594e-01, 9.2274e-01, 8.0725e-01, + 6.3487e-02, 8.6772e-02, 2.7162e-02, 6.4633e-01, + 6.0350e-01, 9.6413e-01, 3.5128e-01, 9.0722e-01, + 7.3824e-01, 9.5999e-02, 1.4347e-01, 3.9736e-01, + 7.8452e-01, 5.0295e-01, 9.3458e-01, 2.8296e-01, + 5.1810e-01, 5.9604e-01, 5.5536e-01, 6.8616e-02, + 4.5378e-01, 5.7180e-01, 4.4828e-01, 3.2565e-02, + 3.8607e-01, 6.8995e-01, 8.2802e-01, 9.2692e-01, + 6.0816e-01, 6.8835e-01, 4.1899e-01, 8.8009e-01, + 8.4180e-01, 7.4527e-01, 4.0284e-01, 5.7607e-01, + 7.4242e-01, 2.7207e-01, 9.0512e-01, 4.0952e-01, + 5.7238e-01, 7.2598e-01, 4.5506e-01, 5.9661e-01, + 8.0981e-01, 6.1561e-01, 9.7702e-01, 5.8719e-01, + 6.8327e-01, 8.4993e-01, 5.4135e-01, 3.8588e-01, + 7.4067e-01, 9.2621e-01, 4.6096e-01, 2.8529e-01, + 1.4482e-01, 2.1615e-01, 7.4707e-01, 3.9938e-01, + 9.2713e-01, 5.2573e-01, 1.1798e-01, 9.5194e-01, + 2.4309e-01, 5.8642e-01, 1.3744e-01, 2.7034e-02, + 1.5566e-01, 3.0149e-01, 6.8730e-01, 3.7439e-01, + 6.8046e-01, 9.6453e-01, 5.6607e-01, 3.8754e-01, + 5.0828e-01, 8.5224e-01, 5.3385e-01, 8.4458e-01, + 3.9624e-01, 7.8082e-01, 6.3012e-01, 8.6090e-01, + 8.2682e-02, 2.8030e-01, 8.3641e-01, 7.3690e-01, + 7.6480e-01, 3.1092e-01, 8.2627e-01, 8.5567e-01, + 3.9378e-01, 8.8259e-01, 2.7266e-01, 9.2776e-01, + 7.7166e-01, 7.9371e-01, 1.8818e-03, 3.4382e-01, + 2.5273e-01, 5.3813e-01, 1.6621e-01, 7.1769e-01, + 2.4843e-01, 2.2461e-01, 8.5656e-02, 8.3542e-01, + 3.1930e-01, 3.0431e-01, 1.8306e-01, 5.6499e-01, + 9.6427e-01, 4.7266e-01, 8.0358e-01, 6.5886e-02, + 1.2313e-01, 3.7418e-01, 6.2444e-01, 4.7433e-01, + 3.4292e-01, 4.6292e-01, 4.9627e-01, 7.1799e-01, + 1.0792e-01, 8.9623e-02, 9.4429e-02, 8.6175e-01, + 4.4076e-01, 9.1106e-02, 2.1722e-01, 5.0437e-01, + 1.1861e-01, 6.2768e-01, 9.5253e-01, 7.8368e-01, + 1.6111e-02, 7.6369e-01, 6.5446e-02, 4.1335e-01, + 4.8179e-01, 1.6964e-01, 8.0002e-01, 9.1953e-01, + 3.6392e-01, 7.5378e-01, 3.1533e-01, 3.7893e-01, + 3.0600e-01, 5.6584e-01, 6.2913e-01, 4.0979e-01, + 1.6906e-01, 6.0526e-01, 4.1224e-02, 7.2197e-01, + 9.9469e-01, 6.4528e-01, 7.4957e-01, 4.6243e-01, + 7.2221e-01, 4.9441e-02, 8.3462e-01, 5.1226e-01, + 1.6898e-01, 2.7865e-01, 8.1535e-01, 5.0811e-01, + 2.5135e-01, 1.1343e-01, 5.0433e-01, 9.0188e-03, + 2.7474e-01, 2.2469e-01, 2.4591e-01, 7.8338e-01, + 5.4588e-01, 2.0641e-01, 4.3812e-01, 7.5445e-01, + 9.3529e-01, 4.2207e-01, 6.5658e-01, 7.7379e-01, + 3.0028e-01, 6.2521e-01, 7.8399e-01, 1.6164e-01, + 8.1784e-01, 3.6623e-02, 3.0384e-01, 5.7160e-01, + 7.9836e-01, 5.5367e-01, 4.0792e-01, 2.8991e-01, + 2.6509e-01, 5.2970e-01, 9.9647e-02, 6.5667e-01, + 6.3266e-01, 4.9762e-01, 4.5680e-01, 9.7947e-01, + 2.9317e-02, 3.0876e-01, 9.0484e-01, 6.2800e-01, + 1.1287e-01, 2.2607e-01, 4.3438e-01, 6.4189e-01, + 4.8834e-01, 2.2177e-01, 2.0731e-02, 5.1039e-01, + 1.4713e-01, 9.9235e-01, 7.4332e-02, 9.9883e-01, + 7.6851e-01, 1.6249e-01, 6.7292e-01, 4.0961e-01, + 1.3180e-01, 9.4992e-01, 6.0024e-01, 1.0024e-01, + 9.2405e-01, 6.0441e-01, 4.3533e-01, 4.1263e-01, + 6.7157e-01, 3.1733e-01, 5.4730e-01, 3.9169e-01, + 3.4628e-01, 4.1199e-01, 2.6291e-01, 1.0795e-01, + 2.2910e-01, 1.7739e-01, 8.4945e-01, 7.3081e-01, + 5.8030e-01, 8.8301e-02, 1.7386e-01, 4.8359e-01, + 6.9634e-01, 9.8297e-01, 6.0213e-01, 5.1143e-01, + 6.3160e-01, 6.2993e-01, 9.2445e-01, 1.7298e-01, + 5.9912e-01, 8.9877e-01, 9.8527e-01, 4.8430e-01]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.8709, 0.3477, 0.9071, ..., 0.3290, 0.2447, 0.6100]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 0.08243966102600098 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 127365 -ss 10000 -sd 1e-05 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 9.197555303573608} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), + col_indices=tensor([8951, 5667, 956, 7950, 5201, 1331, 1765, 3006, 5900, + 2081, 5366, 8255, 7412, 6448, 5104, 6260, 9166, 2113, + 8971, 6174, 6836, 879, 9072, 156, 6527, 5601, 2012, + 6002, 4221, 7765, 3990, 7258, 2865, 1967, 7820, 9862, + 418, 17, 3074, 2165, 8428, 6171, 6497, 2053, 5484, + 4943, 9733, 4335, 9186, 435, 7561, 757, 7593, 4461, + 1964, 3289, 5697, 8181, 6697, 6346, 2540, 5038, 6182, + 7579, 9304, 3023, 5138, 7682, 8029, 1723, 4898, 3727, + 6168, 1394, 4633, 3134, 3220, 8290, 4361, 8659, 8749, + 6471, 4502, 765, 2454, 7851, 4423, 6861, 3263, 4149, + 6309, 6921, 8089, 1483, 3889, 3348, 1563, 5080, 5924, + 9985, 5924, 9061, 9701, 1918, 9154, 1454, 7379, 1012, + 5960, 5244, 7249, 1042, 5782, 1289, 7395, 9762, 5609, + 6097, 7610, 292, 747, 8778, 898, 9783, 3676, 4917, + 7746, 8001, 5522, 3015, 7253, 2567, 9147, 9836, 6451, + 4829, 313, 9348, 5810, 7122, 4162, 1558, 1306, 697, + 5233, 2078, 2835, 6223, 298, 3238, 2600, 2591, 875, + 5647, 2031, 8637, 4497, 3757, 2693, 789, 3782, 2376, + 2989, 2241, 357, 3782, 2633, 7373, 9854, 231, 2988, + 2070, 4669, 5534, 5178, 5587, 9132, 1222, 9184, 1831, + 8653, 4091, 6946, 3489, 4529, 7234, 1431, 1763, 7845, + 3709, 8160, 5434, 5198, 8333, 9047, 8040, 371, 4799, + 8555, 1520, 1237, 3704, 7267, 3499, 6169, 3396, 2756, + 8524, 4433, 7834, 7468, 981, 4682, 7935, 1187, 3506, + 9399, 5392, 3729, 3884, 3038, 1536, 348, 6647, 7856, + 1530, 2535, 468, 9754, 6571, 4248, 1308, 3268, 4373, + 6400, 6830, 8882, 3801, 8028, 4294, 1253, 6984, 8814, + 4362, 5481, 6779, 5370, 9990, 2125, 5427, 2907, 484, + 3375, 1668, 6722, 8648, 1546, 6671, 4934, 7726, 4065, + 7135, 1387, 4399, 4022, 2558, 6330, 2156, 2243, 7118, + 8898, 4356, 8307, 6366, 7530, 377, 8630, 6535, 6322, + 3893, 5173, 8179, 3990, 7010, 5730, 9636, 4081, 7352, + 4638, 803, 2043, 9662, 5196, 9680, 4473, 2982, 9221, + 9863, 438, 4406, 3232, 9102, 6251, 5767, 2833, 2230, + 9893, 1670, 1462, 3102, 2383, 9343, 5557, 5254, 6204, + 3268, 1452, 3530, 3372, 4859, 7526, 3677, 9290, 6998, + 7256, 6351, 6099, 752, 2711, 5409, 1344, 6438, 5218, + 1309, 2561, 6301, 4999, 182, 6656, 4193, 2756, 950, + 9918, 8768, 9417, 3732, 6098, 2529, 4022, 7160, 5676, + 6516, 8008, 3634, 6607, 1251, 9, 3992, 7758, 1914, + 8408, 8428, 8579, 9714, 8052, 8671, 2909, 7465, 6553, + 6602, 1740, 4016, 8658, 1603, 1303, 402, 126, 4020, + 8894, 8464, 7028, 7516, 4733, 334, 7983, 5384, 7380, + 3065, 5355, 3755, 580, 2843, 1681, 4450, 3415, 5685, + 2824, 8294, 3911, 1122, 966, 9515, 8314, 3754, 7409, + 686, 6128, 1982, 1386, 3227, 451, 7972, 6370, 4333, + 774, 9669, 6060, 8811, 1434, 2331, 2818, 7564, 8908, + 1106, 4259, 7245, 681, 4175, 7703, 4218, 9815, 4060, + 5703, 2543, 6382, 2254, 4497, 8420, 3474, 959, 2786, + 9112, 2275, 8989, 9316, 5187, 277, 5809, 4960, 558, + 5959, 2140, 3869, 9548, 4992, 6509, 7212, 1384, 1766, + 7111, 4082, 5753, 8261, 8396, 4065, 452, 479, 7733, + 9669, 6830, 8392, 1995, 6861, 5319, 6116, 8073, 8728, + 7161, 8145, 3184, 5559, 412, 783, 1547, 8107, 9519, + 3211, 6058, 1202, 440, 174, 8101, 1808, 9805, 6280, + 9452, 3118, 8983, 4424, 7637, 5101, 5179, 5972, 8442, + 7018, 9897, 4824, 1871, 1892, 6705, 4898, 98, 5681, + 7765, 8554, 8102, 7121, 7380, 5392, 7554, 8933, 4525, + 7503, 7915, 2395, 4810, 9815, 2656, 1084, 467, 3122, + 9566, 897, 837, 4757, 8988, 5537, 436, 461, 6366, + 5642, 8874, 2020, 2283, 4825, 2436, 541, 4641, 47, + 4722, 8068, 4262, 880, 9007, 8642, 1636, 9627, 4235, + 7239, 3306, 7990, 8591, 3903, 3044, 9230, 197, 5875, + 9842, 1038, 3862, 6186, 457, 8430, 9394, 3707, 8130, + 4559, 2459, 3372, 3218, 4638, 9717, 109, 5158, 9842, + 3750, 8383, 486, 8700, 7403, 8251, 79, 4842, 5372, + 1410, 4433, 2937, 1648, 8294, 7535, 6494, 714, 1739, + 8923, 5987, 5476, 9289, 9131, 5687, 3326, 8856, 9565, + 3869, 9430, 8143, 2114, 6718, 4856, 3476, 7051, 6247, + 1826, 9265, 2119, 4975, 5340, 3157, 9047, 6166, 5350, + 3690, 6834, 7430, 1983, 371, 1578, 4503, 9170, 9900, + 3527, 3630, 749, 8514, 9935, 5944, 8298, 4776, 9929, + 8330, 653, 1643, 1764, 9586, 513, 2172, 6698, 215, + 6477, 7577, 4515, 7996, 4713, 2355, 1611, 6833, 2323, + 3740, 4310, 504, 1853, 8109, 6314, 907, 3924, 9903, + 7526, 1854, 8927, 1178, 8385, 867, 1023, 3773, 9962, + 1456, 8079, 5190, 6786, 7737, 4957, 6851, 7055, 6487, + 45, 2983, 2328, 1861, 4531, 5912, 5277, 9667, 4187, + 5442, 6221, 132, 961, 5314, 70, 4492, 9580, 6490, + 6281, 4592, 1715, 9523, 3959, 5774, 6597, 6351, 968, + 7132, 3012, 9691, 7995, 9369, 6693, 8391, 919, 6276, + 1383, 3472, 2727, 1851, 9641, 5547, 9814, 1386, 3806, + 5800, 7824, 6994, 8102, 3059, 630, 5299, 7082, 408, + 3966, 5459, 2268, 513, 1111, 4036, 1216, 647, 9051, + 6557, 1868, 2555, 7314, 5402, 8856, 8036, 9242, 8770, + 6588, 8568, 939, 2372, 9021, 5117, 4395, 5898, 314, + 3612, 5330, 8768, 4296, 2234, 3310, 5238, 1193, 7901, + 2450, 6235, 8276, 4737, 7496, 9519, 7422, 7651, 1236, + 5689, 5301, 1581, 1937, 9339, 1566, 8562, 8354, 4056, + 2837, 1798, 1628, 8145, 5673, 4146, 8286, 7315, 8841, + 7971, 7223, 7365, 6819, 6450, 375, 2406, 5836, 2699, + 4122, 9510, 7268, 9830, 5194, 3857, 9164, 5493, 1059, + 4327, 8919, 2908, 7586, 1083, 979, 9176, 9825, 1123, + 1636, 4668, 6489, 2442, 812, 6814, 5788, 9485, 9064, + 8453, 2804, 1948, 7534, 4563, 7316, 3436, 2415, 4301, + 1444, 5066, 9181, 5458, 8732, 4105, 7725, 1653, 9297, + 2700, 4319, 979, 7420, 6663, 3774, 892, 451, 3618, + 7453, 4542, 9281, 8092, 9442, 2319, 2653, 6580, 466, + 1036, 8495, 3184, 2138, 1095, 2970, 7474, 4438, 3204, + 7315, 3790, 263, 3921, 2558, 4458, 7556, 6273, 8378, + 6737, 7044, 4215, 6933, 5375, 1689, 1974, 8500, 870, + 9010, 4, 6462, 9141, 9834, 75, 1864, 3979, 8119, + 7525, 4421, 110, 1620, 2729, 7787, 7365, 7318, 1659, + 3132, 1011, 9075, 6234, 8992, 3356, 5492, 7063, 7291, + 2484, 3415, 4663, 7485, 747, 4057, 4634, 7612, 611, + 8159, 4813, 2990, 3047, 2956, 4987, 1433, 970, 4324, + 3741, 5005, 8457, 8017, 2487, 8029, 3981, 9755, 4901, + 6929, 6800, 2549, 9812, 4597, 5997, 1351, 469, 8967, + 195, 9043, 4129, 8942, 5512, 1918, 4398, 1374, 2066, + 1893, 1888, 789, 5725, 2471, 1750, 2390, 171, 921, + 2279, 7110, 5273, 3762, 600, 1387, 8780, 2817, 9487, + 8296]), + values=tensor([1.5216e-01, 1.7019e-01, 6.3585e-01, 6.6138e-01, + 9.0749e-01, 1.1783e-01, 9.5883e-01, 3.9604e-01, + 7.1962e-03, 8.1892e-01, 6.8589e-01, 1.5211e-01, + 4.1271e-01, 7.8112e-01, 8.4618e-04, 1.8663e-01, + 8.8874e-01, 6.8031e-01, 4.9372e-01, 7.7045e-01, + 4.4235e-01, 9.6290e-01, 7.6512e-01, 9.6549e-01, + 8.1447e-01, 9.5403e-01, 8.6721e-02, 8.8449e-01, + 3.0131e-01, 6.1337e-01, 2.0715e-01, 6.5670e-01, + 6.6356e-01, 5.0388e-01, 5.3994e-02, 7.6746e-01, + 3.1174e-01, 5.2533e-01, 8.3430e-01, 4.7419e-01, + 8.4903e-01, 5.1841e-02, 8.7369e-01, 1.6657e-01, + 2.6480e-01, 5.0181e-01, 9.1884e-01, 6.5373e-01, + 8.3049e-01, 1.0155e-01, 9.5966e-01, 7.4983e-01, + 9.2494e-01, 6.2545e-01, 3.8009e-01, 4.3846e-01, + 5.3243e-01, 5.6466e-01, 4.4788e-01, 3.2358e-01, + 3.7891e-01, 6.3413e-01, 9.4905e-01, 1.5019e-01, + 3.4665e-01, 6.1715e-01, 9.7884e-01, 4.8076e-01, + 6.8409e-01, 5.6276e-01, 2.5776e-01, 5.9295e-01, + 5.6309e-01, 8.8570e-01, 5.4832e-01, 2.3113e-01, + 5.8061e-02, 5.2045e-01, 2.8550e-02, 5.8372e-01, + 6.0029e-01, 3.4628e-01, 2.6036e-01, 5.4241e-01, + 8.6231e-01, 1.9735e-01, 1.0981e-02, 5.1942e-01, + 1.9123e-01, 6.8642e-01, 7.9201e-01, 8.5589e-01, + 5.6638e-01, 9.2391e-02, 4.4085e-01, 9.6051e-01, + 8.9348e-01, 8.3127e-01, 3.9537e-01, 8.3521e-01, + 9.0785e-01, 3.2641e-01, 5.5074e-01, 9.4401e-01, + 4.2242e-01, 3.3514e-01, 3.9064e-01, 5.4355e-01, + 8.1424e-01, 8.4824e-01, 5.7587e-02, 3.6997e-01, + 5.9435e-01, 1.9519e-01, 7.1499e-02, 2.4317e-01, + 3.8685e-01, 4.3594e-01, 5.8046e-01, 5.2862e-01, + 8.1213e-01, 4.8371e-01, 9.6173e-02, 3.2546e-01, + 4.0478e-01, 1.1293e-01, 2.8434e-01, 8.2273e-01, + 2.2273e-01, 7.3877e-01, 9.0112e-01, 9.3139e-01, + 8.9611e-01, 3.0616e-01, 8.5263e-01, 2.4969e-01, + 5.7411e-01, 2.4115e-01, 4.8960e-01, 1.1929e-01, + 7.4116e-01, 4.1231e-01, 1.1123e-01, 4.1891e-01, + 7.8463e-01, 3.8428e-01, 1.1161e-01, 8.8894e-01, + 4.6402e-01, 8.8871e-01, 9.3241e-01, 1.0341e-01, + 6.8167e-01, 1.4098e-01, 6.3176e-01, 5.9565e-01, + 6.4149e-01, 1.3563e-01, 7.0398e-01, 9.4793e-02, + 9.0778e-01, 6.1760e-01, 2.8402e-01, 6.9130e-01, + 7.1512e-01, 8.6276e-02, 4.7148e-01, 1.5984e-01, + 3.2708e-01, 1.5988e-01, 7.0532e-01, 2.7324e-01, + 4.5553e-01, 6.9693e-01, 7.2516e-01, 5.9042e-01, + 6.6409e-01, 5.2520e-01, 5.9028e-01, 5.2594e-03, + 1.7020e-01, 9.5731e-01, 7.3976e-01, 6.5886e-01, + 8.1167e-01, 6.5585e-01, 5.8074e-01, 9.8075e-01, + 2.7620e-01, 1.7420e-01, 1.7389e-01, 2.8958e-01, + 8.2996e-01, 4.9363e-01, 9.8162e-01, 2.1271e-01, + 1.8857e-01, 3.4194e-01, 9.3022e-01, 4.0994e-01, + 1.0186e-01, 6.2889e-01, 8.4027e-01, 6.9745e-01, + 6.6164e-01, 7.1285e-01, 6.5873e-01, 4.5775e-01, + 6.3704e-01, 3.1214e-01, 7.9821e-01, 1.6445e-01, + 3.4925e-01, 3.5537e-01, 5.7713e-01, 8.9407e-01, + 6.1655e-02, 4.8189e-01, 7.3009e-02, 2.0535e-02, + 2.2246e-01, 9.6049e-01, 8.5961e-01, 9.6152e-01, + 3.4685e-01, 4.7829e-01, 2.9967e-01, 6.2980e-01, + 9.8429e-01, 5.5508e-01, 3.6981e-01, 1.2625e-01, + 1.8588e-01, 5.7301e-01, 1.7900e-01, 6.8391e-01, + 7.2136e-02, 8.1464e-01, 4.0282e-01, 6.2285e-01, + 8.6256e-01, 6.4473e-01, 1.7643e-01, 8.0509e-02, + 1.6351e-01, 6.5290e-01, 6.7791e-01, 9.4538e-01, + 6.0149e-02, 4.8255e-01, 9.9090e-01, 3.5000e-01, + 9.1364e-01, 9.3901e-01, 4.3818e-01, 3.8250e-01, + 4.3645e-01, 6.5990e-01, 3.0384e-01, 5.9985e-01, + 7.1319e-02, 7.1882e-01, 6.0076e-01, 4.7750e-01, + 8.9314e-01, 3.9320e-02, 1.5893e-01, 2.1442e-01, + 9.1463e-01, 7.7751e-01, 2.8961e-01, 8.7025e-01, + 1.4621e-01, 8.3547e-01, 2.5098e-03, 6.6570e-01, + 8.1723e-01, 3.2587e-01, 9.7151e-01, 9.1676e-01, + 2.9237e-01, 1.0121e-01, 8.9548e-01, 1.0875e-01, + 7.6296e-01, 2.3321e-01, 2.2049e-01, 6.7288e-01, + 7.6597e-01, 5.7920e-01, 8.9616e-01, 8.4265e-01, + 1.8498e-01, 7.0272e-01, 7.1095e-01, 2.6754e-01, + 8.5795e-01, 7.3704e-01, 9.5476e-01, 7.8569e-01, + 1.8101e-01, 1.4706e-01, 3.0283e-01, 5.4697e-02, + 5.5065e-01, 2.6568e-01, 7.0411e-01, 7.7720e-01, + 4.9450e-02, 3.2306e-01, 9.8554e-01, 4.8869e-01, + 1.9444e-02, 5.1812e-01, 7.6981e-01, 4.1618e-01, + 1.8798e-01, 5.6832e-01, 4.0810e-01, 3.6012e-02, + 8.8896e-01, 4.3334e-01, 2.0118e-01, 7.7859e-01, + 8.1567e-01, 4.6627e-01, 4.8676e-02, 8.5248e-01, + 1.0666e-01, 6.2271e-01, 3.4460e-01, 9.5338e-02, + 1.5574e-01, 1.0619e-01, 6.0324e-01, 4.5748e-01, + 2.0038e-01, 8.9476e-01, 2.2804e-02, 5.0267e-01, + 8.3807e-01, 4.9035e-01, 1.0350e-01, 3.0884e-01, + 7.0873e-01, 4.9276e-02, 6.9721e-01, 3.2552e-02, + 9.2197e-01, 9.0321e-01, 1.2656e-01, 3.5564e-01, + 6.0609e-01, 9.0070e-01, 7.2233e-01, 9.0867e-01, + 9.8007e-01, 8.7702e-02, 3.6717e-01, 2.2574e-01, + 4.3013e-01, 8.8646e-01, 4.5950e-01, 6.1044e-01, + 1.5369e-01, 8.5311e-01, 5.5853e-01, 8.4199e-01, + 7.7230e-01, 8.8165e-01, 1.9953e-01, 9.3348e-01, + 7.6262e-01, 1.9492e-02, 1.1943e-01, 6.1210e-01, + 9.7282e-01, 5.5187e-01, 3.9215e-01, 9.9177e-01, + 3.6067e-01, 8.2342e-01, 4.5631e-01, 3.2249e-01, + 8.4451e-01, 3.8025e-01, 2.1633e-01, 5.3458e-01, + 8.4114e-01, 1.5167e-01, 7.5240e-01, 8.9791e-01, + 1.8719e-01, 3.8953e-01, 7.3237e-01, 8.8189e-01, + 2.9193e-01, 7.0931e-01, 1.6238e-01, 1.5133e-02, + 4.8376e-01, 6.8459e-01, 4.3864e-01, 2.4581e-01, + 5.3727e-01, 6.5572e-01, 3.5869e-01, 9.6524e-01, + 2.5379e-01, 2.5522e-01, 2.2015e-01, 3.7162e-01, + 2.5045e-01, 7.1346e-01, 4.9608e-01, 1.3997e-01, + 4.6764e-01, 9.9921e-01, 3.1977e-02, 3.0630e-01, + 4.7370e-01, 4.0248e-01, 9.4744e-01, 5.5876e-02, + 3.9404e-01, 7.5583e-01, 9.3499e-02, 3.7133e-01, + 6.0169e-01, 7.8815e-02, 7.0424e-01, 3.3512e-01, + 7.2778e-01, 9.4109e-01, 5.8460e-01, 7.6482e-01, + 1.2389e-01, 7.4178e-01, 4.9334e-01, 3.1208e-01, + 5.8337e-01, 7.3349e-01, 1.4592e-01, 2.3507e-02, + 6.8025e-01, 5.0354e-01, 8.8652e-01, 5.5730e-01, + 6.8635e-01, 5.7054e-01, 8.8729e-01, 6.5747e-01, + 9.1643e-01, 4.4757e-01, 3.8172e-01, 8.4742e-01, + 3.3806e-01, 3.2990e-01, 7.2082e-01, 6.5516e-01, + 3.9343e-01, 5.2851e-01, 3.5215e-01, 8.9943e-01, + 8.5310e-02, 4.6109e-01, 2.7228e-01, 2.5087e-01, + 7.3184e-01, 3.3624e-01, 2.9789e-02, 6.3599e-01, + 7.3976e-01, 9.5517e-01, 9.8230e-02, 9.5790e-01, + 8.6575e-01, 4.6194e-01, 4.2709e-01, 1.7618e-01, + 9.1857e-01, 4.6170e-01, 6.5113e-01, 2.1729e-01, + 6.2435e-01, 8.0807e-01, 1.1998e-01, 1.5588e-01, + 7.6909e-01, 8.6399e-01, 6.1219e-01, 1.7921e-01, + 3.2192e-01, 6.3371e-02, 9.1241e-01, 4.3118e-01, + 8.2668e-01, 1.1257e-02, 9.4272e-01, 2.6933e-01, + 4.5500e-01, 3.3222e-02, 9.1619e-01, 6.6223e-01, + 3.6654e-01, 4.8614e-01, 4.2769e-01, 5.0930e-01, + 4.9510e-01, 3.2870e-01, 2.1569e-01, 4.6276e-01, + 7.3097e-01, 4.1930e-01, 8.6018e-01, 1.1403e-01, + 2.5612e-01, 7.7389e-01, 6.3098e-01, 1.7552e-02, + 2.3396e-01, 1.6546e-01, 6.8993e-02, 4.9563e-01, + 3.1002e-01, 6.0278e-01, 2.8753e-01, 6.4696e-01, + 2.6087e-01, 9.7781e-01, 3.2437e-01, 4.7091e-01, + 8.6564e-01, 6.1093e-01, 9.3888e-01, 2.3736e-01, + 3.0046e-01, 4.7032e-01, 9.3908e-01, 2.3036e-01, + 4.7200e-01, 4.0949e-02, 3.4834e-01, 1.8942e-01, + 8.0161e-01, 3.0313e-01, 7.5308e-01, 9.7943e-01, + 7.7952e-02, 1.3705e-01, 4.3503e-01, 5.8610e-01, + 3.2749e-01, 3.2801e-01, 2.5919e-01, 5.1009e-02, + 6.7773e-01, 5.0372e-01, 7.3673e-01, 8.2916e-01, + 9.1008e-01, 7.8988e-01, 2.6091e-01, 5.1048e-01, + 8.6688e-02, 3.1160e-01, 8.3740e-01, 5.6689e-01, + 6.0570e-01, 1.4997e-01, 3.5762e-01, 5.2280e-01, + 4.4260e-01, 6.6609e-02, 4.6975e-02, 4.5667e-01, + 4.2481e-01, 6.2475e-01, 7.5520e-01, 6.9917e-01, + 7.8946e-01, 5.5935e-01, 9.4564e-01, 7.8184e-01, + 9.8520e-01, 4.6026e-01, 4.1162e-01, 1.4734e-01, + 3.2346e-01, 4.1372e-01, 3.6035e-01, 1.5890e-01, + 1.2942e-02, 8.4469e-01, 2.3086e-01, 1.0481e-01, + 2.8996e-02, 7.1843e-01, 3.8455e-01, 4.7881e-02, + 8.5951e-01, 1.3895e-02, 3.6721e-01, 4.7506e-01, + 9.9857e-01, 6.8451e-01, 8.9693e-01, 5.4998e-01, + 9.1203e-01, 3.2063e-01, 8.8551e-01, 5.9994e-01, + 3.4701e-01, 1.1208e-01, 4.2449e-01, 6.7214e-01, + 6.4926e-01, 8.2128e-01, 9.0654e-01, 5.1682e-01, + 1.6141e-01, 4.6470e-01, 4.9683e-01, 3.4524e-01, + 8.3144e-01, 8.4160e-02, 5.3669e-01, 6.5843e-01, + 3.3396e-01, 4.4003e-01, 1.6841e-01, 1.2564e-01, + 9.9780e-01, 6.5761e-01, 9.2580e-01, 1.4045e-01, + 6.7747e-01, 5.3899e-02, 1.5371e-01, 7.4862e-01, + 7.2244e-01, 7.3240e-01, 4.1674e-01, 2.9084e-01, + 3.8422e-01, 3.2193e-01, 9.7078e-02, 6.6289e-01, + 3.8451e-01, 4.7906e-01, 2.3582e-01, 2.4804e-01, + 1.0163e-02, 7.8941e-01, 3.4831e-01, 5.1381e-01, + 5.0897e-01, 4.2292e-01, 5.3914e-01, 1.5560e-01, + 2.4160e-01, 7.1337e-01, 7.4806e-01, 5.3731e-01, + 1.4673e-01, 1.3904e-01, 5.3549e-01, 1.0994e-02, + 2.3778e-02, 1.8931e-01, 9.1482e-01, 1.0697e-01, + 1.8807e-01, 2.0276e-01, 1.2276e-01, 8.9636e-01, + 7.3523e-01, 5.7822e-01, 8.2860e-02, 7.1754e-01, + 6.6528e-01, 4.1632e-01, 2.3182e-01, 1.5358e-01, + 5.5655e-01, 9.5710e-01, 3.7351e-01, 4.8842e-01, + 7.7247e-01, 7.5011e-01, 2.0041e-01, 6.0151e-01, + 9.7363e-02, 8.2944e-01, 4.1461e-01, 5.5743e-01, + 7.7117e-01, 3.7433e-01, 4.4980e-01, 9.0170e-01, + 1.3620e-01, 8.1261e-02, 8.5240e-01, 2.6109e-01, + 3.0587e-01, 5.8262e-01, 6.5324e-01, 6.9486e-01, + 2.5380e-01, 1.6738e-01, 1.2447e-01, 4.0116e-03, + 9.1541e-01, 9.1885e-01, 9.3721e-01, 7.2081e-01, + 7.1873e-01, 5.1154e-02, 3.4872e-01, 2.4575e-01, + 2.4659e-01, 7.1231e-01, 3.4407e-01, 4.4845e-01, + 9.9038e-01, 4.6909e-01, 5.8454e-01, 5.1459e-01, + 5.0915e-01, 4.8420e-02, 5.2465e-01, 3.2527e-01, + 3.8356e-01, 8.2838e-01, 8.3750e-01, 3.4062e-01, + 3.4952e-01, 6.0127e-01, 5.6000e-01, 4.2562e-02, + 1.3090e-01, 7.0560e-01, 2.4448e-01, 1.3227e-01, + 2.8028e-01, 7.4637e-01, 1.8169e-01, 9.1756e-01, + 3.1327e-01, 7.4767e-01, 8.9569e-01, 9.2290e-01, + 5.2879e-02, 2.2450e-01, 1.8187e-01, 4.2333e-01, + 1.5213e-01, 1.9392e-01, 8.2459e-01, 7.1279e-01, + 4.5811e-01, 9.7620e-01, 2.4922e-01, 6.5392e-01, + 1.9646e-01, 6.3548e-01, 5.1762e-01, 1.5281e-02, + 2.7032e-01, 3.0031e-01, 4.4666e-01, 9.7583e-01, + 3.4809e-01, 6.3541e-01, 2.7362e-01, 3.3316e-01, + 3.1575e-01, 3.0889e-01, 9.8474e-01, 7.4065e-02, + 7.1531e-01, 5.7194e-01, 6.7460e-01, 6.8581e-01, + 8.7334e-01, 8.9807e-01, 9.9213e-01, 3.0764e-01, + 3.3737e-01, 3.1126e-01, 9.4054e-01, 2.4441e-01, + 5.1426e-01, 2.9211e-01, 2.0716e-01, 1.7699e-01, + 2.5259e-01, 9.3716e-01, 8.6693e-01, 1.8135e-01, + 5.2341e-01, 1.3576e-01, 7.1039e-01, 7.4562e-01, + 4.0702e-01, 6.4884e-01, 9.0496e-01, 3.7562e-01, + 6.3827e-01, 9.1218e-01, 1.1600e-01, 2.7970e-01, + 1.4970e-01, 6.4340e-01, 6.5217e-01, 1.4505e-01, + 3.0174e-01, 4.2314e-03, 8.4965e-01, 9.6558e-01, + 2.4175e-01, 8.6591e-01, 4.1091e-01, 5.9543e-01, + 2.4393e-02, 3.8384e-01, 1.4653e-01, 1.4427e-01, + 6.3697e-01, 8.1833e-01, 7.4199e-01, 8.9179e-01, + 3.3436e-01, 4.2849e-01, 7.1702e-01, 6.6497e-01, + 9.7510e-01, 8.7206e-01, 2.0471e-01, 8.0458e-01, + 3.4321e-01, 4.7425e-01, 2.7165e-01, 6.9890e-01, + 1.0161e-01, 7.5881e-01, 7.5748e-01, 8.7062e-01, + 1.6763e-01, 9.4785e-01, 9.0252e-01, 1.4004e-01, + 5.2871e-02, 5.2068e-01, 7.9779e-01, 3.1595e-01, + 6.8799e-01, 6.9740e-01, 4.1601e-01, 2.3491e-01, + 9.7922e-01, 7.9598e-01, 8.2769e-01, 4.4848e-01, + 2.6935e-01, 4.4881e-02, 7.1115e-01, 1.5257e-01, + 8.7181e-01, 7.7291e-02, 8.7127e-01, 3.6259e-01, + 9.6231e-01, 1.3931e-01, 3.7950e-02, 3.8402e-01, + 4.1550e-01, 6.3353e-01, 8.4500e-01, 6.1639e-01, + 1.7991e-01, 2.7893e-01, 3.4979e-01, 3.5307e-01, + 6.4305e-01, 6.2841e-01, 9.0120e-01, 3.5146e-03, + 1.4264e-02, 9.9702e-01, 9.5609e-02, 3.5812e-01, + 7.0151e-01, 5.0813e-01, 2.9331e-02, 6.1800e-01, + 7.6002e-01, 2.0376e-01, 9.0981e-01, 3.2033e-02, + 4.4308e-01, 6.2436e-01, 2.0355e-01, 5.5886e-01, + 9.0826e-01, 2.4707e-01, 6.1248e-01, 3.1151e-01, + 9.7040e-02, 9.7841e-01, 7.1300e-01, 4.5479e-01, + 9.1231e-01, 5.8596e-01, 1.1626e-01, 9.6037e-01, + 8.0614e-01, 6.3959e-01, 8.0099e-01, 1.7915e-01, + 7.0708e-01, 7.0591e-01, 8.3896e-01, 4.7115e-01, + 3.0242e-01, 7.3102e-01, 5.3305e-01, 4.7165e-01, + 7.2291e-01, 7.3873e-02, 8.8843e-01, 1.0409e-01, + 9.1128e-01, 4.0722e-01, 6.6838e-01, 9.4428e-01, + 5.3158e-01, 9.1080e-01, 5.4546e-01, 3.9265e-02, + 5.2569e-01, 7.3028e-01, 1.4321e-01, 2.3526e-01, + 5.4820e-01, 6.5518e-01, 7.8832e-01, 1.0003e-01, + 2.0256e-01, 3.7168e-01, 7.7038e-01, 8.8011e-01, + 6.2133e-01, 2.5102e-01, 8.1558e-01, 2.7129e-01, + 3.8339e-01, 3.5884e-01, 2.8205e-01, 7.9701e-01, + 6.1148e-01, 1.4972e-01, 4.6659e-01, 8.2519e-01, + 9.3842e-01, 5.2980e-01, 6.2804e-01, 8.6728e-02, + 3.4629e-01, 9.7018e-01, 5.1173e-01, 7.9800e-02, + 2.4861e-01, 3.0615e-01, 3.3816e-01, 7.2494e-01, + 8.0962e-01, 4.2877e-01, 2.9116e-02, 3.4328e-01, + 3.8819e-01, 3.6091e-01, 1.4916e-01, 1.0834e-01, + 1.1699e-01, 4.7431e-01, 2.8661e-01, 2.8768e-01, + 3.2315e-01, 9.2466e-01, 2.7461e-01, 7.8467e-01, + 2.8489e-01, 4.7278e-01, 8.3981e-01, 7.6965e-01, + 8.3562e-01, 2.2207e-01, 3.7585e-02, 7.4761e-02]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.1139, 0.8384, 0.4762, ..., 0.6681, 0.9732, 0.3908]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 9.197555303573608 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 145400 -ss 10000 -sd 1e-05 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.376285076141357} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), + col_indices=tensor([2248, 4486, 2578, 3740, 621, 6003, 5803, 7740, 8017, + 8357, 2886, 8788, 9848, 2845, 3345, 9526, 6879, 849, + 9475, 1600, 5380, 5334, 6629, 9937, 1676, 3949, 9759, + 1297, 1271, 554, 8126, 7607, 6824, 8955, 3784, 6636, + 6716, 7362, 236, 4770, 377, 1035, 7094, 4817, 9140, + 2937, 60, 7489, 6793, 9918, 3932, 6069, 5062, 5030, + 1223, 3975, 150, 7966, 1822, 242, 7431, 4532, 9014, + 8126, 915, 7358, 2001, 3806, 564, 5560, 6173, 620, + 8900, 1133, 6344, 486, 265, 5173, 6593, 9511, 1972, + 6657, 9996, 3207, 27, 7301, 9620, 504, 7560, 1601, + 7424, 6685, 9645, 8602, 1386, 2669, 7610, 3723, 4006, + 2340, 4530, 2647, 5701, 4426, 8272, 3355, 7800, 1132, + 6460, 5948, 6002, 5599, 7637, 1754, 3726, 7844, 4922, + 6626, 3071, 5112, 9488, 6276, 63, 6759, 8385, 8552, + 1584, 8134, 9707, 7442, 9004, 7463, 5317, 8848, 2939, + 2603, 8194, 2739, 5486, 256, 2365, 9508, 2237, 2470, + 6761, 3844, 820, 3960, 1427, 3014, 6205, 9526, 187, + 5743, 8313, 7945, 4733, 316, 4870, 8198, 2605, 745, + 6138, 3766, 3604, 9846, 2494, 2928, 9060, 9638, 2293, + 1334, 3566, 5466, 8151, 4330, 3680, 6199, 2041, 6318, + 1803, 5034, 4823, 7162, 9670, 280, 8489, 1737, 2606, + 6216, 1938, 8976, 5856, 1117, 6857, 4276, 4103, 6680, + 9260, 6437, 1742, 9346, 2197, 2419, 6198, 9840, 242, + 5981, 117, 8727, 6383, 8881, 1592, 6491, 291, 8533, + 4799, 8873, 6031, 492, 9755, 8898, 9538, 3126, 3673, + 7165, 7259, 875, 9998, 4153, 3488, 4806, 1041, 6719, + 6621, 5171, 1220, 6019, 5757, 7236, 8256, 5996, 5674, + 9515, 884, 4587, 7341, 6133, 103, 4029, 3802, 6524, + 2472, 5443, 6806, 2814, 1694, 9023, 2383, 8670, 150, + 8994, 6959, 4597, 769, 5991, 1821, 3685, 7931, 9192, + 3640, 71, 9825, 1072, 4022, 3163, 389, 3350, 3717, + 5813, 4622, 1106, 4472, 4551, 1684, 6929, 301, 7590, + 7048, 8693, 7825, 1347, 1110, 2977, 261, 4463, 7673, + 6591, 9953, 9930, 6563, 4448, 8022, 5661, 6717, 9701, + 8152, 330, 4317, 726, 7842, 2771, 5867, 8845, 6599, + 345, 711, 3072, 5521, 7893, 9001, 7298, 4506, 7966, + 9217, 3422, 9151, 4171, 6251, 7471, 8643, 1037, 6053, + 7103, 6011, 9381, 7007, 3198, 7413, 5504, 868, 807, + 9558, 4156, 1608, 151, 6572, 5212, 4737, 4239, 8899, + 1675, 4293, 6235, 3154, 638, 2173, 3370, 5882, 3746, + 1224, 6845, 7214, 7881, 8306, 9751, 8223, 7814, 3399, + 8182, 9634, 2816, 6681, 9974, 5336, 2828, 7713, 4327, + 7163, 9008, 4567, 1895, 12, 9582, 9593, 8980, 272, + 8032, 8958, 2398, 6519, 6198, 2543, 922, 7509, 1247, + 8974, 5180, 6179, 5748, 196, 904, 6210, 2122, 9168, + 8422, 6490, 4019, 3865, 4779, 2054, 5563, 6204, 2106, + 5654, 7998, 597, 7416, 2479, 6142, 770, 4293, 5948, + 8141, 8297, 9216, 3867, 2651, 4047, 5002, 2595, 3555, + 2174, 7868, 7327, 342, 5550, 3470, 1746, 5793, 7441, + 7004, 2390, 1078, 4771, 5727, 30, 758, 5897, 2502, + 9822, 9987, 7356, 859, 2903, 2564, 2920, 9271, 3693, + 5356, 3524, 8301, 1656, 7891, 4145, 9135, 6976, 8579, + 833, 8722, 6055, 9041, 9614, 4985, 9991, 8673, 9414, + 9019, 3390, 725, 9820, 2425, 8099, 6415, 9969, 6125, + 1611, 3306, 4585, 645, 1773, 8803, 2043, 2286, 1213, + 9485, 2215, 7640, 7708, 2399, 3154, 8276, 1166, 6491, + 2501, 725, 5875, 8477, 2966, 1446, 3395, 9153, 3079, + 1192, 9045, 7932, 9179, 8868, 3781, 4831, 8933, 9803, + 3724, 6396, 4228, 7956, 4967, 8351, 7905, 7539, 8192, + 9993, 4457, 5387, 8296, 5158, 3333, 708, 476, 3968, + 5277, 7708, 1410, 3177, 5458, 4440, 4550, 296, 4323, + 3462, 3083, 9337, 8193, 6143, 3740, 897, 7990, 2278, + 6384, 7710, 3296, 331, 462, 6916, 6923, 8978, 6177, + 9290, 1417, 5590, 5685, 6828, 8296, 8381, 9216, 476, + 6358, 7285, 1855, 3164, 4932, 8288, 6409, 5094, 1306, + 6007, 8471, 5458, 6254, 3652, 4046, 7815, 8715, 3786, + 1795, 6315, 2882, 8286, 6349, 9713, 8963, 66, 2329, + 6124, 9842, 1259, 9947, 8722, 2982, 4275, 8310, 6873, + 4768, 8622, 3931, 7924, 7390, 3002, 7246, 2227, 171, + 6920, 3991, 9945, 6413, 3754, 8242, 5360, 4923, 5926, + 695, 9843, 1823, 1545, 2212, 6864, 1755, 2272, 215, + 7802, 6355, 7266, 1309, 1497, 8441, 9715, 6376, 9230, + 5931, 4201, 3022, 3307, 5726, 8235, 1964, 6883, 8294, + 3695, 9567, 4015, 9092, 4811, 5087, 3500, 9002, 6559, + 2649, 290, 2110, 9321, 4170, 164, 9410, 3089, 9451, + 3947, 7753, 1392, 1306, 243, 1301, 704, 2798, 2938, + 4752, 3676, 9586, 703, 7082, 9412, 1050, 6555, 4617, + 3094, 981, 412, 6322, 6998, 7588, 2932, 523, 2537, + 3071, 5598, 4943, 5205, 9249, 4919, 4693, 3046, 1397, + 1395, 2346, 6770, 8788, 7234, 1431, 6167, 5943, 4227, + 9979, 652, 3735, 1165, 308, 9727, 8879, 4796, 8375, + 6258, 506, 1990, 5666, 4495, 5415, 7727, 9298, 5899, + 2244, 4112, 5158, 4073, 937, 2378, 4452, 1403, 8204, + 7797, 2213, 6334, 1980, 6425, 7740, 8281, 867, 9774, + 4781, 5252, 9729, 3926, 6156, 4407, 6838, 226, 4075, + 793, 7067, 9361, 6893, 7979, 5619, 2360, 9592, 9930, + 5095, 2717, 226, 8917, 7076, 8913, 7750, 2503, 3399, + 6842, 5068, 8251, 3296, 9411, 4198, 126, 5660, 1235, + 1833, 9365, 8923, 2076, 5603, 5346, 328, 2378, 5545, + 1993, 2974, 8099, 7909, 1311, 8275, 3756, 2486, 705, + 5361, 5735, 5047, 367, 7801, 6827, 6671, 2053, 1314, + 1929, 9497, 9506, 9494, 7770, 8412, 7304, 169, 7103, + 4686, 2341, 9645, 80, 7906, 1210, 2186, 9641, 334, + 8190, 3885, 2984, 8518, 8245, 8533, 5286, 5258, 7956, + 7408, 1862, 2077, 5580, 5935, 7292, 6939, 1548, 6790, + 7824, 8270, 1817, 6609, 6093, 4744, 3164, 2927, 2913, + 1259, 1989, 7667, 6058, 7524, 5404, 9197, 4190, 1346, + 5022, 8117, 6599, 93, 3011, 7992, 6769, 4569, 7376, + 7531, 1048, 4000, 490, 5996, 5906, 5365, 4036, 6734, + 4388, 3829, 2746, 9309, 6508, 9594, 624, 2217, 4304, + 1773, 7985, 1454, 3880, 3015, 6129, 9561, 3818, 6896, + 978, 3666, 4908, 1992, 5403, 6907, 2501, 7887, 2732, + 4383, 2172, 3313, 4934, 9340, 7685, 1693, 3520, 4423, + 203, 9116, 8657, 9778, 4440, 8123, 5395, 160, 8069, + 2984, 7361, 9385, 529, 1338, 6935, 2925, 7149, 5643, + 5833, 2323, 7031, 3050, 1864, 8938, 5395, 732, 194, + 932, 4702, 2935, 435, 3305, 4504, 4306, 5520, 2583, + 2711, 2433, 2449, 1007, 418, 4026, 895, 5276, 1175, + 4970, 716, 2193, 4184, 5233, 6745, 5418, 4772, 4938, + 326, 675, 1579, 5312, 977, 1458, 7168, 4339, 357, + 2034, 3928, 9009, 5821, 97, 793, 3006, 5787, 1958, + 879]), + values=tensor([1.7784e-02, 6.7536e-01, 3.2815e-01, 5.0212e-01, + 8.2459e-01, 4.0831e-01, 3.5370e-01, 4.7010e-01, + 6.4249e-01, 8.4444e-01, 1.2869e-01, 5.1729e-01, + 7.8578e-01, 8.1935e-01, 2.2395e-01, 9.1242e-01, + 2.3102e-01, 2.5964e-01, 7.5333e-01, 4.0994e-01, + 7.8409e-01, 8.3098e-02, 4.4159e-02, 6.9849e-01, + 5.4876e-01, 7.7185e-02, 1.4256e-01, 9.4588e-01, + 3.8493e-01, 7.9894e-01, 2.6476e-01, 6.5332e-01, + 2.7952e-01, 9.6279e-01, 6.7687e-01, 1.5134e-01, + 2.0992e-01, 1.8817e-01, 1.5476e-01, 3.7619e-01, + 6.0915e-01, 2.5395e-01, 7.0490e-01, 5.1472e-01, + 8.1531e-01, 8.1250e-01, 2.4074e-01, 6.2823e-01, + 9.6154e-02, 8.5599e-01, 4.0257e-01, 9.7211e-01, + 3.1491e-01, 5.8549e-01, 5.1698e-01, 1.4512e-01, + 5.6220e-01, 8.5455e-01, 1.5383e-01, 3.4851e-01, + 1.6742e-01, 2.8756e-01, 8.4743e-01, 6.4905e-01, + 3.2047e-02, 7.9299e-01, 4.4112e-02, 8.2065e-01, + 6.4074e-01, 5.0950e-01, 3.9067e-01, 6.9817e-01, + 2.6907e-01, 1.1875e-01, 2.0775e-01, 8.1476e-01, + 6.4289e-01, 3.9998e-01, 1.7138e-01, 8.2458e-01, + 7.2667e-01, 8.8010e-02, 1.5554e-01, 5.5880e-01, + 4.8597e-01, 2.5555e-01, 4.1458e-02, 7.8508e-01, + 2.8802e-02, 5.5833e-01, 1.9918e-01, 2.7091e-01, + 6.0720e-02, 4.4126e-01, 3.7238e-01, 7.4795e-02, + 4.4719e-01, 9.3574e-01, 6.9669e-01, 3.3986e-01, + 5.9333e-01, 8.5560e-01, 6.1018e-02, 8.9694e-01, + 2.2288e-01, 8.3254e-01, 7.4048e-01, 1.0655e-01, + 6.1968e-01, 4.9236e-01, 3.9374e-01, 9.8600e-01, + 6.2727e-01, 6.3699e-01, 1.5077e-01, 6.8923e-01, + 8.1866e-02, 9.4491e-01, 4.2495e-01, 6.1924e-01, + 5.9097e-01, 8.9631e-01, 4.0896e-02, 2.7195e-01, + 9.2606e-01, 7.9629e-01, 1.3798e-01, 9.5497e-01, + 5.5609e-01, 7.6608e-01, 2.0744e-01, 9.0828e-01, + 7.3828e-01, 2.4178e-02, 6.3042e-01, 9.0157e-02, + 8.0575e-01, 6.4091e-01, 8.4001e-01, 8.0655e-01, + 6.3773e-01, 5.2165e-01, 7.3692e-01, 9.8339e-03, + 2.4304e-01, 4.0600e-01, 5.3472e-01, 7.3039e-01, + 1.8193e-01, 6.5386e-01, 8.9109e-01, 1.4270e-01, + 9.9755e-01, 1.9643e-01, 3.1731e-01, 8.4375e-01, + 8.4723e-01, 4.5911e-02, 4.7723e-01, 5.8049e-01, + 7.4714e-01, 9.5452e-01, 6.9020e-01, 7.3868e-01, + 8.9090e-01, 4.6800e-01, 1.2098e-02, 9.0383e-01, + 2.8584e-01, 8.4536e-02, 8.2007e-01, 4.0686e-01, + 3.2004e-01, 6.9340e-02, 9.6068e-01, 1.0858e-01, + 7.8312e-01, 5.4643e-02, 8.4437e-01, 6.9654e-02, + 9.7882e-01, 3.6535e-01, 7.6403e-01, 5.6204e-02, + 2.1405e-02, 8.8165e-01, 6.5928e-01, 7.1005e-01, + 6.2375e-01, 6.5806e-01, 3.5559e-02, 1.4669e-01, + 1.6843e-01, 9.0943e-01, 5.9699e-01, 3.9861e-01, + 7.9046e-01, 4.2964e-01, 3.2524e-01, 2.0212e-02, + 3.7890e-01, 5.4298e-01, 6.1412e-01, 3.4376e-01, + 3.9039e-01, 3.7773e-01, 5.0347e-01, 6.3176e-01, + 6.1923e-01, 2.6321e-01, 4.7552e-01, 3.5546e-01, + 4.9177e-01, 8.1631e-01, 6.5120e-01, 4.6596e-01, + 2.3883e-01, 3.7781e-01, 5.1278e-01, 4.6530e-02, + 9.2397e-02, 3.2990e-01, 5.7737e-03, 9.1643e-01, + 6.2213e-01, 9.8931e-01, 6.7022e-01, 9.9456e-01, + 6.7420e-01, 8.9914e-01, 6.2276e-01, 1.6743e-01, + 1.6278e-01, 3.2006e-01, 3.0192e-01, 6.6995e-01, + 4.7404e-01, 2.9640e-01, 1.2818e-01, 7.9687e-03, + 2.4825e-01, 4.3761e-01, 6.3144e-01, 1.5385e-02, + 1.6076e-01, 1.3500e-01, 6.2363e-01, 3.7179e-03, + 6.2808e-01, 7.7587e-01, 3.3617e-01, 2.8067e-01, + 4.8957e-01, 8.6733e-01, 3.2273e-01, 2.0147e-01, + 1.6166e-01, 1.4503e-01, 6.1851e-01, 7.6022e-02, + 9.5480e-01, 3.3003e-01, 7.4260e-01, 5.5179e-01, + 2.2819e-01, 8.9926e-01, 4.6642e-01, 9.1739e-01, + 2.8484e-01, 1.5083e-01, 7.3850e-01, 6.2898e-01, + 2.6437e-01, 8.2121e-02, 2.1812e-01, 5.9090e-01, + 5.1624e-01, 3.1861e-01, 6.4228e-01, 9.4735e-01, + 7.0057e-01, 6.7393e-01, 7.5735e-01, 5.6290e-01, + 8.6359e-01, 7.5982e-01, 8.9830e-01, 8.9589e-01, + 9.2167e-01, 1.6984e-01, 4.1872e-01, 7.0953e-01, + 5.8248e-01, 5.1128e-01, 4.9473e-01, 9.3201e-01, + 4.3207e-04, 4.4583e-01, 3.1218e-01, 7.2647e-01, + 2.1753e-01, 5.8396e-01, 9.6181e-01, 1.8968e-01, + 7.5732e-01, 7.7034e-01, 5.4270e-01, 2.5345e-01, + 1.1261e-01, 5.3952e-01, 6.7120e-01, 5.7430e-01, + 5.7452e-01, 1.9481e-01, 5.4907e-01, 9.8805e-01, + 5.5217e-01, 5.2533e-02, 3.2655e-01, 7.4265e-01, + 3.3929e-01, 3.8987e-01, 3.8084e-01, 8.2952e-01, + 9.8247e-01, 3.9827e-01, 5.2188e-01, 7.5684e-01, + 5.7018e-01, 7.8082e-01, 2.7279e-01, 8.5286e-01, + 5.6357e-01, 6.0478e-01, 2.6466e-01, 5.2700e-01, + 6.7922e-01, 7.6419e-01, 6.4983e-02, 9.9524e-01, + 1.8506e-01, 9.8193e-01, 8.5914e-01, 3.9608e-01, + 3.1767e-01, 7.5937e-01, 4.5263e-01, 8.2957e-01, + 7.3658e-01, 6.0163e-01, 5.0224e-01, 6.8388e-01, + 7.1932e-01, 6.8113e-01, 6.8211e-01, 1.9733e-01, + 3.3945e-01, 1.4133e-01, 5.2321e-01, 6.5309e-01, + 7.3928e-01, 5.9226e-01, 8.6895e-01, 8.7555e-01, + 8.0389e-01, 9.7514e-01, 5.2371e-01, 1.9607e-01, + 6.4999e-01, 1.2679e-01, 3.1110e-01, 9.0763e-01, + 4.9753e-01, 2.3690e-01, 9.7634e-01, 2.0327e-02, + 8.6119e-02, 3.8622e-01, 7.5046e-01, 1.0498e-01, + 2.3977e-01, 3.3615e-01, 7.8112e-01, 7.5236e-01, + 6.1657e-01, 4.1513e-01, 1.7229e-01, 4.9383e-01, + 1.0446e-01, 3.4158e-01, 7.5812e-01, 2.7031e-01, + 3.2779e-01, 7.9353e-01, 4.1051e-01, 2.7920e-01, + 7.1389e-01, 6.6997e-01, 6.0140e-01, 4.3603e-01, + 3.5002e-01, 9.9051e-01, 3.2108e-01, 1.2518e-01, + 2.5630e-01, 2.6310e-01, 9.8697e-01, 9.2055e-01, + 4.7638e-01, 7.0146e-01, 5.3125e-01, 7.1807e-01, + 2.3959e-01, 8.4717e-01, 2.9144e-01, 9.0787e-01, + 5.0453e-01, 1.0290e-01, 3.7515e-01, 1.0833e-01, + 9.5140e-01, 5.2024e-01, 1.5227e-01, 2.3945e-01, + 5.9483e-01, 1.2835e-01, 4.1922e-01, 4.3056e-01, + 6.7601e-01, 9.9151e-01, 2.7772e-01, 6.2498e-01, + 1.4961e-01, 8.2116e-01, 6.3550e-01, 2.4633e-01, + 8.0063e-01, 9.0852e-01, 7.0469e-01, 5.0673e-02, + 6.8987e-01, 2.8266e-01, 4.0356e-01, 9.4879e-01, + 8.1800e-01, 4.3028e-01, 1.5262e-01, 8.6723e-01, + 5.5898e-01, 4.0008e-01, 4.1198e-02, 2.4922e-01, + 4.6623e-01, 5.9920e-01, 2.4748e-01, 5.3751e-01, + 7.9826e-01, 7.9340e-01, 5.4706e-01, 3.1348e-01, + 8.8152e-01, 3.6602e-01, 6.5734e-01, 7.5456e-01, + 1.8360e-01, 2.9506e-01, 7.2951e-01, 3.9081e-02, + 3.3378e-01, 6.2120e-01, 1.8041e-01, 9.1382e-01, + 6.9023e-01, 9.4426e-01, 8.6070e-01, 7.5081e-01, + 9.0051e-01, 3.0756e-01, 6.9718e-01, 7.5190e-01, + 7.2288e-01, 3.7386e-01, 2.2439e-01, 9.3179e-01, + 4.8208e-01, 7.0572e-02, 9.3952e-01, 5.0097e-01, + 3.9199e-01, 2.4114e-01, 9.2975e-01, 8.9070e-03, + 7.4881e-01, 8.4434e-01, 1.8233e-01, 9.3556e-02, + 4.5752e-02, 8.6701e-01, 5.5636e-01, 3.8475e-01, + 1.0103e-02, 2.1789e-01, 8.0072e-01, 6.3665e-01, + 1.3845e-01, 3.3886e-01, 5.0949e-01, 9.5029e-01, + 8.6700e-01, 8.1981e-01, 9.7561e-01, 6.3823e-01, + 4.8593e-01, 2.7508e-01, 7.3125e-01, 3.5563e-01, + 2.9572e-01, 6.7049e-01, 9.6207e-01, 4.3129e-01, + 3.9912e-01, 1.8416e-01, 4.2178e-01, 2.2591e-01, + 2.7116e-01, 8.4944e-02, 5.3846e-01, 4.9377e-01, + 1.8625e-01, 1.0443e-01, 4.0045e-01, 7.8568e-01, + 7.8932e-01, 5.1024e-02, 6.1194e-01, 9.9630e-01, + 4.1847e-01, 6.4383e-01, 8.7660e-01, 2.2864e-01, + 3.8631e-01, 8.6041e-02, 9.8976e-01, 9.6159e-01, + 1.5407e-01, 3.7114e-01, 8.6685e-01, 2.9952e-01, + 4.3743e-01, 6.0430e-01, 1.8023e-01, 8.9627e-01, + 3.4675e-01, 8.9111e-01, 4.9121e-01, 3.2340e-01, + 4.3401e-01, 4.5372e-01, 1.1315e-01, 2.6283e-01, + 4.1677e-02, 6.9109e-01, 8.3950e-01, 2.9105e-01, + 2.7116e-01, 3.2257e-01, 6.5006e-01, 1.3440e-01, + 8.7399e-01, 8.5258e-01, 5.1670e-01, 9.5831e-01, + 1.8248e-03, 2.2603e-01, 4.3010e-01, 4.4390e-01, + 3.6180e-01, 5.7994e-01, 5.4039e-02, 9.0240e-01, + 9.2264e-01, 8.4106e-01, 5.2452e-02, 4.9914e-01, + 3.6467e-01, 4.7270e-01, 7.1339e-02, 9.7767e-02, + 9.1457e-01, 5.0307e-01, 1.4224e-01, 3.1225e-01, + 7.0030e-01, 5.8456e-01, 3.0705e-01, 7.1438e-01, + 4.9225e-01, 6.4899e-01, 8.4726e-01, 9.9534e-01, + 7.4622e-01, 5.8818e-01, 6.4092e-01, 6.7998e-01, + 8.7179e-01, 8.2931e-01, 3.5227e-04, 1.6905e-03, + 3.5530e-01, 2.2770e-01, 2.8730e-01, 7.0847e-01, + 7.3922e-01, 1.5764e-01, 7.5910e-01, 8.1155e-01, + 3.5789e-01, 8.1604e-01, 5.7121e-01, 5.1344e-01, + 7.1259e-01, 4.3783e-02, 7.6839e-01, 1.7140e-01, + 7.6808e-01, 9.6939e-01, 5.0871e-01, 9.0454e-02, + 1.6264e-01, 9.4724e-01, 9.7794e-01, 3.7937e-01, + 4.3858e-01, 3.9250e-01, 6.5494e-01, 4.4660e-02, + 9.5246e-01, 6.3661e-01, 4.8289e-02, 7.6435e-01, + 8.9623e-01, 8.6627e-01, 8.3806e-01, 6.3298e-01, + 4.4901e-01, 8.8890e-01, 1.1387e-01, 8.7033e-01, + 7.9632e-02, 6.7734e-01, 9.7420e-01, 3.5013e-01, + 9.7815e-01, 5.6389e-01, 8.9754e-01, 7.5863e-01, + 9.0599e-01, 4.9037e-01, 8.2672e-01, 9.3774e-02, + 9.2781e-01, 2.5121e-01, 8.2025e-01, 1.3401e-01, + 8.9350e-01, 5.7261e-01, 6.4828e-01, 1.5136e-01, + 3.1037e-02, 3.7618e-01, 8.0341e-02, 7.8249e-01, + 4.4596e-01, 7.3260e-01, 6.7366e-01, 8.7493e-01, + 8.2283e-01, 8.3144e-01, 7.4080e-01, 6.5985e-01, + 3.8350e-01, 6.8871e-01, 1.6347e-01, 3.2368e-01, + 5.8567e-01, 6.1090e-01, 5.5092e-01, 7.1963e-01, + 3.7645e-01, 2.1788e-01, 1.5348e-01, 3.8599e-01, + 6.2359e-01, 1.5142e-02, 9.9220e-01, 7.1255e-01, + 3.6554e-02, 7.4579e-01, 8.6648e-01, 4.8711e-01, + 3.1108e-01, 4.0288e-01, 4.0072e-02, 7.3039e-01, + 8.3462e-01, 9.6954e-01, 7.7647e-01, 7.6143e-01, + 9.4618e-01, 3.9950e-01, 8.5579e-01, 2.4883e-01, + 7.7346e-03, 6.6880e-01, 9.1827e-01, 2.9585e-01, + 1.3272e-01, 4.5063e-01, 9.6004e-01, 3.8617e-01, + 6.1488e-01, 8.9428e-01, 8.7533e-01, 5.4282e-01, + 4.6344e-01, 4.0858e-02, 4.6086e-01, 4.5823e-01, + 4.5897e-01, 8.6181e-01, 7.1824e-01, 4.2757e-01, + 2.8457e-01, 6.3509e-01, 3.3824e-02, 7.5136e-01, + 2.6126e-01, 4.6785e-01, 8.9734e-01, 4.5190e-01, + 5.7147e-01, 7.3131e-01, 6.2913e-01, 6.1694e-01, + 5.1423e-01, 1.7321e-01, 6.2877e-01, 1.7045e-01, + 4.5231e-02, 7.2188e-01, 1.6031e-01, 5.5732e-01, + 1.6212e-01, 6.8915e-01, 7.6515e-01, 2.1449e-01, + 8.6821e-01, 6.5088e-01, 1.4701e-02, 5.8673e-01, + 8.6510e-01, 1.8752e-01, 3.4821e-01, 7.8249e-05, + 9.0048e-01, 3.4917e-01, 8.7994e-01, 8.3745e-01, + 1.0882e-01, 2.6136e-01, 4.8219e-01, 9.8171e-01, + 4.1806e-01, 4.5685e-01, 8.3561e-01, 6.7487e-01, + 2.4726e-01, 8.3310e-01, 7.8277e-01, 5.0739e-01, + 3.8135e-01, 7.0854e-03, 5.7741e-01, 4.9996e-01, + 9.4008e-02, 9.9417e-01, 5.2042e-04, 2.7752e-01, + 3.1344e-01, 2.6242e-01, 6.5438e-02, 2.8291e-01, + 4.1667e-01, 6.2725e-01, 7.1390e-01, 2.4205e-01, + 7.5873e-01, 6.2084e-01, 7.6212e-02, 7.1245e-01, + 5.4023e-02, 7.7038e-01, 2.4446e-01, 8.3162e-01, + 5.6013e-01, 3.2106e-01, 3.3449e-01, 7.0203e-01, + 7.0579e-01, 8.9030e-02, 7.0165e-02, 9.1623e-01, + 5.2715e-01, 9.7322e-01, 9.7823e-01, 5.1098e-01, + 1.6600e-01, 6.8958e-01, 1.7375e-01, 7.4450e-01, + 8.9019e-01, 1.6373e-01, 3.6149e-01, 4.8630e-03, + 4.3784e-01, 8.1716e-02, 9.9846e-01, 2.7020e-01, + 3.0542e-01, 3.2143e-01, 1.1526e-01, 9.8921e-01, + 2.0663e-01, 3.1757e-01, 2.6436e-01, 4.8578e-01, + 7.4604e-01, 1.8078e-01, 2.3623e-01, 3.6711e-01, + 7.8926e-01, 2.8736e-01, 6.0619e-01, 3.1924e-01, + 1.0584e-01, 6.2344e-01, 8.4074e-01, 4.8546e-01, + 6.5987e-02, 6.5535e-01, 9.9584e-01, 1.3311e-01, + 6.4704e-01, 7.6017e-01, 9.3796e-01, 8.2183e-01, + 7.1555e-01, 6.8949e-01, 4.2039e-01, 5.0010e-01, + 9.3388e-02, 2.6961e-02, 3.5883e-01, 9.1810e-01, + 5.2881e-01, 7.1083e-01, 5.6422e-01, 7.4372e-01, + 7.6688e-01, 3.0736e-01, 9.1361e-01, 1.4268e-01, + 9.8265e-03, 2.8973e-01, 8.3844e-01, 4.8399e-01, + 5.9975e-01, 7.2048e-02, 5.0537e-01, 1.9415e-01, + 9.0142e-01, 1.6063e-01, 8.3747e-01, 7.7715e-01, + 9.3624e-01, 6.7023e-01, 7.8642e-01, 3.8946e-01, + 5.7739e-01, 4.0402e-01, 7.0018e-01, 6.4440e-01, + 6.8152e-01, 8.3599e-01, 1.0687e-01, 6.3174e-01, + 7.1109e-01, 1.1298e-02, 7.2255e-01, 3.1842e-01, + 3.0260e-01, 2.0738e-01, 3.1742e-01, 9.3670e-01, + 2.1424e-01, 4.7140e-01, 4.4421e-01, 8.5256e-01, + 3.8647e-01, 6.8511e-01, 2.1262e-01, 9.9373e-02, + 7.8022e-02, 2.0199e-01, 1.7345e-01, 7.2863e-01, + 4.7128e-01, 6.2733e-01, 6.0961e-01, 3.7460e-01, + 2.1610e-01, 7.3730e-01, 8.5230e-01, 1.6917e-01, + 7.0643e-01, 9.5513e-01, 7.3051e-02, 9.8510e-01, + 2.0092e-01, 4.3241e-01, 8.0765e-01, 7.1129e-01, + 9.4627e-01, 1.8831e-01, 1.2066e-01, 2.5488e-01, + 2.6294e-01, 8.6045e-01, 6.7885e-01, 9.2268e-01, + 9.7165e-01, 3.8553e-02, 2.3898e-01, 3.6820e-01, + 3.1687e-01, 1.4802e-01, 1.1460e-01, 9.4054e-01, + 2.7835e-01, 8.3789e-01, 7.1509e-01, 6.6596e-02, + 7.0322e-01, 6.7972e-02, 7.9658e-01, 6.6196e-01, + 7.4672e-01, 9.2136e-01, 6.6804e-01, 3.4306e-01, + 4.8283e-01, 7.4549e-01, 5.5160e-01, 3.8359e-01, + 4.5479e-01, 2.3253e-01, 1.2656e-01, 4.0585e-02, + 5.6244e-01, 6.4034e-03, 9.0407e-01, 7.9786e-02, + 6.0034e-01, 6.5899e-01, 8.2659e-01, 1.3903e-01, + 5.4187e-01, 4.8715e-01, 9.9846e-01, 5.8032e-01, + 9.2359e-01, 9.8268e-01, 4.4520e-01, 5.6869e-01, + 7.0005e-03, 4.7278e-02, 2.7563e-01, 5.8058e-01, + 1.5187e-01, 1.5041e-01, 6.7326e-01, 5.1848e-01, + 8.4097e-01, 3.3985e-01, 8.7930e-01, 6.0871e-01, + 4.7442e-01, 6.2568e-01, 5.9426e-01, 5.8463e-01]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.6283, 0.6554, 0.1926, ..., 0.5716, 0.9993, 0.6492]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 10.376285076141357 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), + col_indices=tensor([2248, 4486, 2578, 3740, 621, 6003, 5803, 7740, 8017, + 8357, 2886, 8788, 9848, 2845, 3345, 9526, 6879, 849, + 9475, 1600, 5380, 5334, 6629, 9937, 1676, 3949, 9759, + 1297, 1271, 554, 8126, 7607, 6824, 8955, 3784, 6636, + 6716, 7362, 236, 4770, 377, 1035, 7094, 4817, 9140, + 2937, 60, 7489, 6793, 9918, 3932, 6069, 5062, 5030, + 1223, 3975, 150, 7966, 1822, 242, 7431, 4532, 9014, + 8126, 915, 7358, 2001, 3806, 564, 5560, 6173, 620, + 8900, 1133, 6344, 486, 265, 5173, 6593, 9511, 1972, + 6657, 9996, 3207, 27, 7301, 9620, 504, 7560, 1601, + 7424, 6685, 9645, 8602, 1386, 2669, 7610, 3723, 4006, + 2340, 4530, 2647, 5701, 4426, 8272, 3355, 7800, 1132, + 6460, 5948, 6002, 5599, 7637, 1754, 3726, 7844, 4922, + 6626, 3071, 5112, 9488, 6276, 63, 6759, 8385, 8552, + 1584, 8134, 9707, 7442, 9004, 7463, 5317, 8848, 2939, + 2603, 8194, 2739, 5486, 256, 2365, 9508, 2237, 2470, + 6761, 3844, 820, 3960, 1427, 3014, 6205, 9526, 187, + 5743, 8313, 7945, 4733, 316, 4870, 8198, 2605, 745, + 6138, 3766, 3604, 9846, 2494, 2928, 9060, 9638, 2293, + 1334, 3566, 5466, 8151, 4330, 3680, 6199, 2041, 6318, + 1803, 5034, 4823, 7162, 9670, 280, 8489, 1737, 2606, + 6216, 1938, 8976, 5856, 1117, 6857, 4276, 4103, 6680, + 9260, 6437, 1742, 9346, 2197, 2419, 6198, 9840, 242, + 5981, 117, 8727, 6383, 8881, 1592, 6491, 291, 8533, + 4799, 8873, 6031, 492, 9755, 8898, 9538, 3126, 3673, + 7165, 7259, 875, 9998, 4153, 3488, 4806, 1041, 6719, + 6621, 5171, 1220, 6019, 5757, 7236, 8256, 5996, 5674, + 9515, 884, 4587, 7341, 6133, 103, 4029, 3802, 6524, + 2472, 5443, 6806, 2814, 1694, 9023, 2383, 8670, 150, + 8994, 6959, 4597, 769, 5991, 1821, 3685, 7931, 9192, + 3640, 71, 9825, 1072, 4022, 3163, 389, 3350, 3717, + 5813, 4622, 1106, 4472, 4551, 1684, 6929, 301, 7590, + 7048, 8693, 7825, 1347, 1110, 2977, 261, 4463, 7673, + 6591, 9953, 9930, 6563, 4448, 8022, 5661, 6717, 9701, + 8152, 330, 4317, 726, 7842, 2771, 5867, 8845, 6599, + 345, 711, 3072, 5521, 7893, 9001, 7298, 4506, 7966, + 9217, 3422, 9151, 4171, 6251, 7471, 8643, 1037, 6053, + 7103, 6011, 9381, 7007, 3198, 7413, 5504, 868, 807, + 9558, 4156, 1608, 151, 6572, 5212, 4737, 4239, 8899, + 1675, 4293, 6235, 3154, 638, 2173, 3370, 5882, 3746, + 1224, 6845, 7214, 7881, 8306, 9751, 8223, 7814, 3399, + 8182, 9634, 2816, 6681, 9974, 5336, 2828, 7713, 4327, + 7163, 9008, 4567, 1895, 12, 9582, 9593, 8980, 272, + 8032, 8958, 2398, 6519, 6198, 2543, 922, 7509, 1247, + 8974, 5180, 6179, 5748, 196, 904, 6210, 2122, 9168, + 8422, 6490, 4019, 3865, 4779, 2054, 5563, 6204, 2106, + 5654, 7998, 597, 7416, 2479, 6142, 770, 4293, 5948, + 8141, 8297, 9216, 3867, 2651, 4047, 5002, 2595, 3555, + 2174, 7868, 7327, 342, 5550, 3470, 1746, 5793, 7441, + 7004, 2390, 1078, 4771, 5727, 30, 758, 5897, 2502, + 9822, 9987, 7356, 859, 2903, 2564, 2920, 9271, 3693, + 5356, 3524, 8301, 1656, 7891, 4145, 9135, 6976, 8579, + 833, 8722, 6055, 9041, 9614, 4985, 9991, 8673, 9414, + 9019, 3390, 725, 9820, 2425, 8099, 6415, 9969, 6125, + 1611, 3306, 4585, 645, 1773, 8803, 2043, 2286, 1213, + 9485, 2215, 7640, 7708, 2399, 3154, 8276, 1166, 6491, + 2501, 725, 5875, 8477, 2966, 1446, 3395, 9153, 3079, + 1192, 9045, 7932, 9179, 8868, 3781, 4831, 8933, 9803, + 3724, 6396, 4228, 7956, 4967, 8351, 7905, 7539, 8192, + 9993, 4457, 5387, 8296, 5158, 3333, 708, 476, 3968, + 5277, 7708, 1410, 3177, 5458, 4440, 4550, 296, 4323, + 3462, 3083, 9337, 8193, 6143, 3740, 897, 7990, 2278, + 6384, 7710, 3296, 331, 462, 6916, 6923, 8978, 6177, + 9290, 1417, 5590, 5685, 6828, 8296, 8381, 9216, 476, + 6358, 7285, 1855, 3164, 4932, 8288, 6409, 5094, 1306, + 6007, 8471, 5458, 6254, 3652, 4046, 7815, 8715, 3786, + 1795, 6315, 2882, 8286, 6349, 9713, 8963, 66, 2329, + 6124, 9842, 1259, 9947, 8722, 2982, 4275, 8310, 6873, + 4768, 8622, 3931, 7924, 7390, 3002, 7246, 2227, 171, + 6920, 3991, 9945, 6413, 3754, 8242, 5360, 4923, 5926, + 695, 9843, 1823, 1545, 2212, 6864, 1755, 2272, 215, + 7802, 6355, 7266, 1309, 1497, 8441, 9715, 6376, 9230, + 5931, 4201, 3022, 3307, 5726, 8235, 1964, 6883, 8294, + 3695, 9567, 4015, 9092, 4811, 5087, 3500, 9002, 6559, + 2649, 290, 2110, 9321, 4170, 164, 9410, 3089, 9451, + 3947, 7753, 1392, 1306, 243, 1301, 704, 2798, 2938, + 4752, 3676, 9586, 703, 7082, 9412, 1050, 6555, 4617, + 3094, 981, 412, 6322, 6998, 7588, 2932, 523, 2537, + 3071, 5598, 4943, 5205, 9249, 4919, 4693, 3046, 1397, + 1395, 2346, 6770, 8788, 7234, 1431, 6167, 5943, 4227, + 9979, 652, 3735, 1165, 308, 9727, 8879, 4796, 8375, + 6258, 506, 1990, 5666, 4495, 5415, 7727, 9298, 5899, + 2244, 4112, 5158, 4073, 937, 2378, 4452, 1403, 8204, + 7797, 2213, 6334, 1980, 6425, 7740, 8281, 867, 9774, + 4781, 5252, 9729, 3926, 6156, 4407, 6838, 226, 4075, + 793, 7067, 9361, 6893, 7979, 5619, 2360, 9592, 9930, + 5095, 2717, 226, 8917, 7076, 8913, 7750, 2503, 3399, + 6842, 5068, 8251, 3296, 9411, 4198, 126, 5660, 1235, + 1833, 9365, 8923, 2076, 5603, 5346, 328, 2378, 5545, + 1993, 2974, 8099, 7909, 1311, 8275, 3756, 2486, 705, + 5361, 5735, 5047, 367, 7801, 6827, 6671, 2053, 1314, + 1929, 9497, 9506, 9494, 7770, 8412, 7304, 169, 7103, + 4686, 2341, 9645, 80, 7906, 1210, 2186, 9641, 334, + 8190, 3885, 2984, 8518, 8245, 8533, 5286, 5258, 7956, + 7408, 1862, 2077, 5580, 5935, 7292, 6939, 1548, 6790, + 7824, 8270, 1817, 6609, 6093, 4744, 3164, 2927, 2913, + 1259, 1989, 7667, 6058, 7524, 5404, 9197, 4190, 1346, + 5022, 8117, 6599, 93, 3011, 7992, 6769, 4569, 7376, + 7531, 1048, 4000, 490, 5996, 5906, 5365, 4036, 6734, + 4388, 3829, 2746, 9309, 6508, 9594, 624, 2217, 4304, + 1773, 7985, 1454, 3880, 3015, 6129, 9561, 3818, 6896, + 978, 3666, 4908, 1992, 5403, 6907, 2501, 7887, 2732, + 4383, 2172, 3313, 4934, 9340, 7685, 1693, 3520, 4423, + 203, 9116, 8657, 9778, 4440, 8123, 5395, 160, 8069, + 2984, 7361, 9385, 529, 1338, 6935, 2925, 7149, 5643, + 5833, 2323, 7031, 3050, 1864, 8938, 5395, 732, 194, + 932, 4702, 2935, 435, 3305, 4504, 4306, 5520, 2583, + 2711, 2433, 2449, 1007, 418, 4026, 895, 5276, 1175, + 4970, 716, 2193, 4184, 5233, 6745, 5418, 4772, 4938, + 326, 675, 1579, 5312, 977, 1458, 7168, 4339, 357, + 2034, 3928, 9009, 5821, 97, 793, 3006, 5787, 1958, + 879]), + values=tensor([1.7784e-02, 6.7536e-01, 3.2815e-01, 5.0212e-01, + 8.2459e-01, 4.0831e-01, 3.5370e-01, 4.7010e-01, + 6.4249e-01, 8.4444e-01, 1.2869e-01, 5.1729e-01, + 7.8578e-01, 8.1935e-01, 2.2395e-01, 9.1242e-01, + 2.3102e-01, 2.5964e-01, 7.5333e-01, 4.0994e-01, + 7.8409e-01, 8.3098e-02, 4.4159e-02, 6.9849e-01, + 5.4876e-01, 7.7185e-02, 1.4256e-01, 9.4588e-01, + 3.8493e-01, 7.9894e-01, 2.6476e-01, 6.5332e-01, + 2.7952e-01, 9.6279e-01, 6.7687e-01, 1.5134e-01, + 2.0992e-01, 1.8817e-01, 1.5476e-01, 3.7619e-01, + 6.0915e-01, 2.5395e-01, 7.0490e-01, 5.1472e-01, + 8.1531e-01, 8.1250e-01, 2.4074e-01, 6.2823e-01, + 9.6154e-02, 8.5599e-01, 4.0257e-01, 9.7211e-01, + 3.1491e-01, 5.8549e-01, 5.1698e-01, 1.4512e-01, + 5.6220e-01, 8.5455e-01, 1.5383e-01, 3.4851e-01, + 1.6742e-01, 2.8756e-01, 8.4743e-01, 6.4905e-01, + 3.2047e-02, 7.9299e-01, 4.4112e-02, 8.2065e-01, + 6.4074e-01, 5.0950e-01, 3.9067e-01, 6.9817e-01, + 2.6907e-01, 1.1875e-01, 2.0775e-01, 8.1476e-01, + 6.4289e-01, 3.9998e-01, 1.7138e-01, 8.2458e-01, + 7.2667e-01, 8.8010e-02, 1.5554e-01, 5.5880e-01, + 4.8597e-01, 2.5555e-01, 4.1458e-02, 7.8508e-01, + 2.8802e-02, 5.5833e-01, 1.9918e-01, 2.7091e-01, + 6.0720e-02, 4.4126e-01, 3.7238e-01, 7.4795e-02, + 4.4719e-01, 9.3574e-01, 6.9669e-01, 3.3986e-01, + 5.9333e-01, 8.5560e-01, 6.1018e-02, 8.9694e-01, + 2.2288e-01, 8.3254e-01, 7.4048e-01, 1.0655e-01, + 6.1968e-01, 4.9236e-01, 3.9374e-01, 9.8600e-01, + 6.2727e-01, 6.3699e-01, 1.5077e-01, 6.8923e-01, + 8.1866e-02, 9.4491e-01, 4.2495e-01, 6.1924e-01, + 5.9097e-01, 8.9631e-01, 4.0896e-02, 2.7195e-01, + 9.2606e-01, 7.9629e-01, 1.3798e-01, 9.5497e-01, + 5.5609e-01, 7.6608e-01, 2.0744e-01, 9.0828e-01, + 7.3828e-01, 2.4178e-02, 6.3042e-01, 9.0157e-02, + 8.0575e-01, 6.4091e-01, 8.4001e-01, 8.0655e-01, + 6.3773e-01, 5.2165e-01, 7.3692e-01, 9.8339e-03, + 2.4304e-01, 4.0600e-01, 5.3472e-01, 7.3039e-01, + 1.8193e-01, 6.5386e-01, 8.9109e-01, 1.4270e-01, + 9.9755e-01, 1.9643e-01, 3.1731e-01, 8.4375e-01, + 8.4723e-01, 4.5911e-02, 4.7723e-01, 5.8049e-01, + 7.4714e-01, 9.5452e-01, 6.9020e-01, 7.3868e-01, + 8.9090e-01, 4.6800e-01, 1.2098e-02, 9.0383e-01, + 2.8584e-01, 8.4536e-02, 8.2007e-01, 4.0686e-01, + 3.2004e-01, 6.9340e-02, 9.6068e-01, 1.0858e-01, + 7.8312e-01, 5.4643e-02, 8.4437e-01, 6.9654e-02, + 9.7882e-01, 3.6535e-01, 7.6403e-01, 5.6204e-02, + 2.1405e-02, 8.8165e-01, 6.5928e-01, 7.1005e-01, + 6.2375e-01, 6.5806e-01, 3.5559e-02, 1.4669e-01, + 1.6843e-01, 9.0943e-01, 5.9699e-01, 3.9861e-01, + 7.9046e-01, 4.2964e-01, 3.2524e-01, 2.0212e-02, + 3.7890e-01, 5.4298e-01, 6.1412e-01, 3.4376e-01, + 3.9039e-01, 3.7773e-01, 5.0347e-01, 6.3176e-01, + 6.1923e-01, 2.6321e-01, 4.7552e-01, 3.5546e-01, + 4.9177e-01, 8.1631e-01, 6.5120e-01, 4.6596e-01, + 2.3883e-01, 3.7781e-01, 5.1278e-01, 4.6530e-02, + 9.2397e-02, 3.2990e-01, 5.7737e-03, 9.1643e-01, + 6.2213e-01, 9.8931e-01, 6.7022e-01, 9.9456e-01, + 6.7420e-01, 8.9914e-01, 6.2276e-01, 1.6743e-01, + 1.6278e-01, 3.2006e-01, 3.0192e-01, 6.6995e-01, + 4.7404e-01, 2.9640e-01, 1.2818e-01, 7.9687e-03, + 2.4825e-01, 4.3761e-01, 6.3144e-01, 1.5385e-02, + 1.6076e-01, 1.3500e-01, 6.2363e-01, 3.7179e-03, + 6.2808e-01, 7.7587e-01, 3.3617e-01, 2.8067e-01, + 4.8957e-01, 8.6733e-01, 3.2273e-01, 2.0147e-01, + 1.6166e-01, 1.4503e-01, 6.1851e-01, 7.6022e-02, + 9.5480e-01, 3.3003e-01, 7.4260e-01, 5.5179e-01, + 2.2819e-01, 8.9926e-01, 4.6642e-01, 9.1739e-01, + 2.8484e-01, 1.5083e-01, 7.3850e-01, 6.2898e-01, + 2.6437e-01, 8.2121e-02, 2.1812e-01, 5.9090e-01, + 5.1624e-01, 3.1861e-01, 6.4228e-01, 9.4735e-01, + 7.0057e-01, 6.7393e-01, 7.5735e-01, 5.6290e-01, + 8.6359e-01, 7.5982e-01, 8.9830e-01, 8.9589e-01, + 9.2167e-01, 1.6984e-01, 4.1872e-01, 7.0953e-01, + 5.8248e-01, 5.1128e-01, 4.9473e-01, 9.3201e-01, + 4.3207e-04, 4.4583e-01, 3.1218e-01, 7.2647e-01, + 2.1753e-01, 5.8396e-01, 9.6181e-01, 1.8968e-01, + 7.5732e-01, 7.7034e-01, 5.4270e-01, 2.5345e-01, + 1.1261e-01, 5.3952e-01, 6.7120e-01, 5.7430e-01, + 5.7452e-01, 1.9481e-01, 5.4907e-01, 9.8805e-01, + 5.5217e-01, 5.2533e-02, 3.2655e-01, 7.4265e-01, + 3.3929e-01, 3.8987e-01, 3.8084e-01, 8.2952e-01, + 9.8247e-01, 3.9827e-01, 5.2188e-01, 7.5684e-01, + 5.7018e-01, 7.8082e-01, 2.7279e-01, 8.5286e-01, + 5.6357e-01, 6.0478e-01, 2.6466e-01, 5.2700e-01, + 6.7922e-01, 7.6419e-01, 6.4983e-02, 9.9524e-01, + 1.8506e-01, 9.8193e-01, 8.5914e-01, 3.9608e-01, + 3.1767e-01, 7.5937e-01, 4.5263e-01, 8.2957e-01, + 7.3658e-01, 6.0163e-01, 5.0224e-01, 6.8388e-01, + 7.1932e-01, 6.8113e-01, 6.8211e-01, 1.9733e-01, + 3.3945e-01, 1.4133e-01, 5.2321e-01, 6.5309e-01, + 7.3928e-01, 5.9226e-01, 8.6895e-01, 8.7555e-01, + 8.0389e-01, 9.7514e-01, 5.2371e-01, 1.9607e-01, + 6.4999e-01, 1.2679e-01, 3.1110e-01, 9.0763e-01, + 4.9753e-01, 2.3690e-01, 9.7634e-01, 2.0327e-02, + 8.6119e-02, 3.8622e-01, 7.5046e-01, 1.0498e-01, + 2.3977e-01, 3.3615e-01, 7.8112e-01, 7.5236e-01, + 6.1657e-01, 4.1513e-01, 1.7229e-01, 4.9383e-01, + 1.0446e-01, 3.4158e-01, 7.5812e-01, 2.7031e-01, + 3.2779e-01, 7.9353e-01, 4.1051e-01, 2.7920e-01, + 7.1389e-01, 6.6997e-01, 6.0140e-01, 4.3603e-01, + 3.5002e-01, 9.9051e-01, 3.2108e-01, 1.2518e-01, + 2.5630e-01, 2.6310e-01, 9.8697e-01, 9.2055e-01, + 4.7638e-01, 7.0146e-01, 5.3125e-01, 7.1807e-01, + 2.3959e-01, 8.4717e-01, 2.9144e-01, 9.0787e-01, + 5.0453e-01, 1.0290e-01, 3.7515e-01, 1.0833e-01, + 9.5140e-01, 5.2024e-01, 1.5227e-01, 2.3945e-01, + 5.9483e-01, 1.2835e-01, 4.1922e-01, 4.3056e-01, + 6.7601e-01, 9.9151e-01, 2.7772e-01, 6.2498e-01, + 1.4961e-01, 8.2116e-01, 6.3550e-01, 2.4633e-01, + 8.0063e-01, 9.0852e-01, 7.0469e-01, 5.0673e-02, + 6.8987e-01, 2.8266e-01, 4.0356e-01, 9.4879e-01, + 8.1800e-01, 4.3028e-01, 1.5262e-01, 8.6723e-01, + 5.5898e-01, 4.0008e-01, 4.1198e-02, 2.4922e-01, + 4.6623e-01, 5.9920e-01, 2.4748e-01, 5.3751e-01, + 7.9826e-01, 7.9340e-01, 5.4706e-01, 3.1348e-01, + 8.8152e-01, 3.6602e-01, 6.5734e-01, 7.5456e-01, + 1.8360e-01, 2.9506e-01, 7.2951e-01, 3.9081e-02, + 3.3378e-01, 6.2120e-01, 1.8041e-01, 9.1382e-01, + 6.9023e-01, 9.4426e-01, 8.6070e-01, 7.5081e-01, + 9.0051e-01, 3.0756e-01, 6.9718e-01, 7.5190e-01, + 7.2288e-01, 3.7386e-01, 2.2439e-01, 9.3179e-01, + 4.8208e-01, 7.0572e-02, 9.3952e-01, 5.0097e-01, + 3.9199e-01, 2.4114e-01, 9.2975e-01, 8.9070e-03, + 7.4881e-01, 8.4434e-01, 1.8233e-01, 9.3556e-02, + 4.5752e-02, 8.6701e-01, 5.5636e-01, 3.8475e-01, + 1.0103e-02, 2.1789e-01, 8.0072e-01, 6.3665e-01, + 1.3845e-01, 3.3886e-01, 5.0949e-01, 9.5029e-01, + 8.6700e-01, 8.1981e-01, 9.7561e-01, 6.3823e-01, + 4.8593e-01, 2.7508e-01, 7.3125e-01, 3.5563e-01, + 2.9572e-01, 6.7049e-01, 9.6207e-01, 4.3129e-01, + 3.9912e-01, 1.8416e-01, 4.2178e-01, 2.2591e-01, + 2.7116e-01, 8.4944e-02, 5.3846e-01, 4.9377e-01, + 1.8625e-01, 1.0443e-01, 4.0045e-01, 7.8568e-01, + 7.8932e-01, 5.1024e-02, 6.1194e-01, 9.9630e-01, + 4.1847e-01, 6.4383e-01, 8.7660e-01, 2.2864e-01, + 3.8631e-01, 8.6041e-02, 9.8976e-01, 9.6159e-01, + 1.5407e-01, 3.7114e-01, 8.6685e-01, 2.9952e-01, + 4.3743e-01, 6.0430e-01, 1.8023e-01, 8.9627e-01, + 3.4675e-01, 8.9111e-01, 4.9121e-01, 3.2340e-01, + 4.3401e-01, 4.5372e-01, 1.1315e-01, 2.6283e-01, + 4.1677e-02, 6.9109e-01, 8.3950e-01, 2.9105e-01, + 2.7116e-01, 3.2257e-01, 6.5006e-01, 1.3440e-01, + 8.7399e-01, 8.5258e-01, 5.1670e-01, 9.5831e-01, + 1.8248e-03, 2.2603e-01, 4.3010e-01, 4.4390e-01, + 3.6180e-01, 5.7994e-01, 5.4039e-02, 9.0240e-01, + 9.2264e-01, 8.4106e-01, 5.2452e-02, 4.9914e-01, + 3.6467e-01, 4.7270e-01, 7.1339e-02, 9.7767e-02, + 9.1457e-01, 5.0307e-01, 1.4224e-01, 3.1225e-01, + 7.0030e-01, 5.8456e-01, 3.0705e-01, 7.1438e-01, + 4.9225e-01, 6.4899e-01, 8.4726e-01, 9.9534e-01, + 7.4622e-01, 5.8818e-01, 6.4092e-01, 6.7998e-01, + 8.7179e-01, 8.2931e-01, 3.5227e-04, 1.6905e-03, + 3.5530e-01, 2.2770e-01, 2.8730e-01, 7.0847e-01, + 7.3922e-01, 1.5764e-01, 7.5910e-01, 8.1155e-01, + 3.5789e-01, 8.1604e-01, 5.7121e-01, 5.1344e-01, + 7.1259e-01, 4.3783e-02, 7.6839e-01, 1.7140e-01, + 7.6808e-01, 9.6939e-01, 5.0871e-01, 9.0454e-02, + 1.6264e-01, 9.4724e-01, 9.7794e-01, 3.7937e-01, + 4.3858e-01, 3.9250e-01, 6.5494e-01, 4.4660e-02, + 9.5246e-01, 6.3661e-01, 4.8289e-02, 7.6435e-01, + 8.9623e-01, 8.6627e-01, 8.3806e-01, 6.3298e-01, + 4.4901e-01, 8.8890e-01, 1.1387e-01, 8.7033e-01, + 7.9632e-02, 6.7734e-01, 9.7420e-01, 3.5013e-01, + 9.7815e-01, 5.6389e-01, 8.9754e-01, 7.5863e-01, + 9.0599e-01, 4.9037e-01, 8.2672e-01, 9.3774e-02, + 9.2781e-01, 2.5121e-01, 8.2025e-01, 1.3401e-01, + 8.9350e-01, 5.7261e-01, 6.4828e-01, 1.5136e-01, + 3.1037e-02, 3.7618e-01, 8.0341e-02, 7.8249e-01, + 4.4596e-01, 7.3260e-01, 6.7366e-01, 8.7493e-01, + 8.2283e-01, 8.3144e-01, 7.4080e-01, 6.5985e-01, + 3.8350e-01, 6.8871e-01, 1.6347e-01, 3.2368e-01, + 5.8567e-01, 6.1090e-01, 5.5092e-01, 7.1963e-01, + 3.7645e-01, 2.1788e-01, 1.5348e-01, 3.8599e-01, + 6.2359e-01, 1.5142e-02, 9.9220e-01, 7.1255e-01, + 3.6554e-02, 7.4579e-01, 8.6648e-01, 4.8711e-01, + 3.1108e-01, 4.0288e-01, 4.0072e-02, 7.3039e-01, + 8.3462e-01, 9.6954e-01, 7.7647e-01, 7.6143e-01, + 9.4618e-01, 3.9950e-01, 8.5579e-01, 2.4883e-01, + 7.7346e-03, 6.6880e-01, 9.1827e-01, 2.9585e-01, + 1.3272e-01, 4.5063e-01, 9.6004e-01, 3.8617e-01, + 6.1488e-01, 8.9428e-01, 8.7533e-01, 5.4282e-01, + 4.6344e-01, 4.0858e-02, 4.6086e-01, 4.5823e-01, + 4.5897e-01, 8.6181e-01, 7.1824e-01, 4.2757e-01, + 2.8457e-01, 6.3509e-01, 3.3824e-02, 7.5136e-01, + 2.6126e-01, 4.6785e-01, 8.9734e-01, 4.5190e-01, + 5.7147e-01, 7.3131e-01, 6.2913e-01, 6.1694e-01, + 5.1423e-01, 1.7321e-01, 6.2877e-01, 1.7045e-01, + 4.5231e-02, 7.2188e-01, 1.6031e-01, 5.5732e-01, + 1.6212e-01, 6.8915e-01, 7.6515e-01, 2.1449e-01, + 8.6821e-01, 6.5088e-01, 1.4701e-02, 5.8673e-01, + 8.6510e-01, 1.8752e-01, 3.4821e-01, 7.8249e-05, + 9.0048e-01, 3.4917e-01, 8.7994e-01, 8.3745e-01, + 1.0882e-01, 2.6136e-01, 4.8219e-01, 9.8171e-01, + 4.1806e-01, 4.5685e-01, 8.3561e-01, 6.7487e-01, + 2.4726e-01, 8.3310e-01, 7.8277e-01, 5.0739e-01, + 3.8135e-01, 7.0854e-03, 5.7741e-01, 4.9996e-01, + 9.4008e-02, 9.9417e-01, 5.2042e-04, 2.7752e-01, + 3.1344e-01, 2.6242e-01, 6.5438e-02, 2.8291e-01, + 4.1667e-01, 6.2725e-01, 7.1390e-01, 2.4205e-01, + 7.5873e-01, 6.2084e-01, 7.6212e-02, 7.1245e-01, + 5.4023e-02, 7.7038e-01, 2.4446e-01, 8.3162e-01, + 5.6013e-01, 3.2106e-01, 3.3449e-01, 7.0203e-01, + 7.0579e-01, 8.9030e-02, 7.0165e-02, 9.1623e-01, + 5.2715e-01, 9.7322e-01, 9.7823e-01, 5.1098e-01, + 1.6600e-01, 6.8958e-01, 1.7375e-01, 7.4450e-01, + 8.9019e-01, 1.6373e-01, 3.6149e-01, 4.8630e-03, + 4.3784e-01, 8.1716e-02, 9.9846e-01, 2.7020e-01, + 3.0542e-01, 3.2143e-01, 1.1526e-01, 9.8921e-01, + 2.0663e-01, 3.1757e-01, 2.6436e-01, 4.8578e-01, + 7.4604e-01, 1.8078e-01, 2.3623e-01, 3.6711e-01, + 7.8926e-01, 2.8736e-01, 6.0619e-01, 3.1924e-01, + 1.0584e-01, 6.2344e-01, 8.4074e-01, 4.8546e-01, + 6.5987e-02, 6.5535e-01, 9.9584e-01, 1.3311e-01, + 6.4704e-01, 7.6017e-01, 9.3796e-01, 8.2183e-01, + 7.1555e-01, 6.8949e-01, 4.2039e-01, 5.0010e-01, + 9.3388e-02, 2.6961e-02, 3.5883e-01, 9.1810e-01, + 5.2881e-01, 7.1083e-01, 5.6422e-01, 7.4372e-01, + 7.6688e-01, 3.0736e-01, 9.1361e-01, 1.4268e-01, + 9.8265e-03, 2.8973e-01, 8.3844e-01, 4.8399e-01, + 5.9975e-01, 7.2048e-02, 5.0537e-01, 1.9415e-01, + 9.0142e-01, 1.6063e-01, 8.3747e-01, 7.7715e-01, + 9.3624e-01, 6.7023e-01, 7.8642e-01, 3.8946e-01, + 5.7739e-01, 4.0402e-01, 7.0018e-01, 6.4440e-01, + 6.8152e-01, 8.3599e-01, 1.0687e-01, 6.3174e-01, + 7.1109e-01, 1.1298e-02, 7.2255e-01, 3.1842e-01, + 3.0260e-01, 2.0738e-01, 3.1742e-01, 9.3670e-01, + 2.1424e-01, 4.7140e-01, 4.4421e-01, 8.5256e-01, + 3.8647e-01, 6.8511e-01, 2.1262e-01, 9.9373e-02, + 7.8022e-02, 2.0199e-01, 1.7345e-01, 7.2863e-01, + 4.7128e-01, 6.2733e-01, 6.0961e-01, 3.7460e-01, + 2.1610e-01, 7.3730e-01, 8.5230e-01, 1.6917e-01, + 7.0643e-01, 9.5513e-01, 7.3051e-02, 9.8510e-01, + 2.0092e-01, 4.3241e-01, 8.0765e-01, 7.1129e-01, + 9.4627e-01, 1.8831e-01, 1.2066e-01, 2.5488e-01, + 2.6294e-01, 8.6045e-01, 6.7885e-01, 9.2268e-01, + 9.7165e-01, 3.8553e-02, 2.3898e-01, 3.6820e-01, + 3.1687e-01, 1.4802e-01, 1.1460e-01, 9.4054e-01, + 2.7835e-01, 8.3789e-01, 7.1509e-01, 6.6596e-02, + 7.0322e-01, 6.7972e-02, 7.9658e-01, 6.6196e-01, + 7.4672e-01, 9.2136e-01, 6.6804e-01, 3.4306e-01, + 4.8283e-01, 7.4549e-01, 5.5160e-01, 3.8359e-01, + 4.5479e-01, 2.3253e-01, 1.2656e-01, 4.0585e-02, + 5.6244e-01, 6.4034e-03, 9.0407e-01, 7.9786e-02, + 6.0034e-01, 6.5899e-01, 8.2659e-01, 1.3903e-01, + 5.4187e-01, 4.8715e-01, 9.9846e-01, 5.8032e-01, + 9.2359e-01, 9.8268e-01, 4.4520e-01, 5.6869e-01, + 7.0005e-03, 4.7278e-02, 2.7563e-01, 5.8058e-01, + 1.5187e-01, 1.5041e-01, 6.7326e-01, 5.1848e-01, + 8.4097e-01, 3.3985e-01, 8.7930e-01, 6.0871e-01, + 4.7442e-01, 6.2568e-01, 5.9426e-01, 5.8463e-01]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.6283, 0.6554, 0.1926, ..., 0.5716, 0.9993, 0.6492]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 10.376285076141357 seconds + +[20.4, 20.32, 20.32, 20.44, 20.32, 20.32, 20.52, 20.6, 20.96, 21.36] +[21.4, 21.52, 21.84, 22.84, 24.24, 24.88, 25.24, 25.24, 24.84, 24.56, 23.72, 23.8, 23.96, 23.68] +14.664767265319824 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 145400, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.376285076141357, 'TIME_S_1KI': 0.07136372129395707, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 324.9616888427734, 'W': 22.159348523127505} +[20.4, 20.32, 20.32, 20.44, 20.32, 20.32, 20.52, 20.6, 20.96, 21.36, 20.68, 20.64, 20.6, 20.52, 20.32, 20.28, 20.32, 20.32, 20.6, 20.68] +368.96000000000004 +18.448 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 145400, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.376285076141357, 'TIME_S_1KI': 0.07136372129395707, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 324.9616888427734, 'W': 22.159348523127505, 'J_1KI': 2.2349497169379187, 'W_1KI': 0.15240267209853856, 'W_D': 3.711348523127505, 'J_D': 54.42606233215331, 'W_D_1KI': 0.02552509300637899, 'J_D_1KI': 0.00017555084598610036} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_500000_1e-05.json b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_500000_1e-05.json new file mode 100644 index 0000000..c0e7e6f --- /dev/null +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_500000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 98.37349367141724, "TIME_S_1KI": 98.37349367141724, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2530.5661976623533, "W": 23.87864246176097, "J_1KI": 2530.5661976623533, "W_1KI": 23.87864246176097, "W_D": 5.392642461760968, "J_D": 571.491396617889, "W_D_1KI": 5.392642461760968, "J_D_1KI": 5.392642461760968} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_500000_1e-05.output b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_500000_1e-05.output new file mode 100644 index 0000000..3a0a0f2 --- /dev/null +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_500000_1e-05.output @@ -0,0 +1,47 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 500000 -sd 1e-05 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 98.37349367141724} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 6, 6, ..., 2499994, + 2499997, 2500000]), + col_indices=tensor([ 13104, 56490, 58201, ..., 30329, 136735, + 267614]), + values=tensor([0.2415, 0.0022, 0.5702, ..., 0.5534, 0.4567, 0.6374]), + size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.5993, 0.2850, 0.9957, ..., 0.8791, 0.8991, 0.2848]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 2500000 +Density: 1e-05 +Time: 98.37349367141724 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 6, 6, ..., 2499994, + 2499997, 2500000]), + col_indices=tensor([ 13104, 56490, 58201, ..., 30329, 136735, + 267614]), + values=tensor([0.2415, 0.0022, 0.5702, ..., 0.5534, 0.4567, 0.6374]), + size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.5993, 0.2850, 0.9957, ..., 0.8791, 0.8991, 0.2848]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 2500000 +Density: 1e-05 +Time: 98.37349367141724 seconds + +[20.36, 20.36, 20.48, 20.36, 20.56, 20.68, 20.6, 20.64, 20.6, 20.52] +[20.56, 20.56, 20.56, 21.88, 23.2, 25.36, 26.72, 27.0, 26.4, 25.72, 25.04, 25.04, 25.2, 25.32, 25.2, 25.0, 25.12, 24.96, 24.88, 25.0, 24.92, 24.92, 24.96, 25.08, 25.24, 25.28, 25.48, 25.28, 25.28, 25.44, 25.44, 25.4, 25.2, 25.12, 24.96, 25.12, 25.32, 25.52, 25.8, 25.72, 25.44, 25.08, 25.0, 25.0, 24.96, 25.0, 25.04, 25.12, 25.12, 25.2, 25.2, 25.16, 25.04, 24.88, 24.96, 25.16, 25.16, 25.24, 25.24, 25.4, 25.2, 25.32, 25.16, 25.16, 25.2, 25.2, 25.0, 25.16, 25.28, 25.28, 25.28, 25.16, 25.2, 25.2, 25.04, 25.2, 25.36, 25.32, 25.32, 25.52, 25.44, 25.4, 25.36, 25.4, 25.32, 25.24, 25.04, 25.04, 24.92, 24.96, 24.96, 25.12, 25.32, 25.24, 25.2, 25.04, 24.92, 25.08, 25.0, 24.96, 24.88] +105.97613334655762 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 98.37349367141724, 'TIME_S_1KI': 98.37349367141724, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2530.5661976623533, 'W': 23.87864246176097} +[20.36, 20.36, 20.48, 20.36, 20.56, 20.68, 20.6, 20.64, 20.6, 20.52, 20.68, 20.4, 20.36, 20.52, 20.4, 20.6, 20.68, 20.68, 20.64, 20.76] +369.72 +18.486 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 98.37349367141724, 'TIME_S_1KI': 98.37349367141724, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2530.5661976623533, 'W': 23.87864246176097, 'J_1KI': 2530.5661976623533, 'W_1KI': 23.87864246176097, 'W_D': 5.392642461760968, 'J_D': 571.491396617889, 'W_D_1KI': 5.392642461760968, 'J_D_1KI': 5.392642461760968} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_50000_0.0001.json b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_50000_0.0001.json new file mode 100644 index 0000000..05b637f --- /dev/null +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_50000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 1803, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.916261672973633, "TIME_S_1KI": 6.054498986674227, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 348.36130602836613, "W": 23.871230542861202, "J_1KI": 193.21203883991467, "W_1KI": 13.239728531814311, "W_D": 5.286230542861201, "J_D": 77.14383104681971, "W_D_1KI": 2.931908232313478, "J_D_1KI": 1.6261276940174587} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_50000_0.0001.output b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_50000_0.0001.output new file mode 100644 index 0000000..a1e0ae8 --- /dev/null +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_50000_0.0001.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 50000 -sd 0.0001 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 5.821210145950317} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 5, 11, ..., 249996, 249998, + 250000]), + col_indices=tensor([12413, 12946, 15415, ..., 25881, 14227, 42249]), + values=tensor([0.3226, 0.4714, 0.3498, ..., 0.9478, 0.5271, 0.1593]), + size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) +tensor([0.8728, 0.8759, 0.3915, ..., 0.5486, 0.7678, 0.2723]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 250000 +Density: 0.0001 +Time: 5.821210145950317 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1803 -ss 50000 -sd 0.0001 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.916261672973633} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 5, 11, ..., 249988, 249991, + 250000]), + col_indices=tensor([ 7415, 12339, 19287, ..., 32647, 33814, 45500]), + values=tensor([0.8370, 0.0969, 0.8316, ..., 0.1944, 0.4025, 0.6344]), + size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) +tensor([0.2154, 0.6825, 0.0342, ..., 0.6227, 0.4225, 0.9397]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 250000 +Density: 0.0001 +Time: 10.916261672973633 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 5, 11, ..., 249988, 249991, + 250000]), + col_indices=tensor([ 7415, 12339, 19287, ..., 32647, 33814, 45500]), + values=tensor([0.8370, 0.0969, 0.8316, ..., 0.1944, 0.4025, 0.6344]), + size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) +tensor([0.2154, 0.6825, 0.0342, ..., 0.6227, 0.4225, 0.9397]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 250000 +Density: 0.0001 +Time: 10.916261672973633 seconds + +[20.84, 20.76, 20.76, 20.6, 20.4, 20.28, 20.24, 20.52, 20.56, 20.44] +[20.44, 20.32, 23.6, 25.4, 27.36, 28.36, 28.36, 29.32, 26.76, 26.0, 25.28, 24.92, 25.04, 25.08] +14.593353509902954 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1803, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.916261672973633, 'TIME_S_1KI': 6.054498986674227, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 348.36130602836613, 'W': 23.871230542861202} +[20.84, 20.76, 20.76, 20.6, 20.4, 20.28, 20.24, 20.52, 20.56, 20.44, 20.2, 20.24, 20.32, 20.44, 20.72, 20.92, 20.92, 21.36, 21.28, 21.28] +371.7 +18.585 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1803, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.916261672973633, 'TIME_S_1KI': 6.054498986674227, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 348.36130602836613, 'W': 23.871230542861202, 'J_1KI': 193.21203883991467, 'W_1KI': 13.239728531814311, 'W_D': 5.286230542861201, 'J_D': 77.14383104681971, 'W_D_1KI': 2.931908232313478, 'J_D_1KI': 1.6261276940174587} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_50000_0.001.json b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_50000_0.001.json new file mode 100644 index 0000000..62a0664 --- /dev/null +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_50000_0.001.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 53.93572449684143, "TIME_S_1KI": 53.93572449684143, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1405.257185211182, "W": 23.49413775375655, "J_1KI": 1405.257185211182, "W_1KI": 23.49413775375655, "W_D": 4.945137753756551, "J_D": 295.78401357650813, "W_D_1KI": 4.945137753756551, "J_D_1KI": 4.945137753756551} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_50000_0.001.output b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_50000_0.001.output new file mode 100644 index 0000000..cbf5bdc --- /dev/null +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_50000_0.001.output @@ -0,0 +1,45 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 50000 -sd 0.001 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 53.93572449684143} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 63, 121, ..., 2499897, + 2499959, 2500000]), + col_indices=tensor([ 158, 1232, 2736, ..., 48449, 48581, 49575]), + values=tensor([0.0263, 0.9327, 0.9651, ..., 0.1558, 0.2228, 0.0301]), + size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.0174, 0.1708, 0.2801, ..., 0.8892, 0.6468, 0.1800]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 2500000 +Density: 0.001 +Time: 53.93572449684143 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 63, 121, ..., 2499897, + 2499959, 2500000]), + col_indices=tensor([ 158, 1232, 2736, ..., 48449, 48581, 49575]), + values=tensor([0.0263, 0.9327, 0.9651, ..., 0.1558, 0.2228, 0.0301]), + size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.0174, 0.1708, 0.2801, ..., 0.8892, 0.6468, 0.1800]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 2500000 +Density: 0.001 +Time: 53.93572449684143 seconds + +[20.72, 20.76, 20.76, 20.8, 20.72, 20.72, 20.24, 20.36, 20.72, 20.72] +[20.76, 21.16, 21.32, 25.56, 26.68, 28.72, 29.48, 27.44, 25.8, 24.96, 24.56, 24.52, 24.56, 24.64, 24.6, 24.52, 24.56, 24.56, 24.6, 24.6, 24.68, 24.68, 24.4, 24.48, 24.4, 24.56, 24.52, 24.8, 24.64, 24.8, 24.68, 24.88, 24.56, 24.56, 24.36, 24.48, 24.64, 24.68, 24.56, 24.72, 24.48, 24.48, 24.44, 24.92, 25.08, 24.92, 24.96, 24.76, 24.76, 24.56, 24.44, 24.36, 24.36, 24.44, 24.36, 24.44, 24.52] +59.8130989074707 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 53.93572449684143, 'TIME_S_1KI': 53.93572449684143, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1405.257185211182, 'W': 23.49413775375655} +[20.72, 20.76, 20.76, 20.8, 20.72, 20.72, 20.24, 20.36, 20.72, 20.72, 20.2, 20.6, 20.56, 20.68, 20.8, 20.8, 20.64, 20.56, 20.36, 20.16] +370.97999999999996 +18.549 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 53.93572449684143, 'TIME_S_1KI': 53.93572449684143, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1405.257185211182, 'W': 23.49413775375655, 'J_1KI': 1405.257185211182, 'W_1KI': 23.49413775375655, 'W_D': 4.945137753756551, 'J_D': 295.78401357650813, 'W_D_1KI': 4.945137753756551, 'J_D_1KI': 4.945137753756551} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_50000_1e-05.json b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_50000_1e-05.json new file mode 100644 index 0000000..8adab40 --- /dev/null +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_50000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 10285, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.171167612075806, "TIME_S_1KI": 0.9889321936874872, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 325.4937496185303, "W": 23.99041156544644, "J_1KI": 31.647423395092883, "W_1KI": 2.332563107967568, "W_D": 5.591411565446439, "J_D": 75.86237156176564, "W_D_1KI": 0.5436472110302809, "J_D_1KI": 0.052858260673824105} diff --git a/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_50000_1e-05.output b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_50000_1e-05.output new file mode 100644 index 0000000..12e8b6c --- /dev/null +++ b/pytorch/output_synthetic_1core/altra_1_csr_10_10_10_synthetic_50000_1e-05.output @@ -0,0 +1,62 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 50000 -sd 1e-05 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 1.020900011062622} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 24999, 24999, 25000]), + col_indices=tensor([43592, 45763, 41730, ..., 2923, 32227, 39553]), + values=tensor([0.0398, 0.4210, 0.0283, ..., 0.1409, 0.8695, 0.8837]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.8554, 0.8486, 0.8747, ..., 0.5244, 0.7497, 0.0831]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 1.020900011062622 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 10285 -ss 50000 -sd 1e-05 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.171167612075806} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 1, ..., 25000, 25000, 25000]), + col_indices=tensor([14664, 43703, 46520, ..., 7061, 31497, 43987]), + values=tensor([0.1911, 0.5487, 0.9416, ..., 0.5242, 0.5616, 0.0900]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.7733, 0.9528, 0.6124, ..., 0.0354, 0.2670, 0.0752]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 10.171167612075806 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 1, ..., 25000, 25000, 25000]), + col_indices=tensor([14664, 43703, 46520, ..., 7061, 31497, 43987]), + values=tensor([0.1911, 0.5487, 0.9416, ..., 0.5242, 0.5616, 0.0900]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.7733, 0.9528, 0.6124, ..., 0.0354, 0.2670, 0.0752]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 10.171167612075806 seconds + +[20.44, 20.44, 20.36, 20.08, 20.36, 20.36, 20.4, 20.44, 20.6, 20.52] +[20.52, 20.72, 24.24, 25.88, 27.44, 27.44, 28.48, 29.32, 25.96, 26.28, 25.8, 26.0, 25.92] +13.567660093307495 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 10285, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.171167612075806, 'TIME_S_1KI': 0.9889321936874872, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 325.4937496185303, 'W': 23.99041156544644} +[20.44, 20.44, 20.36, 20.08, 20.36, 20.36, 20.4, 20.44, 20.6, 20.52, 20.56, 20.36, 20.28, 20.12, 20.2, 20.6, 20.92, 20.8, 20.6, 20.6] +367.98 +18.399 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 10285, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.171167612075806, 'TIME_S_1KI': 0.9889321936874872, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 325.4937496185303, 'W': 23.99041156544644, 'J_1KI': 31.647423395092883, 'W_1KI': 2.332563107967568, 'W_D': 5.591411565446439, 'J_D': 75.86237156176564, 'W_D_1KI': 0.5436472110302809, 'J_D_1KI': 0.052858260673824105} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_100000_0.0001.json b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_100000_0.0001.json new file mode 100644 index 0000000..e1dfb7e --- /dev/null +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_100000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 6038, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.267276763916016, "TIME_S_1KI": 1.7004433196283564, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 856.7928693008422, "W": 66.02, "J_1KI": 141.9001108481024, "W_1KI": 10.934084133819145, "W_D": 30.906499999999994, "J_D": 401.09767971897116, "W_D_1KI": 5.1186651209009595, "J_D_1KI": 0.8477418219445113} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_100000_0.0001.output b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_100000_0.0001.output new file mode 100644 index 0000000..ba4be77 --- /dev/null +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_100000_0.0001.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '100000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 1.7388477325439453} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 13, 28, ..., 999983, + 999988, 1000000]), + col_indices=tensor([ 2300, 3196, 10757, ..., 92248, 95895, 96660]), + values=tensor([0.0937, 0.5944, 0.4639, ..., 0.5292, 0.3684, 0.5963]), + size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.9252, 0.4601, 0.1039, ..., 0.3841, 0.9664, 0.4740]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 1000000 +Density: 0.0001 +Time: 1.7388477325439453 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '6038', '-ss', '100000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.267276763916016} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 9, 25, ..., 999976, + 999990, 1000000]), + col_indices=tensor([ 7337, 9006, 37341, ..., 86240, 86867, 93776]), + values=tensor([0.1177, 0.4165, 0.7590, ..., 0.7494, 0.7065, 0.3766]), + size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.1410, 0.1591, 0.3967, ..., 0.8959, 0.7085, 0.3739]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 1000000 +Density: 0.0001 +Time: 10.267276763916016 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 9, 25, ..., 999976, + 999990, 1000000]), + col_indices=tensor([ 7337, 9006, 37341, ..., 86240, 86867, 93776]), + values=tensor([0.1177, 0.4165, 0.7590, ..., 0.7494, 0.7065, 0.3766]), + size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.1410, 0.1591, 0.3967, ..., 0.8959, 0.7085, 0.3739]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 1000000 +Density: 0.0001 +Time: 10.267276763916016 seconds + +[39.74, 38.35, 38.46, 38.36, 38.8, 38.69, 39.25, 38.82, 38.81, 38.76] +[66.02] +12.977777481079102 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 6038, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.267276763916016, 'TIME_S_1KI': 1.7004433196283564, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 856.7928693008422, 'W': 66.02} +[39.74, 38.35, 38.46, 38.36, 38.8, 38.69, 39.25, 38.82, 38.81, 38.76, 39.02, 38.96, 38.6, 38.78, 38.41, 38.79, 38.39, 38.7, 43.94, 38.8] +702.27 +35.1135 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 6038, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.267276763916016, 'TIME_S_1KI': 1.7004433196283564, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 856.7928693008422, 'W': 66.02, 'J_1KI': 141.9001108481024, 'W_1KI': 10.934084133819145, 'W_D': 30.906499999999994, 'J_D': 401.09767971897116, 'W_D_1KI': 5.1186651209009595, 'J_D_1KI': 0.8477418219445113} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_100000_1e-05.json b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_100000_1e-05.json new file mode 100644 index 0000000..fbd54c6 --- /dev/null +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_100000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 12169, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.374937295913696, "TIME_S_1KI": 0.8525710654871967, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 840.8859812259674, "W": 64.58, "J_1KI": 69.10066408299511, "W_1KI": 5.306927438573425, "W_D": 29.637499999999996, "J_D": 385.90520700812334, "W_D_1KI": 2.4354918234859064, "J_D_1KI": 0.20013902732236885} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_100000_1e-05.output b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_100000_1e-05.output new file mode 100644 index 0000000..cc678f8 --- /dev/null +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_100000_1e-05.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '100000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.8628060817718506} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 2, ..., 99999, 100000, + 100000]), + col_indices=tensor([15542, 51530, 32014, ..., 17183, 69417, 75150]), + values=tensor([0.6948, 0.1030, 0.8530, ..., 0.6511, 0.2631, 0.7718]), + size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) +tensor([0.3720, 0.8026, 0.8839, ..., 0.1725, 0.9607, 0.0788]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 100000 +Density: 1e-05 +Time: 0.8628060817718506 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '12169', '-ss', '100000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.374937295913696} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2, 2, ..., 99998, 99998, + 100000]), + col_indices=tensor([38450, 44184, 11395, ..., 3206, 2272, 42747]), + values=tensor([0.8156, 0.6388, 0.3060, ..., 0.5932, 0.6977, 0.4008]), + size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) +tensor([0.7706, 0.5998, 0.9728, ..., 0.9827, 0.6551, 0.5654]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 100000 +Density: 1e-05 +Time: 10.374937295913696 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2, 2, ..., 99998, 99998, + 100000]), + col_indices=tensor([38450, 44184, 11395, ..., 3206, 2272, 42747]), + values=tensor([0.8156, 0.6388, 0.3060, ..., 0.5932, 0.6977, 0.4008]), + size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) +tensor([0.7706, 0.5998, 0.9728, ..., 0.9827, 0.6551, 0.5654]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 100000 +Density: 1e-05 +Time: 10.374937295913696 seconds + +[39.65, 38.92, 38.96, 38.86, 38.63, 38.6, 38.47, 38.43, 38.43, 38.83] +[64.58] +13.0208420753479 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 12169, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.374937295913696, 'TIME_S_1KI': 0.8525710654871967, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 840.8859812259674, 'W': 64.58} +[39.65, 38.92, 38.96, 38.86, 38.63, 38.6, 38.47, 38.43, 38.43, 38.83, 40.06, 39.01, 39.04, 38.86, 38.59, 38.53, 38.46, 38.45, 40.01, 38.66] +698.85 +34.9425 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 12169, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.374937295913696, 'TIME_S_1KI': 0.8525710654871967, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 840.8859812259674, 'W': 64.58, 'J_1KI': 69.10066408299511, 'W_1KI': 5.306927438573425, 'W_D': 29.637499999999996, 'J_D': 385.90520700812334, 'W_D_1KI': 2.4354918234859064, 'J_D_1KI': 0.20013902732236885} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.0001.json b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.0001.json new file mode 100644 index 0000000..3886b8d --- /dev/null +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 237950, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.479950666427612, "TIME_S_1KI": 0.044042658820876705, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 847.0966372108459, "W": 64.88, "J_1KI": 3.5599774625377005, "W_1KI": 0.2726623240176507, "W_D": 29.35949999999999, "J_D": 383.32820160591587, "W_D_1KI": 0.12338516495061984, "J_D_1KI": 0.0005185339985317077} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.0001.output b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.0001.output new file mode 100644 index 0000000..4b3b779 --- /dev/null +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.0001.output @@ -0,0 +1,81 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.055043935775756836} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 2, ..., 9999, 10000, 10000]), + col_indices=tensor([2489, 8082, 1798, ..., 7687, 8784, 7173]), + values=tensor([0.0419, 0.2217, 0.5372, ..., 0.9380, 0.6037, 0.5878]), + size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) +tensor([0.6995, 0.5522, 0.6987, ..., 0.2479, 0.0646, 0.0677]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000 +Density: 0.0001 +Time: 0.055043935775756836 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '190756', '-ss', '10000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 8.417458295822144} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 2, ..., 10000, 10000, 10000]), + col_indices=tensor([6369, 8699, 1454, ..., 3376, 4538, 4463]), + values=tensor([0.7752, 0.1565, 0.1050, ..., 0.8742, 0.0228, 0.3625]), + size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) +tensor([0.2878, 0.2325, 0.9670, ..., 0.8581, 0.8156, 0.4801]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000 +Density: 0.0001 +Time: 8.417458295822144 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '237950', '-ss', '10000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.479950666427612} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 1, ..., 9997, 9998, 10000]), + col_indices=tensor([2568, 4888, 9428, ..., 1921, 2148, 9872]), + values=tensor([0.1473, 0.4194, 0.4025, ..., 0.4119, 0.3062, 0.3667]), + size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) +tensor([0.9989, 0.1547, 0.2140, ..., 0.5569, 0.3690, 0.8580]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000 +Density: 0.0001 +Time: 10.479950666427612 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 1, ..., 9997, 9998, 10000]), + col_indices=tensor([2568, 4888, 9428, ..., 1921, 2148, 9872]), + values=tensor([0.1473, 0.4194, 0.4025, ..., 0.4119, 0.3062, 0.3667]), + size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) +tensor([0.9989, 0.1547, 0.2140, ..., 0.5569, 0.3690, 0.8580]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000 +Density: 0.0001 +Time: 10.479950666427612 seconds + +[40.47, 39.33, 38.5, 38.74, 38.63, 38.5, 43.74, 38.79, 39.18, 38.53] +[64.88] +13.056360006332397 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 237950, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.479950666427612, 'TIME_S_1KI': 0.044042658820876705, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 847.0966372108459, 'W': 64.88} +[40.47, 39.33, 38.5, 38.74, 38.63, 38.5, 43.74, 38.79, 39.18, 38.53, 39.54, 38.39, 38.83, 43.63, 38.88, 38.94, 39.01, 39.89, 38.82, 38.68] +710.4100000000001 +35.520500000000006 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 237950, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.479950666427612, 'TIME_S_1KI': 0.044042658820876705, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 847.0966372108459, 'W': 64.88, 'J_1KI': 3.5599774625377005, 'W_1KI': 0.2726623240176507, 'W_D': 29.35949999999999, 'J_D': 383.32820160591587, 'W_D_1KI': 0.12338516495061984, 'J_D_1KI': 0.0005185339985317077} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.001.json b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.001.json new file mode 100644 index 0000000..4c5c61e --- /dev/null +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.001.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 75505, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 11.45979928970337, "TIME_S_1KI": 0.15177536970668656, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 869.2745451879501, "W": 66.09, "J_1KI": 11.512807697343886, "W_1KI": 0.8753062711078737, "W_D": 31.095250000000007, "J_D": 408.9924239863158, "W_D_1KI": 0.4118303423614331, "J_D_1KI": 0.00545434530642253} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.001.output b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.001.output new file mode 100644 index 0000000..afe840d --- /dev/null +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.001.output @@ -0,0 +1,85 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.15292811393737793} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 6, 10, ..., 99983, 99994, + 100000]), + col_indices=tensor([ 267, 3923, 5616, ..., 4271, 7755, 9973]), + values=tensor([0.9283, 0.7846, 0.2151, ..., 0.9447, 0.6120, 0.1119]), + size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) +tensor([0.9192, 0.5849, 0.9579, ..., 0.9586, 0.7879, 0.6201]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 100000 +Density: 0.001 +Time: 0.15292811393737793 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '68659', '-ss', '10000', '-sd', '0.001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 9.547868490219116} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 13, 21, ..., 99972, 99985, + 100000]), + col_indices=tensor([ 305, 380, 962, ..., 8769, 9180, 9915]), + values=tensor([0.5782, 0.8638, 0.8069, ..., 0.1223, 0.7033, 0.9891]), + size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) +tensor([0.4135, 0.4566, 0.8532, ..., 0.7837, 0.5944, 0.7679]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 100000 +Density: 0.001 +Time: 9.547868490219116 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '75505', '-ss', '10000', '-sd', '0.001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 11.45979928970337} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 12, 21, ..., 99982, 99992, + 100000]), + col_indices=tensor([1022, 1138, 1407, ..., 6223, 7233, 9402]), + values=tensor([0.9484, 0.5958, 0.7782, ..., 0.0863, 0.6723, 0.0562]), + size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) +tensor([0.0389, 0.1147, 0.5260, ..., 0.1033, 0.1694, 0.2810]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 100000 +Density: 0.001 +Time: 11.45979928970337 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 12, 21, ..., 99982, 99992, + 100000]), + col_indices=tensor([1022, 1138, 1407, ..., 6223, 7233, 9402]), + values=tensor([0.9484, 0.5958, 0.7782, ..., 0.0863, 0.6723, 0.0562]), + size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) +tensor([0.0389, 0.1147, 0.5260, ..., 0.1033, 0.1694, 0.2810]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 100000 +Density: 0.001 +Time: 11.45979928970337 seconds + +[39.42, 38.37, 38.5, 39.45, 39.07, 38.36, 39.56, 38.91, 39.08, 38.45] +[66.09] +13.152890682220459 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 75505, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 11.45979928970337, 'TIME_S_1KI': 0.15177536970668656, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 869.2745451879501, 'W': 66.09} +[39.42, 38.37, 38.5, 39.45, 39.07, 38.36, 39.56, 38.91, 39.08, 38.45, 39.1, 38.46, 38.46, 39.62, 38.45, 39.31, 38.8, 38.73, 38.89, 38.78] +699.895 +34.994749999999996 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 75505, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 11.45979928970337, 'TIME_S_1KI': 0.15177536970668656, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 869.2745451879501, 'W': 66.09, 'J_1KI': 11.512807697343886, 'W_1KI': 0.8753062711078737, 'W_D': 31.095250000000007, 'J_D': 408.9924239863158, 'W_D_1KI': 0.4118303423614331, 'J_D_1KI': 0.00545434530642253} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.01.json b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.01.json new file mode 100644 index 0000000..4467311 --- /dev/null +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.01.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 10051, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.396085023880005, "TIME_S_1KI": 1.0343334020376087, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 865.9663576483727, "W": 66.05, "J_1KI": 86.1572338720896, "W_1KI": 6.571485424335887, "W_D": 30.772, "J_D": 403.44461404323573, "W_D_1KI": 3.061585911849567, "J_D_1KI": 0.3046051051486983} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.01.output b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.01.output new file mode 100644 index 0000000..ec9215b --- /dev/null +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.01.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.01', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 1.0446221828460693} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 93, 186, ..., 999791, + 999885, 1000000]), + col_indices=tensor([ 85, 646, 706, ..., 9852, 9875, 9886]), + values=tensor([0.7433, 0.1282, 0.1316, ..., 0.9681, 0.9495, 0.6187]), + size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.5006, 0.3207, 0.7634, ..., 0.1693, 0.2023, 0.9705]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000000 +Density: 0.01 +Time: 1.0446221828460693 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '10051', '-ss', '10000', '-sd', '0.01', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.396085023880005} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 82, 194, ..., 999830, + 999924, 1000000]), + col_indices=tensor([ 207, 248, 391, ..., 9735, 9842, 9886]), + values=tensor([0.2382, 0.1304, 0.8275, ..., 0.9132, 0.3101, 0.1677]), + size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.0491, 0.4304, 0.0195, ..., 0.4012, 0.5324, 0.0059]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000000 +Density: 0.01 +Time: 10.396085023880005 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 82, 194, ..., 999830, + 999924, 1000000]), + col_indices=tensor([ 207, 248, 391, ..., 9735, 9842, 9886]), + values=tensor([0.2382, 0.1304, 0.8275, ..., 0.9132, 0.3101, 0.1677]), + size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.0491, 0.4304, 0.0195, ..., 0.4012, 0.5324, 0.0059]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000000 +Density: 0.01 +Time: 10.396085023880005 seconds + +[40.88, 38.45, 38.83, 38.72, 44.02, 38.37, 38.57, 38.7, 39.57, 38.48] +[66.05] +13.110769987106323 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 10051, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.396085023880005, 'TIME_S_1KI': 1.0343334020376087, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 865.9663576483727, 'W': 66.05} +[40.88, 38.45, 38.83, 38.72, 44.02, 38.37, 38.57, 38.7, 39.57, 38.48, 42.6, 39.8, 38.39, 38.73, 39.03, 38.72, 38.63, 38.42, 38.48, 38.3] +705.56 +35.278 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 10051, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.396085023880005, 'TIME_S_1KI': 1.0343334020376087, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 865.9663576483727, 'W': 66.05, 'J_1KI': 86.1572338720896, 'W_1KI': 6.571485424335887, 'W_D': 30.772, 'J_D': 403.44461404323573, 'W_D_1KI': 3.061585911849567, 'J_D_1KI': 0.3046051051486983} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.05.json b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.05.json new file mode 100644 index 0000000..9a92bbf --- /dev/null +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.05.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 1760, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.496549844741821, "TIME_S_1KI": 5.963948775421489, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1063.6957297325134, "W": 75.3, "J_1KI": 604.3725737116553, "W_1KI": 42.784090909090914, "W_D": 40.305749999999996, "J_D": 569.3632690393924, "W_D_1KI": 22.900994318181816, "J_D_1KI": 13.011928589876032} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.05.output b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.05.output new file mode 100644 index 0000000..f82f04e --- /dev/null +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_0.05.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 5.962578296661377} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 507, 983, ..., 4998985, + 4999482, 5000000]), + col_indices=tensor([ 6, 14, 63, ..., 9975, 9976, 9988]), + values=tensor([0.1343, 0.9147, 0.2964, ..., 0.8307, 0.6480, 0.1778]), + size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.4820, 0.9526, 0.2470, ..., 0.0414, 0.1724, 0.7388]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000000 +Density: 0.05 +Time: 5.962578296661377 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1760', '-ss', '10000', '-sd', '0.05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.496549844741821} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 494, 1024, ..., 4999026, + 4999505, 5000000]), + col_indices=tensor([ 14, 81, 111, ..., 9976, 9994, 9996]), + values=tensor([0.8750, 0.2097, 0.6973, ..., 0.7142, 0.2835, 0.0523]), + size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.6644, 0.2536, 0.5514, ..., 0.5924, 0.6712, 0.0391]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000000 +Density: 0.05 +Time: 10.496549844741821 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 494, 1024, ..., 4999026, + 4999505, 5000000]), + col_indices=tensor([ 14, 81, 111, ..., 9976, 9994, 9996]), + values=tensor([0.8750, 0.2097, 0.6973, ..., 0.7142, 0.2835, 0.0523]), + size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.6644, 0.2536, 0.5514, ..., 0.5924, 0.6712, 0.0391]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000000 +Density: 0.05 +Time: 10.496549844741821 seconds + +[39.19, 39.0, 39.0, 38.91, 38.55, 38.97, 38.49, 38.52, 38.9, 38.82] +[75.3] +14.126105308532715 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1760, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.496549844741821, 'TIME_S_1KI': 5.963948775421489, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1063.6957297325134, 'W': 75.3} +[39.19, 39.0, 39.0, 38.91, 38.55, 38.97, 38.49, 38.52, 38.9, 38.82, 39.55, 38.59, 39.72, 38.89, 38.53, 38.82, 38.62, 39.33, 38.84, 38.85] +699.885 +34.99425 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1760, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.496549844741821, 'TIME_S_1KI': 5.963948775421489, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1063.6957297325134, 'W': 75.3, 'J_1KI': 604.3725737116553, 'W_1KI': 42.784090909090914, 'W_D': 40.305749999999996, 'J_D': 569.3632690393924, 'W_D_1KI': 22.900994318181816, 'J_D_1KI': 13.011928589876032} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_1e-05.json b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_1e-05.json new file mode 100644 index 0000000..5067ef9 --- /dev/null +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 363782, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.585279941558838, "TIME_S_1KI": 0.029097866143896176, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 855.3318356752395, "W": 64.69, "J_1KI": 2.3512208841428097, "W_1KI": 0.17782628057462985, "W_D": 29.81474999999999, "J_D": 394.2109266918896, "W_D_1KI": 0.08195773842576046, "J_D_1KI": 0.00022529355060382441} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_1e-05.output b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_1e-05.output new file mode 100644 index 0000000..198dd99 --- /dev/null +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_10000_1e-05.output @@ -0,0 +1,1521 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.08438587188720703} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), + col_indices=tensor([ 654, 6772, 3481, 2535, 125, 3792, 8070, 9757, 6184, + 2668, 22, 1611, 8038, 5477, 9185, 5993, 9592, 3939, + 8639, 7553, 398, 5715, 4399, 2570, 9973, 3035, 1537, + 7004, 5611, 9891, 2622, 9818, 312, 6105, 1848, 1339, + 7382, 4214, 8955, 9892, 6474, 3909, 9732, 690, 3371, + 4869, 387, 3460, 9149, 5467, 6478, 5618, 6583, 2381, + 1542, 8342, 3787, 7463, 3823, 6427, 315, 6985, 523, + 5901, 9665, 9643, 5095, 3067, 2951, 9816, 6719, 6640, + 4349, 9622, 9227, 394, 8600, 2210, 9007, 6794, 6193, + 3591, 3763, 8848, 712, 2600, 6953, 345, 8176, 4284, + 2762, 1429, 3052, 9077, 9247, 8084, 9368, 8295, 4882, + 1029, 4128, 2221, 4457, 136, 1060, 5650, 2149, 979, + 879, 252, 4258, 4991, 6954, 9684, 5762, 3304, 4194, + 5738, 4881, 2067, 4630, 3102, 4373, 4364, 3467, 3904, + 2703, 9367, 5744, 1003, 7348, 7382, 2923, 6743, 2716, + 6005, 8885, 8781, 4688, 3208, 8165, 7655, 2105, 9594, + 413, 1022, 9740, 9415, 4440, 7624, 1850, 8157, 8564, + 2131, 4847, 5156, 223, 2070, 8741, 4432, 2158, 1202, + 3074, 6959, 1256, 8497, 7709, 1898, 7099, 7257, 3557, + 1556, 6637, 1724, 6284, 8045, 1698, 1347, 5955, 3324, + 2660, 5510, 9500, 461, 4931, 3894, 7627, 3132, 4579, + 5941, 9535, 3710, 3467, 3922, 66, 8349, 6253, 7489, + 3867, 9837, 4357, 5889, 1429, 2174, 5793, 5103, 9209, + 7044, 5165, 1550, 2922, 7404, 724, 8019, 1723, 9892, + 8178, 326, 8495, 1261, 5156, 3647, 48, 9679, 8317, + 258, 3999, 7172, 9917, 1368, 9356, 8091, 2920, 4194, + 9220, 533, 1856, 4184, 9970, 585, 888, 7980, 502, + 3237, 7414, 5484, 1198, 5107, 6730, 1701, 778, 9576, + 9847, 7139, 5046, 9505, 4273, 3181, 3701, 7837, 6438, + 5446, 5489, 3750, 7620, 3013, 2520, 4866, 2256, 1226, + 4389, 803, 6623, 207, 8091, 9177, 5502, 7927, 5893, + 7286, 4995, 7523, 7718, 638, 1691, 5859, 7604, 7499, + 5376, 8321, 497, 2691, 7462, 1832, 7626, 4908, 8743, + 2814, 8920, 2170, 2237, 5900, 1192, 1906, 5324, 8567, + 433, 7307, 4785, 7781, 8369, 5137, 3139, 6244, 3003, + 5146, 5779, 963, 5834, 8307, 1509, 6851, 2879, 9153, + 5590, 2199, 7088, 4851, 1689, 3978, 7052, 9728, 7823, + 6554, 7099, 3919, 9251, 3170, 4952, 3743, 753, 4966, + 8769, 5930, 1536, 3883, 3398, 3809, 4230, 4021, 4625, + 911, 3578, 6189, 791, 2646, 9155, 6564, 5024, 7172, + 6929, 9364, 1592, 9019, 2813, 8778, 1820, 106, 4324, + 1259, 4349, 3192, 4715, 9115, 966, 2560, 8066, 1744, + 3149, 6003, 1498, 3413, 7870, 8393, 6128, 5648, 3764, + 4120, 43, 1077, 5168, 6447, 193, 4043, 7134, 3629, + 5140, 5639, 2285, 6521, 4820, 2512, 2929, 3156, 8218, + 1304, 6623, 4398, 4748, 475, 2397, 4221, 1663, 9429, + 2056, 5484, 6397, 578, 8710, 4074, 3345, 5055, 8296, + 3426, 9590, 5354, 2960, 4081, 7610, 9414, 6545, 7162, + 2284, 3632, 5177, 9745, 61, 2148, 4065, 1241, 1790, + 2890, 291, 8273, 8068, 1391, 1258, 2802, 698, 6995, + 5305, 5523, 4749, 4449, 5337, 2346, 555, 1299, 4206, + 1176, 3831, 8077, 1268, 5459, 4259, 5701, 3655, 9166, + 7235, 9918, 5806, 8346, 4150, 3003, 3079, 6459, 1439, + 629, 2696, 6049, 7779, 4964, 9219, 6464, 1735, 1160, + 3784, 6373, 384, 1808, 5241, 8372, 1677, 4788, 4963, + 9409, 1508, 9724, 8760, 7710, 589, 3951, 700, 1849, + 1678, 543, 3229, 9558, 3592, 1739, 3704, 323, 6030, + 5632, 5396, 5373, 2268, 8829, 915, 2928, 6822, 4320, + 9393, 3081, 6996, 900, 1244, 9959, 6457, 3034, 4242, + 8879, 6148, 3658, 2641, 9655, 1273, 2175, 1409, 2889, + 4549, 2132, 2423, 3494, 1302, 6844, 8913, 6052, 6682, + 4676, 5897, 8113, 7646, 9008, 815, 8636, 2168, 8534, + 9398, 7841, 9924, 5887, 3514, 8309, 8574, 9316, 1868, + 8906, 4664, 9990, 98, 7132, 708, 8628, 2818, 642, + 3643, 213, 310, 8853, 5074, 7350, 4260, 4345, 2685, + 6155, 1114, 3294, 3439, 9572, 673, 6218, 2900, 8049, + 3443, 3297, 3657, 8180, 8304, 4095, 9553, 4268, 1084, + 5217, 7168, 3140, 2957, 3846, 8019, 7828, 163, 1006, + 9946, 9671, 9272, 3197, 4715, 2133, 6480, 2603, 3711, + 3059, 7614, 7252, 8503, 5168, 3017, 8178, 6997, 7469, + 6817, 2311, 2400, 2604, 5422, 4020, 1626, 3307, 5947, + 5172, 1638, 3688, 98, 1611, 1810, 3312, 7402, 2064, + 7049, 8774, 3516, 1326, 7757, 8495, 5985, 6522, 6285, + 926, 4463, 4966, 488, 3014, 7145, 2639, 4866, 7635, + 9111, 404, 6974, 425, 470, 1597, 9938, 8633, 1112, + 1609, 7751, 5866, 2397, 2930, 2785, 5455, 1171, 5622, + 9921, 3502, 5025, 968, 6760, 6708, 7717, 9632, 2776, + 8251, 2002, 6046, 5073, 6290, 4377, 8849, 6636, 2619, + 7154, 9845, 1431, 4845, 3786, 826, 5185, 5466, 9894, + 5919, 6738, 412, 7178, 6064, 7916, 8348, 9807, 7127, + 3957, 3075, 9983, 7984, 3352, 4559, 4032, 6062, 2428, + 9519, 4774, 5203, 4905, 2366, 6001, 4187, 2803, 6224, + 8937, 871, 887, 753, 6766, 7729, 6343, 5371, 7478, + 4377, 2616, 562, 5625, 2629, 6739, 1582, 3555, 3157, + 6267, 2853, 1658, 4524, 81, 9456, 3168, 7244, 1072, + 7992, 7229, 3997, 2559, 7595, 3257, 822, 3803, 9044, + 4118, 6382, 357, 4687, 7985, 1064, 7748, 7272, 6982, + 1721, 62, 8299, 458, 3900, 7701, 1054, 3789, 4, + 9018, 4356, 4519, 9343, 3566, 2087, 9695, 1990, 982, + 2457, 7819, 9049, 8393, 7518, 4215, 5670, 386, 7510, + 5190, 4578, 8752, 4373, 4995, 745, 1654, 8288, 9362, + 5849, 7627, 2767, 9267, 1855, 5384, 4327, 4418, 1591, + 1122, 4195, 5132, 5368, 1200, 7062, 7024, 6158, 423, + 5711, 1019, 1328, 9184, 2842, 6447, 7948, 7654, 5641, + 1458, 476, 1313, 332, 9273, 4501, 315, 5260, 7109, + 1604, 5981, 8914, 190, 1062, 5126, 1309, 3331, 553, + 4330, 7219, 4988, 2671, 2168, 5519, 3181, 9637, 5051, + 8302, 2204, 7909, 6777, 1005, 6145, 5110, 6838, 9076, + 177, 899, 6196, 6318, 1764, 1175, 4772, 8191, 8417, + 6357, 9011, 697, 8083, 6982, 8213, 8974, 7616, 72, + 1182, 2829, 5015, 8973, 9205, 383, 6201, 1455, 2354, + 1267, 694, 8960, 9517, 4308, 9225, 5125, 4432, 5696, + 5694, 2632, 2399, 5165, 7619, 3796, 9759, 7244, 4225, + 4053, 3194, 7288, 9459, 2975, 3009, 5576, 120, 1434, + 7291, 8484, 8487, 6972, 1212, 902, 5858, 9194, 297, + 8570, 8447, 7854, 3003, 5252, 4842, 949, 2773, 969, + 3387, 3908, 1314, 8010, 4241, 2612, 2698, 8269, 7690, + 1980, 2174, 8245, 3101, 7283, 9184, 5599, 5828, 6807, + 4649, 4531, 608, 3401, 7366, 1236, 4816, 4466, 9003, + 6, 5171, 3604, 7726, 5508, 8457, 6946, 6624, 6571, + 2161, 3266, 9412, 6669, 4820, 7494, 5787, 9016, 7480, + 3453]), + values=tensor([8.0507e-01, 2.4061e-01, 9.9295e-01, 5.2270e-01, + 5.0369e-01, 8.0636e-01, 9.2131e-01, 7.3217e-01, + 2.6765e-01, 7.6297e-01, 2.8175e-01, 2.7665e-01, + 9.8805e-01, 6.0214e-01, 7.9375e-01, 1.5782e-01, + 5.4458e-01, 7.3042e-01, 5.4889e-02, 6.5435e-01, + 3.9504e-01, 5.1617e-01, 8.2417e-01, 4.6359e-01, + 6.2808e-01, 1.5615e-01, 4.0632e-01, 8.0385e-01, + 9.7725e-02, 2.7003e-01, 5.7269e-01, 5.9901e-01, + 6.9641e-01, 4.5868e-01, 7.0478e-01, 3.7953e-01, + 9.1271e-01, 8.4774e-01, 5.6314e-01, 1.9135e-01, + 2.8674e-01, 3.9676e-01, 5.6842e-01, 3.2122e-01, + 8.6286e-01, 8.6492e-01, 8.1028e-01, 1.8244e-01, + 7.6320e-01, 5.2109e-01, 2.7986e-01, 2.2582e-01, + 5.4112e-01, 1.3152e-01, 2.0246e-01, 4.2137e-01, + 3.3474e-01, 3.4342e-01, 4.8395e-01, 9.7969e-01, + 9.2855e-01, 5.9261e-01, 8.8771e-01, 2.7136e-01, + 7.7586e-01, 3.2662e-01, 6.6785e-01, 1.9121e-02, + 6.9228e-01, 9.2617e-02, 5.9247e-01, 5.8896e-01, + 9.5905e-01, 7.7813e-01, 6.1692e-01, 9.4429e-01, + 9.5185e-01, 7.6228e-01, 4.2703e-01, 8.2680e-01, + 8.3731e-01, 9.5819e-01, 8.7021e-01, 8.4965e-01, + 2.7776e-01, 5.8516e-01, 6.4275e-01, 7.2807e-02, + 3.9795e-01, 8.5851e-01, 6.9601e-01, 2.9595e-01, + 7.9908e-01, 4.2211e-01, 6.8287e-01, 5.3939e-01, + 8.8201e-01, 1.6659e-01, 6.2928e-01, 3.1327e-01, + 3.2717e-01, 6.9925e-01, 7.5348e-01, 7.2599e-01, + 2.0553e-01, 6.0729e-01, 4.1387e-01, 6.3892e-01, + 7.7973e-01, 1.6592e-01, 8.0874e-01, 1.8499e-01, + 1.8789e-01, 4.4245e-01, 2.2357e-01, 1.7321e-01, + 3.9260e-01, 3.9275e-01, 5.3270e-01, 4.0217e-01, + 7.3609e-01, 5.5575e-01, 7.9280e-01, 8.0882e-01, + 6.4776e-01, 2.8334e-01, 5.5097e-01, 4.2347e-01, + 9.0593e-01, 1.9089e-01, 7.5048e-01, 8.4130e-01, + 2.9380e-01, 9.7529e-01, 4.4187e-01, 8.0464e-01, + 7.6919e-01, 7.7568e-01, 6.2286e-01, 3.6055e-01, + 3.3840e-01, 3.2178e-01, 3.1976e-01, 2.0615e-01, + 4.6471e-02, 5.0030e-01, 1.9682e-01, 4.6424e-01, + 9.0253e-01, 8.1431e-01, 3.2480e-02, 8.0170e-01, + 6.0957e-01, 9.2842e-01, 9.8725e-01, 8.1810e-01, + 4.9758e-01, 1.6485e-01, 7.9130e-01, 5.0798e-01, + 1.1257e-01, 6.0078e-01, 5.6108e-01, 4.9654e-01, + 3.2612e-01, 3.1885e-01, 2.1347e-01, 4.0301e-01, + 1.4096e-01, 4.7382e-01, 8.8193e-01, 6.4107e-01, + 2.5871e-01, 3.3105e-01, 7.1814e-01, 8.1813e-01, + 1.1066e-02, 4.5316e-01, 3.9875e-01, 3.9958e-01, + 7.3179e-01, 1.3981e-01, 6.9424e-01, 7.4864e-01, + 4.2577e-01, 6.5063e-01, 9.0541e-01, 8.9115e-01, + 5.6373e-01, 7.2516e-01, 4.5611e-01, 2.3250e-01, + 8.5110e-01, 7.4140e-01, 2.2912e-01, 3.4030e-02, + 4.3318e-01, 9.4978e-01, 1.7428e-01, 5.3481e-01, + 3.0915e-01, 9.4312e-02, 8.4948e-01, 7.0419e-01, + 7.8533e-01, 6.3407e-01, 2.8080e-01, 7.3828e-01, + 9.8599e-01, 7.5889e-01, 1.3728e-01, 6.5997e-01, + 3.8460e-01, 6.6440e-01, 3.8946e-02, 7.3804e-02, + 2.4318e-01, 3.3013e-01, 2.6887e-01, 1.1820e-01, + 4.2522e-01, 4.3302e-01, 1.7182e-01, 7.1649e-02, + 7.4360e-01, 3.4560e-01, 2.9003e-01, 7.1065e-01, + 1.9589e-01, 9.4763e-02, 7.2924e-01, 4.1721e-01, + 3.2266e-01, 7.4814e-01, 3.5923e-01, 7.4608e-01, + 5.1318e-02, 5.0948e-01, 2.2794e-02, 5.6396e-01, + 4.0443e-02, 4.7217e-01, 5.1177e-01, 1.4188e-02, + 4.4743e-01, 9.7751e-01, 6.6817e-01, 5.8061e-01, + 4.4294e-01, 3.3303e-01, 1.0600e-01, 9.1982e-01, + 9.7845e-01, 2.1391e-01, 9.9607e-01, 6.9474e-01, + 9.9428e-01, 5.9972e-01, 5.7451e-01, 5.7396e-02, + 6.9516e-02, 8.7242e-01, 9.8407e-01, 9.5583e-01, + 8.4831e-01, 5.5568e-01, 2.9895e-01, 9.3606e-01, + 7.9218e-01, 7.5839e-01, 8.8937e-01, 5.8967e-02, + 6.6676e-01, 4.6444e-01, 7.6581e-01, 2.3600e-02, + 9.5966e-01, 8.2239e-01, 9.5020e-01, 7.1875e-01, + 5.7831e-01, 9.0482e-02, 1.6168e-01, 7.8712e-02, + 9.5825e-01, 7.1869e-01, 1.0140e-01, 2.8523e-01, + 3.6853e-01, 5.3681e-02, 4.3362e-01, 3.1478e-02, + 7.8635e-01, 3.4366e-01, 5.6111e-01, 1.2127e-02, + 9.0278e-01, 1.9809e-01, 6.3472e-01, 9.0084e-01, + 7.5565e-01, 1.3093e-01, 2.3358e-01, 3.1800e-01, + 1.5689e-01, 4.2469e-01, 6.9820e-01, 6.1385e-01, + 2.5466e-01, 9.4154e-01, 1.7091e-01, 6.6611e-01, + 3.0606e-01, 8.5477e-01, 7.8533e-01, 8.7224e-01, + 5.2056e-01, 7.0916e-01, 1.5376e-02, 3.0544e-01, + 5.1884e-01, 9.6093e-01, 1.2889e-01, 8.5539e-01, + 2.5647e-01, 9.1180e-03, 1.9597e-01, 2.7536e-01, + 3.9574e-01, 5.2746e-01, 6.8273e-01, 6.9238e-01, + 6.7659e-01, 8.8601e-01, 3.2503e-01, 4.4480e-01, + 4.6140e-01, 2.2678e-01, 5.8936e-01, 1.9554e-01, + 6.6458e-01, 2.2131e-01, 8.5009e-01, 7.0706e-01, + 9.5349e-01, 6.2824e-01, 4.1599e-01, 8.7893e-01, + 2.3537e-01, 8.4975e-01, 1.7865e-01, 4.7327e-02, + 8.7836e-01, 6.5097e-01, 6.9850e-01, 8.1697e-01, + 4.2112e-01, 6.4393e-01, 9.1991e-01, 4.9738e-01, + 8.2887e-01, 6.7509e-01, 8.4041e-01, 9.1399e-01, + 3.6578e-01, 9.8913e-01, 7.7253e-01, 1.8280e-01, + 2.4871e-01, 7.5650e-01, 1.4646e-01, 3.4292e-02, + 5.8682e-01, 7.4195e-01, 5.3159e-02, 4.3829e-01, + 8.5519e-01, 7.7959e-01, 3.8413e-02, 4.0249e-01, + 3.3982e-01, 4.7195e-01, 9.9454e-01, 3.3522e-01, + 4.9192e-01, 3.8224e-01, 4.4352e-01, 5.7838e-01, + 1.3144e-01, 4.5732e-01, 6.4630e-01, 2.4199e-01, + 1.2734e-01, 9.5766e-02, 6.5757e-01, 5.4258e-01, + 9.3010e-01, 4.0742e-01, 4.2345e-01, 2.7314e-01, + 1.5881e-01, 1.1798e-01, 2.5639e-01, 7.3654e-01, + 8.9433e-01, 8.8763e-02, 6.0792e-01, 7.5790e-01, + 2.2865e-01, 9.9348e-01, 3.9391e-01, 1.3746e-01, + 4.0923e-01, 5.8573e-01, 5.6565e-01, 5.1379e-01, + 2.5013e-01, 9.9438e-01, 5.6604e-01, 5.3212e-01, + 7.4988e-01, 9.6312e-01, 5.5377e-01, 5.4789e-01, + 7.4612e-02, 8.7294e-01, 3.3253e-01, 9.8328e-01, + 2.8072e-01, 6.9491e-01, 4.2727e-01, 1.0826e-01, + 1.6755e-01, 4.3996e-01, 7.0088e-01, 6.5111e-01, + 7.2310e-01, 9.7371e-01, 6.6237e-02, 5.6600e-01, + 6.5732e-01, 1.5901e-01, 3.5927e-01, 5.7040e-01, + 4.5588e-01, 4.0037e-01, 7.3440e-01, 1.7459e-01, + 5.9630e-01, 1.3977e-01, 4.8270e-01, 3.7273e-01, + 7.3967e-01, 5.0054e-01, 2.5218e-01, 3.0617e-01, + 4.3805e-04, 1.0425e-01, 6.3347e-01, 4.6682e-01, + 9.6110e-01, 4.0049e-01, 9.2703e-02, 7.3912e-01, + 4.1610e-02, 2.3594e-01, 1.3021e-01, 3.6550e-01, + 8.2483e-01, 6.8855e-02, 9.7663e-01, 7.0695e-01, + 6.2656e-02, 8.0776e-01, 7.6084e-01, 7.1101e-01, + 3.8279e-01, 4.5469e-01, 6.6115e-01, 4.5057e-01, + 3.6197e-01, 7.4029e-01, 7.6340e-01, 8.3608e-01, + 8.3839e-01, 2.5357e-01, 3.8408e-01, 6.1298e-01, + 9.8468e-01, 7.6932e-01, 6.6239e-01, 8.6013e-01, + 4.1519e-01, 6.5759e-01, 7.1094e-01, 5.1742e-01, + 1.2965e-01, 7.5811e-01, 9.3997e-01, 3.9015e-01, + 7.2502e-01, 9.0838e-01, 5.0903e-01, 8.8963e-01, + 1.3096e-01, 5.6967e-01, 5.2654e-01, 7.5502e-01, + 9.1487e-01, 7.6229e-01, 5.3217e-01, 7.0901e-01, + 4.0276e-01, 7.7266e-01, 1.3731e-01, 8.8716e-01, + 5.0082e-01, 9.0385e-01, 2.1904e-01, 4.9512e-01, + 3.9813e-01, 8.9681e-01, 4.3891e-01, 1.3651e-01, + 9.8979e-01, 1.8445e-01, 3.2477e-01, 4.1938e-01, + 6.1831e-01, 9.9846e-01, 4.4281e-01, 6.7203e-01, + 3.1498e-01, 3.6237e-01, 5.3583e-01, 3.3656e-01, + 7.5325e-01, 3.2010e-01, 8.9637e-01, 4.2261e-02, + 6.2375e-01, 9.5499e-01, 1.7212e-01, 1.4874e-01, + 6.7623e-01, 8.3182e-01, 7.4532e-01, 4.2210e-02, + 6.5329e-01, 4.4951e-01, 7.5430e-01, 8.7388e-01, + 8.5789e-01, 9.8723e-01, 8.1589e-01, 3.1591e-01, + 6.0895e-01, 8.4026e-01, 1.5956e-01, 4.3307e-01, + 3.3088e-01, 2.4020e-01, 4.6642e-01, 3.6388e-01, + 8.3079e-03, 6.3874e-01, 7.0864e-01, 8.4270e-01, + 3.9820e-01, 7.9893e-01, 8.5444e-01, 2.1196e-01, + 7.4788e-01, 5.8199e-01, 6.9565e-01, 3.0630e-01, + 8.4838e-01, 2.3687e-01, 1.6845e-01, 2.0640e-01, + 9.6962e-01, 3.8025e-01, 9.4056e-01, 5.0775e-02, + 8.4877e-01, 5.0238e-01, 4.0567e-01, 8.8208e-01, + 2.4011e-01, 9.8945e-01, 4.9792e-02, 5.6083e-01, + 8.5086e-01, 9.0628e-01, 8.3393e-01, 2.8443e-01, + 4.2645e-01, 7.5821e-01, 6.3742e-02, 1.5048e-01, + 6.5685e-01, 6.3517e-01, 1.7601e-02, 1.1730e-01, + 3.5213e-01, 7.2766e-01, 5.3210e-01, 2.4482e-01, + 2.3051e-01, 2.8771e-01, 1.2646e-01, 3.8082e-01, + 3.4515e-01, 9.8746e-01, 9.0908e-01, 5.1389e-01, + 5.3672e-02, 7.4069e-01, 8.8725e-01, 1.2742e-01, + 4.6425e-01, 9.4137e-01, 5.6908e-01, 2.1842e-01, + 5.3924e-01, 7.3004e-01, 3.7237e-01, 5.9746e-01, + 3.8151e-01, 8.7017e-01, 2.3522e-01, 8.7846e-01, + 2.9566e-01, 6.3719e-01, 5.0273e-01, 6.6207e-01, + 2.9977e-01, 7.9874e-01, 8.4384e-01, 4.8911e-01, + 8.0898e-01, 3.9092e-01, 7.4185e-01, 9.6535e-01, + 9.0972e-01, 9.3776e-01, 8.3238e-01, 4.3263e-01, + 3.6534e-02, 6.6501e-01, 2.3741e-01, 4.2544e-01, + 5.1300e-01, 8.0559e-01, 4.7343e-01, 6.8441e-01, + 2.2575e-01, 9.5046e-01, 9.6595e-01, 9.0274e-02, + 3.6334e-01, 6.9095e-02, 1.9040e-01, 5.8034e-01, + 4.4344e-01, 6.3314e-01, 4.6341e-01, 1.9620e-01, + 1.2561e-01, 3.3448e-01, 2.3939e-01, 6.5656e-01, + 7.4549e-01, 8.0767e-01, 9.0073e-01, 6.8499e-01, + 2.5279e-01, 6.7235e-02, 9.9432e-01, 7.9345e-01, + 5.2322e-01, 7.4221e-01, 8.7684e-01, 5.9947e-01, + 8.5031e-01, 5.2108e-01, 5.7199e-02, 5.8895e-01, + 1.5455e-01, 5.5722e-01, 1.1740e-01, 1.8787e-01, + 3.4269e-02, 6.1328e-01, 8.9098e-01, 6.1179e-02, + 9.7174e-01, 6.9530e-01, 7.5351e-01, 3.6878e-01, + 6.3225e-01, 3.0838e-02, 9.2489e-01, 4.4399e-01, + 8.3176e-01, 5.1710e-02, 7.8755e-01, 2.7926e-01, + 9.0979e-01, 3.7306e-01, 3.3451e-01, 7.8876e-03, + 5.8840e-01, 9.9100e-01, 5.2276e-01, 3.3959e-01, + 2.0976e-01, 9.0783e-01, 2.8137e-01, 3.3640e-01, + 1.3910e-01, 4.3941e-01, 7.7420e-01, 4.4066e-01, + 5.3733e-01, 6.9166e-01, 7.3402e-01, 9.0601e-01, + 7.2659e-01, 3.5345e-01, 8.3657e-01, 6.3362e-01, + 9.0880e-01, 6.2022e-01, 7.3968e-02, 9.5163e-01, + 8.1590e-01, 3.2542e-01, 4.3341e-01, 8.5695e-01, + 1.6718e-01, 6.1165e-01, 4.7159e-01, 1.6461e-01, + 5.4686e-01, 3.9495e-01, 5.1038e-01, 1.0149e-01, + 7.1867e-01, 1.9060e-01, 8.4690e-01, 2.1212e-01, + 6.2564e-01, 4.6129e-01, 3.7432e-01, 7.4444e-01, + 6.6752e-01, 5.4421e-01, 4.5698e-01, 2.0129e-01, + 5.3565e-01, 6.4916e-01, 3.9503e-01, 9.1870e-01, + 7.0564e-01, 2.7758e-01, 5.0366e-01, 9.3558e-02, + 7.3633e-01, 1.5508e-01, 4.2724e-01, 1.1644e-01, + 2.8316e-01, 6.2577e-02, 7.7771e-01, 7.7460e-01, + 9.0249e-02, 6.4390e-01, 8.3686e-01, 9.2400e-01, + 2.6242e-01, 2.0027e-01, 8.4560e-01, 8.7000e-01, + 7.7375e-01, 5.4250e-01, 3.6026e-01, 5.6023e-01, + 3.3220e-01, 8.4107e-01, 6.3823e-01, 1.8703e-01, + 2.8048e-02, 9.2826e-01, 3.9652e-02, 8.9134e-01, + 6.6399e-01, 7.7509e-01, 8.1472e-01, 4.4265e-01, + 1.9597e-02, 5.7310e-01, 2.0484e-01, 3.6184e-01, + 5.3963e-01, 8.3754e-01, 3.9675e-01, 4.8612e-02, + 6.0476e-01, 1.0854e-01, 6.4168e-01, 8.0755e-01, + 7.9661e-01, 4.5280e-01, 6.7552e-01, 2.6422e-01, + 2.9765e-01, 7.3493e-01, 2.7940e-01, 7.7422e-01, + 2.8204e-04, 4.2108e-01, 5.6586e-01, 1.0556e-01, + 1.1550e-02, 8.2554e-02, 4.3945e-01, 5.7594e-01, + 8.9251e-01, 9.4039e-01, 5.6989e-02, 5.4813e-01, + 6.4406e-01, 9.2155e-01, 9.4419e-01, 6.6322e-01, + 2.7957e-01, 2.9197e-01, 9.1368e-01, 9.5441e-01, + 9.5904e-01, 4.2642e-01, 7.9625e-01, 1.2600e-01, + 1.3869e-01, 8.3948e-01, 9.7068e-02, 7.5039e-01, + 3.2113e-01, 3.7210e-01, 7.9795e-01, 7.3403e-01, + 4.2191e-01, 2.1404e-01, 1.9561e-01, 2.6717e-01, + 6.3550e-01, 5.2827e-01, 5.6268e-01, 6.6776e-01, + 6.6585e-01, 5.4771e-01, 4.7139e-01, 4.2999e-01, + 2.2744e-01, 7.3449e-01, 9.3571e-01, 2.0460e-01, + 8.7126e-01, 6.3205e-01, 4.5232e-01, 1.0747e-02, + 9.6500e-01, 4.2656e-01, 7.3286e-01, 9.2143e-01, + 4.1197e-01, 8.6333e-01, 9.6936e-01, 8.1432e-02, + 8.2861e-02, 4.3735e-01, 5.8064e-01, 7.6731e-02, + 2.2808e-01, 2.4833e-01, 9.5109e-01, 4.1294e-01, + 2.2988e-01, 6.9450e-01, 6.1942e-01, 8.9872e-01, + 5.5144e-01, 5.4203e-01, 7.6712e-01, 1.0604e-01, + 8.3558e-01, 3.0839e-01, 7.6796e-01, 4.6978e-01, + 3.9200e-01, 9.4286e-01, 5.5714e-02, 2.8062e-01, + 4.1955e-02, 1.2238e-01, 2.7380e-01, 5.4131e-01, + 9.8529e-01, 1.4965e-01, 4.5735e-01, 5.8346e-01, + 7.2817e-01, 2.1697e-01, 7.2339e-01, 2.7133e-01, + 4.2316e-01, 8.8540e-03, 2.8433e-01, 8.2022e-01, + 7.7852e-02, 8.5926e-01, 4.4605e-02, 7.7914e-01, + 8.0113e-01, 1.5392e-01, 9.7433e-01, 5.6771e-01, + 6.7325e-01, 6.3463e-01, 2.1643e-01, 5.3227e-01, + 6.7932e-01, 3.4423e-01, 2.5964e-01, 6.5186e-01, + 9.1365e-01, 1.8955e-01, 7.6133e-01, 2.5264e-01, + 8.3147e-01, 6.8222e-02, 8.8616e-01, 3.2882e-01, + 7.0634e-01, 1.8169e-01, 9.6910e-01, 4.4978e-01, + 4.6309e-01, 8.5679e-01, 7.1098e-01, 7.5744e-01, + 9.2047e-01, 9.5873e-01, 1.5589e-01, 9.3949e-01, + 3.4989e-01, 4.6710e-01, 8.1157e-02, 1.4008e-01, + 8.7401e-01, 9.8365e-01, 3.5178e-01, 5.0703e-01, + 4.3238e-01, 1.7770e-01, 3.0158e-01, 8.0513e-01, + 5.4259e-01, 9.7303e-01, 9.8516e-01, 5.1310e-01, + 8.6513e-01, 8.5088e-01, 6.9005e-01, 3.6431e-01, + 9.7970e-01, 1.9764e-02, 9.5557e-01, 2.1947e-01, + 8.7722e-02, 3.0887e-01, 1.3598e-01, 2.8304e-01, + 3.4945e-01, 5.4883e-01, 1.7336e-01, 6.3137e-01, + 9.7623e-01, 5.7471e-01, 2.7208e-01, 8.4042e-01, + 4.8335e-01, 8.4750e-01, 9.9182e-02, 1.1519e-01, + 4.4113e-01, 8.5510e-01, 5.2443e-01, 4.3708e-01]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.4435, 0.0773, 0.0249, ..., 0.0070, 0.7023, 0.2387]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 0.08438587188720703 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '124428', '-ss', '10000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 3.5914108753204346} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 1, ..., 1000, 1000, 1000]), + col_indices=tensor([3597, 9, 1044, 3716, 98, 3551, 3965, 3920, 2369, + 6622, 2889, 2733, 9619, 8879, 214, 1498, 5628, 5050, + 1612, 1432, 5924, 4223, 5673, 5024, 1571, 9554, 4117, + 6172, 4152, 1650, 6284, 8764, 3734, 5467, 6144, 9907, + 2415, 89, 4907, 3890, 4658, 8223, 3917, 3024, 6323, + 7419, 1781, 9076, 2972, 6710, 7400, 4605, 3762, 446, + 1387, 7068, 5435, 7232, 4568, 2187, 5029, 6733, 5022, + 6175, 6496, 4875, 4881, 4574, 9860, 7187, 9416, 1923, + 1194, 94, 6450, 120, 3556, 662, 3588, 5897, 9345, + 8674, 1514, 9592, 2980, 1401, 6049, 8787, 9171, 3495, + 9181, 919, 8930, 6135, 9408, 4922, 56, 574, 8860, + 478, 6298, 1874, 6479, 9220, 412, 8498, 4958, 3548, + 7785, 9175, 8108, 7647, 1805, 8157, 6171, 3362, 8230, + 6430, 7487, 1385, 3551, 2958, 7149, 4586, 8471, 1688, + 6329, 9764, 2504, 67, 2541, 5515, 177, 7617, 6563, + 2343, 6042, 7519, 7459, 2876, 5950, 2565, 239, 6045, + 8489, 8095, 4822, 3292, 2517, 6278, 8498, 1068, 8545, + 7307, 2055, 7660, 1787, 7644, 9721, 5299, 5866, 4300, + 2700, 1812, 3905, 8346, 3677, 5526, 136, 1020, 9070, + 3626, 7531, 24, 5730, 8750, 3419, 3958, 9660, 4864, + 397, 130, 2100, 9017, 8130, 9268, 9436, 7403, 5935, + 7294, 345, 5063, 7364, 6606, 2227, 9600, 9404, 2745, + 3479, 4174, 5328, 9829, 7151, 4314, 3696, 156, 6804, + 2390, 5226, 9767, 2814, 8379, 2259, 2590, 426, 1832, + 3602, 4756, 5684, 6464, 7783, 6365, 5698, 205, 73, + 2041, 63, 4203, 3158, 9783, 9611, 9510, 8078, 9809, + 7685, 5812, 4837, 8951, 9749, 248, 1383, 3588, 6139, + 2203, 451, 9006, 4176, 1050, 9797, 3518, 4341, 8268, + 4409, 6991, 6112, 2820, 7242, 7623, 1267, 1524, 2041, + 2802, 5217, 9728, 44, 647, 7587, 3741, 3734, 8625, + 9596, 3412, 9996, 5623, 3514, 6277, 5990, 9502, 9986, + 1404, 3495, 5226, 4443, 2844, 8625, 9754, 5816, 8532, + 1573, 8875, 8640, 5046, 3006, 6151, 9096, 9834, 8302, + 2981, 8009, 7004, 5002, 6563, 6778, 9143, 2298, 1341, + 9647, 4732, 1138, 318, 9778, 7333, 5010, 5308, 3661, + 4133, 4815, 8155, 350, 7096, 1463, 4030, 1425, 9734, + 7661, 857, 760, 5251, 5833, 9830, 9985, 5355, 3652, + 6244, 5516, 8779, 4897, 4324, 2984, 1720, 1214, 7697, + 3785, 8304, 4535, 9883, 9435, 9314, 4084, 980, 9586, + 7724, 8505, 9547, 8438, 2144, 2950, 3387, 1670, 310, + 1188, 8554, 4192, 8989, 1781, 8278, 4086, 264, 812, + 6229, 520, 1252, 4641, 8595, 3629, 3740, 3731, 4393, + 2538, 2138, 8564, 2632, 5000, 7375, 5627, 3510, 7874, + 1248, 1528, 6220, 1509, 9534, 4166, 3445, 949, 7555, + 9571, 7792, 1450, 4446, 3421, 5658, 8042, 9341, 4384, + 3786, 8082, 8416, 9541, 6129, 4084, 2581, 2590, 2166, + 2734, 785, 3174, 3234, 7590, 8715, 5041, 2090, 1009, + 7570, 6940, 9938, 3881, 1559, 1728, 5192, 6666, 2828, + 6810, 5582, 9131, 7619, 2389, 8415, 7441, 7444, 8840, + 9486, 9964, 2335, 6406, 6029, 1591, 202, 4193, 9819, + 9108, 840, 4133, 4334, 1950, 2165, 3516, 7793, 7110, + 5794, 8938, 7729, 3005, 7056, 7902, 4734, 5746, 3618, + 3551, 9225, 7799, 2978, 8642, 2603, 7336, 9375, 6727, + 4244, 6397, 8093, 3019, 6461, 1127, 4888, 4658, 2342, + 6588, 1361, 4072, 3523, 948, 4115, 8891, 7872, 8944, + 4098, 2776, 2517, 30, 759, 2713, 2765, 6101, 5678, + 6772, 3564, 9046, 1092, 553, 2540, 5146, 9176, 483, + 8793, 9620, 8646, 4982, 7934, 6502, 2497, 8717, 2110, + 39, 5784, 7817, 1830, 4480, 8719, 4702, 2821, 3855, + 627, 4048, 3201, 2076, 2655, 6182, 7135, 5225, 6795, + 2968, 3677, 1343, 6746, 8967, 5893, 2945, 1225, 4284, + 2175, 2404, 4007, 8929, 8043, 4910, 541, 3674, 8453, + 7919, 7114, 2082, 1249, 6704, 2817, 9550, 2450, 6154, + 4525, 173, 1891, 9794, 2003, 5909, 7708, 9703, 6803, + 6608, 9659, 6830, 9910, 4547, 7543, 3448, 195, 5601, + 3121, 1646, 624, 3739, 398, 3705, 6950, 4116, 2201, + 5815, 6622, 973, 6145, 9795, 8857, 8299, 7557, 7897, + 269, 7287, 4444, 7013, 9909, 1335, 5727, 542, 4598, + 7852, 92, 1610, 7627, 2156, 1900, 1688, 9186, 2572, + 224, 4786, 1211, 9995, 8276, 7178, 4362, 7972, 5004, + 8663, 1616, 9367, 9658, 4882, 8865, 1318, 187, 1685, + 5877, 8201, 9574, 32, 9588, 1800, 5659, 3491, 9467, + 6580, 8555, 3008, 1230, 5267, 501, 8991, 3154, 5367, + 2656, 8315, 1100, 3575, 6054, 2409, 2474, 1471, 3191, + 4445, 2112, 2894, 7911, 9524, 2624, 3539, 1257, 2492, + 4262, 6815, 1964, 8177, 169, 8119, 2882, 7843, 5953, + 878, 4802, 8642, 3349, 512, 4155, 9735, 3121, 950, + 6932, 5780, 9856, 1931, 1400, 1850, 2076, 9623, 7351, + 3509, 8123, 5943, 1447, 5721, 2683, 5005, 9711, 101, + 9367, 3394, 4719, 1979, 806, 9869, 768, 4364, 3396, + 8403, 9431, 4256, 9289, 76, 3077, 2878, 1712, 124, + 3730, 1906, 4466, 1650, 1301, 5779, 3996, 4687, 3816, + 512, 2262, 7799, 7891, 9050, 9500, 8470, 2869, 309, + 6882, 5126, 4765, 5030, 4479, 4382, 3906, 1799, 3780, + 4247, 5148, 5890, 7235, 7577, 3024, 2128, 674, 2569, + 8863, 8456, 5859, 9797, 248, 1593, 8305, 9315, 6565, + 9591, 8104, 4420, 461, 2813, 3880, 8370, 4001, 8798, + 9058, 1852, 146, 4964, 6879, 6088, 6473, 1174, 6756, + 8001, 6389, 1270, 6286, 9008, 6718, 8595, 3618, 4704, + 5906, 5310, 6765, 7872, 6545, 129, 6983, 2763, 2554, + 5333, 9755, 4687, 6079, 7357, 1012, 9375, 9223, 9523, + 8760, 5406, 5084, 2758, 6749, 4516, 5933, 8632, 8854, + 7523, 5233, 4293, 1627, 9769, 8134, 4773, 7537, 1219, + 5139, 3109, 5280, 7985, 7093, 8136, 9461, 8072, 2136, + 3202, 2675, 2129, 7596, 4277, 4132, 1480, 1216, 6052, + 3521, 1108, 1843, 114, 1849, 5800, 4653, 5041, 1182, + 4172, 5133, 477, 3651, 4005, 9269, 4638, 9006, 4857, + 3715, 6710, 1859, 1041, 6628, 1679, 5036, 3050, 2764, + 6929, 6851, 2533, 1289, 4800, 3879, 9174, 3515, 1678, + 9059, 6857, 5848, 8264, 8744, 6738, 2415, 4244, 9067, + 2862, 1613, 7663, 6779, 1381, 2392, 8685, 9289, 4184, + 2280, 1504, 3287, 7020, 8497, 3887, 7931, 469, 7800, + 7962, 566, 1330, 2209, 4356, 7380, 721, 7112, 2010, + 5226, 1707, 1220, 7140, 7438, 8069, 2556, 1860, 6656, + 6829, 7669, 8826, 9004, 9296, 4221, 739, 6315, 5684, + 5128, 2962, 588, 8230, 5387, 5795, 1909, 670, 7962, + 943, 428, 8211, 8950, 3960, 5148, 5930, 64, 618, + 2515, 8705, 3343, 9480, 8205, 5847, 706, 586, 3126, + 9408, 623, 538, 2577, 9282, 7387, 2181, 2354, 7225, + 4875, 885, 2566, 9382, 2630, 5819, 7718, 8692, 9847, + 4617, 6677, 6092, 9020, 7856, 3877, 4863, 9880, 5807, + 1413]), + values=tensor([5.8898e-01, 1.9785e-01, 6.3586e-01, 8.6646e-02, + 8.4703e-01, 8.9949e-01, 4.7578e-01, 3.2786e-01, + 8.4856e-01, 1.3220e-01, 4.9751e-01, 5.1156e-01, + 3.4802e-01, 7.9588e-02, 1.8863e-01, 5.3428e-01, + 2.8282e-01, 7.9120e-01, 8.7336e-01, 8.7475e-01, + 1.2938e-01, 1.9185e-01, 5.2270e-01, 9.1682e-01, + 1.6392e-01, 3.6995e-01, 8.4556e-01, 1.3267e-02, + 5.3756e-01, 6.3600e-01, 4.7649e-01, 5.4493e-01, + 2.7282e-01, 9.1126e-01, 6.9921e-01, 4.0012e-01, + 4.1687e-02, 5.5766e-02, 9.1626e-02, 7.0106e-02, + 9.3599e-01, 3.9164e-01, 5.7651e-01, 1.8004e-01, + 2.2728e-01, 5.6995e-01, 5.5047e-01, 1.3688e-02, + 4.8513e-01, 4.4803e-01, 2.2857e-01, 2.5550e-01, + 3.8222e-02, 9.3874e-01, 3.3957e-01, 1.7750e-01, + 2.5047e-01, 3.6607e-01, 4.7563e-01, 2.7928e-01, + 3.8084e-01, 6.4707e-01, 4.7085e-01, 8.0893e-01, + 2.2743e-01, 5.2161e-01, 8.4676e-01, 7.7562e-01, + 4.6980e-01, 9.0971e-01, 8.5451e-01, 2.4410e-01, + 7.0536e-02, 9.4950e-01, 1.6054e-02, 7.4894e-01, + 5.7160e-01, 5.1769e-01, 9.8477e-01, 9.9731e-01, + 8.9610e-01, 4.4542e-01, 2.1957e-01, 6.2373e-01, + 7.9382e-01, 8.2937e-01, 6.0337e-01, 6.7083e-01, + 1.0547e-01, 2.3128e-01, 2.7439e-01, 7.7884e-01, + 9.8521e-01, 5.4541e-01, 9.6292e-01, 3.9355e-01, + 3.6515e-01, 6.5120e-01, 1.2405e-02, 1.8165e-01, + 9.8960e-01, 7.9527e-02, 1.0601e-01, 8.2101e-01, + 5.8771e-02, 2.8802e-01, 5.3565e-01, 1.7563e-01, + 2.3199e-01, 2.0571e-01, 6.4893e-01, 7.2199e-01, + 3.3317e-01, 7.1268e-01, 1.9781e-01, 2.5079e-01, + 9.8791e-01, 1.3405e-01, 9.4955e-01, 2.9983e-01, + 5.6594e-01, 5.4895e-01, 3.2330e-01, 8.5597e-01, + 5.0450e-01, 8.6406e-01, 7.3031e-02, 3.9238e-01, + 1.0755e-02, 2.7806e-01, 4.6386e-01, 9.8927e-01, + 9.2034e-01, 8.8258e-01, 7.8995e-01, 3.4733e-01, + 4.2334e-01, 7.7828e-01, 1.9427e-01, 6.9287e-01, + 1.7783e-01, 1.4555e-02, 9.3092e-01, 8.2048e-01, + 9.4066e-01, 6.9144e-01, 5.4502e-01, 1.7581e-01, + 7.6536e-01, 6.5442e-01, 5.0250e-01, 9.1316e-01, + 8.8898e-01, 2.9152e-01, 3.2250e-01, 1.7168e-01, + 3.3001e-01, 1.3168e-01, 2.5197e-01, 3.1443e-01, + 8.6298e-01, 1.7979e-01, 1.1145e-01, 1.8429e-01, + 9.1810e-01, 5.3228e-01, 8.2721e-01, 4.0671e-01, + 7.2914e-01, 9.0041e-01, 1.7628e-01, 3.9028e-01, + 5.1899e-01, 8.4116e-01, 2.0125e-01, 9.5293e-01, + 5.7544e-02, 6.8202e-01, 5.4243e-01, 4.4692e-01, + 7.8965e-01, 7.6190e-01, 9.4762e-01, 8.9122e-01, + 2.4965e-02, 8.0804e-01, 7.2676e-01, 2.8219e-01, + 3.8119e-01, 3.8278e-01, 2.1577e-01, 1.9611e-01, + 5.3028e-01, 8.0132e-01, 5.1113e-01, 3.5340e-01, + 8.4920e-01, 5.9905e-01, 5.5000e-01, 9.1064e-01, + 9.9349e-01, 9.5796e-01, 9.3070e-02, 4.4622e-01, + 3.7794e-02, 6.1314e-02, 5.8795e-01, 9.6009e-01, + 1.7126e-01, 1.9649e-01, 4.7107e-01, 9.3471e-02, + 4.8184e-01, 7.2025e-01, 4.4528e-01, 5.0593e-01, + 2.6237e-01, 6.2130e-02, 1.2607e-01, 5.3003e-01, + 9.1400e-01, 3.7506e-01, 3.3344e-01, 5.6316e-01, + 2.7731e-01, 4.8451e-01, 5.4412e-02, 7.0750e-01, + 4.0044e-01, 4.0744e-01, 8.0663e-01, 3.8408e-01, + 8.8743e-01, 3.2130e-01, 4.1476e-01, 6.5939e-01, + 3.2461e-01, 7.3738e-01, 2.6924e-01, 7.9785e-01, + 7.6952e-01, 7.5999e-01, 3.2869e-01, 8.3331e-02, + 8.6669e-01, 6.0814e-01, 1.0331e-01, 1.4571e-01, + 3.6014e-01, 7.6453e-01, 6.4567e-01, 6.1038e-01, + 7.8420e-02, 3.1086e-01, 1.8874e-02, 7.1507e-01, + 3.2168e-01, 6.1324e-01, 2.1042e-01, 9.3044e-01, + 3.7680e-01, 7.3589e-01, 9.4311e-01, 5.2798e-01, + 3.4727e-01, 2.8965e-01, 1.0831e-01, 6.3955e-01, + 3.4589e-01, 7.8614e-01, 7.5346e-01, 8.9337e-01, + 2.9736e-01, 9.0881e-03, 2.3892e-01, 1.7932e-01, + 3.1706e-01, 4.3833e-01, 2.6880e-01, 7.0034e-01, + 7.8809e-01, 5.3610e-01, 5.8740e-01, 6.2145e-01, + 3.5527e-01, 7.5413e-01, 4.7065e-01, 7.6124e-01, + 5.8535e-02, 9.9575e-01, 3.0117e-01, 7.5173e-01, + 7.7395e-01, 4.7960e-01, 5.7820e-01, 5.6275e-02, + 7.3307e-01, 2.1509e-01, 8.2765e-01, 9.6562e-01, + 1.4450e-01, 7.7884e-01, 4.7076e-02, 9.3995e-01, + 9.7692e-01, 5.5090e-01, 5.9183e-01, 9.8172e-01, + 2.0021e-01, 7.0048e-01, 5.6574e-01, 6.0901e-01, + 6.6525e-01, 3.4233e-01, 8.5120e-01, 9.5768e-01, + 5.9485e-01, 2.8487e-01, 8.4151e-01, 5.7464e-01, + 3.7557e-01, 7.9613e-01, 2.2357e-01, 4.1104e-01, + 4.5075e-01, 8.2669e-01, 2.0418e-02, 5.2171e-01, + 2.5026e-01, 4.9965e-01, 9.7348e-01, 7.6496e-01, + 8.4108e-01, 2.1203e-01, 3.4009e-01, 3.5832e-01, + 9.5036e-01, 2.7537e-01, 8.6298e-01, 9.6349e-02, + 5.3931e-01, 4.6027e-02, 7.8789e-02, 2.4638e-01, + 3.4143e-01, 4.0269e-02, 1.4661e-01, 1.5786e-01, + 7.2679e-02, 7.9762e-02, 5.5604e-01, 1.5873e-01, + 6.1787e-01, 7.5778e-01, 3.5443e-01, 4.7033e-01, + 9.8668e-01, 3.8234e-01, 8.5690e-01, 6.4333e-01, + 7.9683e-01, 3.7979e-01, 1.4283e-01, 8.7626e-01, + 5.5154e-01, 6.5234e-01, 3.8837e-01, 9.5886e-01, + 1.4921e-01, 2.7649e-01, 9.9725e-01, 8.4708e-01, + 1.5102e-02, 4.1971e-01, 1.8317e-01, 4.7173e-01, + 9.4276e-01, 2.3664e-01, 5.4025e-01, 4.7318e-03, + 2.3773e-01, 5.3755e-01, 5.7743e-01, 8.2008e-01, + 4.9066e-01, 1.4077e-01, 2.8123e-01, 7.0610e-01, + 6.5906e-01, 1.4561e-01, 8.8094e-01, 8.3870e-01, + 8.2497e-01, 9.7921e-01, 4.2754e-01, 4.5122e-01, + 1.6323e-02, 8.9996e-02, 7.7245e-01, 2.4139e-01, + 7.7527e-01, 7.3230e-01, 3.2673e-01, 8.6534e-01, + 7.4316e-01, 5.1711e-01, 9.4095e-01, 8.5322e-01, + 5.1902e-01, 8.0029e-01, 3.2807e-01, 2.3632e-01, + 8.5332e-01, 4.7775e-01, 4.3627e-01, 2.1487e-01, + 8.4741e-01, 2.4588e-01, 7.9839e-01, 6.1017e-01, + 4.6890e-01, 6.7926e-01, 9.3577e-02, 4.7045e-01, + 9.7929e-01, 8.7900e-01, 5.0589e-01, 2.8158e-01, + 2.8676e-01, 2.5849e-01, 9.1505e-01, 6.8113e-01, + 9.8369e-01, 2.9625e-01, 9.7512e-01, 1.9835e-01, + 4.5588e-01, 5.2834e-01, 6.8604e-01, 3.9369e-03, + 2.1379e-02, 9.9466e-01, 7.8743e-01, 4.1121e-01, + 7.5760e-01, 2.5516e-01, 6.2149e-01, 4.8317e-01, + 6.7851e-01, 5.7955e-01, 9.3347e-01, 1.5762e-02, + 7.2533e-01, 4.8608e-01, 3.1121e-01, 6.4352e-01, + 4.1943e-02, 1.1054e-01, 4.8507e-01, 8.1158e-01, + 5.3857e-01, 2.2003e-01, 2.0791e-01, 3.7889e-01, + 1.7014e-01, 1.5822e-01, 1.2659e-01, 1.4356e-01, + 1.6536e-01, 1.4837e-01, 8.7364e-01, 3.4934e-01, + 3.8285e-01, 3.1356e-01, 6.4007e-01, 7.8815e-02, + 1.8235e-02, 3.5947e-01, 9.8116e-01, 3.3127e-01, + 9.1514e-01, 9.3039e-01, 7.9649e-01, 6.4455e-01, + 2.0122e-01, 2.5687e-01, 3.0865e-02, 1.8534e-01, + 4.1554e-01, 4.7758e-01, 8.1393e-01, 8.3072e-01, + 5.3264e-02, 3.7799e-02, 9.4645e-01, 9.1066e-01, + 8.4615e-01, 1.5824e-01, 6.9896e-01, 5.4031e-01, + 3.6360e-01, 8.8505e-01, 8.5896e-01, 2.3785e-01, + 1.2940e-02, 4.2546e-01, 7.1123e-01, 4.3094e-01, + 6.3707e-01, 4.3457e-04, 1.8388e-01, 3.8438e-01, + 1.7941e-01, 4.0588e-01, 9.3242e-01, 5.7778e-01, + 7.4646e-02, 1.5664e-01, 9.3614e-01, 7.3980e-01, + 3.2986e-01, 8.0129e-01, 8.7607e-01, 8.8861e-01, + 2.3201e-01, 7.5519e-01, 7.0829e-01, 9.1082e-01, + 6.3738e-01, 1.0170e-01, 2.5377e-02, 2.2690e-01, + 4.8110e-02, 6.5433e-01, 9.9909e-01, 4.7314e-01, + 7.9913e-01, 5.8682e-01, 5.0473e-01, 9.3889e-01, + 6.1872e-01, 2.6769e-01, 3.7750e-01, 8.3591e-01, + 3.3321e-01, 2.8068e-01, 9.2491e-01, 6.9194e-01, + 2.9549e-02, 1.9014e-01, 8.7788e-02, 6.7485e-01, + 5.9256e-01, 5.5193e-01, 1.8998e-01, 4.2886e-01, + 6.2134e-01, 6.9408e-01, 8.8914e-01, 8.0789e-01, + 3.6943e-01, 1.9904e-01, 8.9485e-03, 7.6193e-01, + 7.7062e-01, 9.5182e-01, 3.1749e-01, 5.7876e-01, + 3.0682e-02, 9.8304e-01, 8.0679e-01, 9.0657e-01, + 4.9901e-01, 6.3178e-01, 2.1080e-01, 6.6723e-01, + 5.7130e-01, 6.1873e-01, 8.6701e-01, 5.0743e-01, + 1.3738e-01, 8.4637e-01, 5.4882e-01, 9.6798e-01, + 1.4240e-01, 2.2805e-01, 6.2367e-01, 3.7799e-01, + 2.0326e-01, 1.3702e-01, 3.0310e-01, 4.8136e-01, + 3.1046e-02, 9.3411e-01, 6.8956e-02, 9.1324e-01, + 9.2449e-01, 3.9031e-01, 6.0527e-01, 6.2505e-01, + 7.0131e-03, 3.2616e-01, 5.9364e-01, 3.0465e-02, + 9.1118e-01, 9.9648e-01, 4.9248e-01, 9.7122e-02, + 5.8074e-01, 1.1979e-03, 7.3673e-01, 1.5177e-01, + 6.9761e-01, 9.1324e-01, 9.4354e-01, 4.9393e-01, + 8.3755e-01, 1.3216e-01, 9.2559e-01, 2.6868e-01, + 2.2019e-01, 9.8861e-01, 9.2722e-01, 9.5771e-01, + 6.3732e-01, 8.9835e-01, 8.9185e-01, 7.3086e-01, + 8.3756e-01, 8.6144e-01, 4.6742e-02, 3.8567e-01, + 9.5237e-01, 8.8451e-01, 7.0945e-01, 5.2850e-01, + 4.9557e-01, 7.8318e-01, 7.5254e-02, 6.7505e-01, + 9.5086e-01, 5.4112e-01, 7.4362e-01, 2.9076e-01, + 8.1730e-01, 3.8360e-01, 5.4883e-01, 2.2861e-01, + 9.4098e-03, 2.5906e-02, 5.6712e-01, 1.4304e-01, + 5.7518e-01, 2.4600e-01, 2.0790e-02, 6.4737e-01, + 9.8812e-01, 6.3177e-01, 3.3835e-02, 9.1150e-01, + 1.3355e-01, 5.6474e-01, 5.7587e-02, 6.2624e-01, + 7.8943e-01, 4.2296e-01, 8.5349e-01, 9.9756e-01, + 9.3998e-01, 8.0688e-01, 7.3633e-01, 6.4328e-01, + 4.4941e-01, 3.7755e-01, 7.0109e-01, 2.7185e-02, + 5.2233e-01, 4.2148e-01, 7.9177e-01, 9.8611e-01, + 3.4676e-01, 7.5373e-01, 3.7620e-01, 9.3792e-01, + 3.7963e-01, 1.5518e-01, 7.3247e-01, 2.7909e-01, + 3.5447e-01, 6.1500e-02, 5.4908e-02, 6.3810e-01, + 7.7339e-01, 2.6705e-02, 4.5089e-01, 4.5241e-01, + 5.5235e-01, 1.5614e-01, 7.7894e-02, 9.5874e-01, + 3.7168e-02, 2.7312e-01, 4.3120e-01, 3.2874e-01, + 5.7142e-01, 3.6130e-01, 9.2906e-01, 9.1572e-01, + 8.0265e-01, 7.5849e-01, 5.3804e-02, 6.7831e-01, + 2.4853e-01, 3.7848e-01, 1.8418e-02, 4.5608e-01, + 5.2397e-01, 7.4467e-01, 9.2880e-02, 4.6452e-01, + 5.8540e-01, 6.5798e-01, 8.8912e-01, 3.9890e-02, + 5.2457e-01, 7.8873e-01, 3.1919e-01, 1.1331e-02, + 5.8267e-01, 9.0865e-01, 4.0789e-01, 4.3879e-01, + 5.4865e-01, 4.5825e-02, 2.8572e-02, 1.1844e-01, + 4.4665e-01, 7.2445e-01, 8.9276e-01, 7.1536e-01, + 4.4658e-01, 3.0506e-01, 1.0345e-01, 5.2382e-01, + 9.8328e-01, 2.9920e-01, 1.7323e-01, 9.0400e-01, + 6.0347e-01, 4.7720e-01, 3.3228e-01, 6.1681e-02, + 5.2140e-01, 1.9829e-01, 6.5558e-02, 8.5760e-01, + 1.4001e-01, 7.0359e-01, 2.1593e-01, 2.4194e-01, + 7.0925e-01, 7.5696e-01, 9.2386e-01, 6.0428e-01, + 6.2685e-01, 4.9731e-01, 8.4687e-01, 7.6241e-01, + 1.5124e-01, 4.3670e-01, 1.8251e-02, 2.4860e-01, + 4.2732e-01, 1.4839e-01, 4.0940e-01, 1.2281e-01, + 9.9468e-01, 2.3994e-01, 1.9607e-01, 2.2855e-01, + 7.4350e-01, 3.6673e-01, 5.7596e-01, 8.4352e-02, + 7.4710e-01, 4.8573e-01, 3.2807e-01, 5.4515e-01, + 7.7087e-02, 1.8623e-01, 6.8462e-01, 2.4702e-01, + 7.9728e-01, 2.9985e-01, 9.8415e-01, 9.4390e-01, + 9.6890e-01, 6.6238e-01, 9.4039e-01, 6.3058e-01, + 3.6916e-01, 7.6364e-01, 8.7170e-01, 8.0689e-01, + 2.7583e-01, 5.8783e-01, 8.5485e-01, 9.1759e-02, + 1.5796e-01, 7.8565e-01, 6.0729e-02, 4.6819e-01, + 9.4606e-02, 8.3125e-01, 9.1526e-01, 4.5103e-03, + 9.8069e-01, 2.5511e-01, 8.0716e-02, 4.3126e-01, + 3.4246e-02, 8.2760e-01, 3.0626e-01, 8.9436e-01, + 4.0895e-03, 6.6548e-01, 2.0671e-04, 6.0869e-01, + 5.0895e-01, 4.8369e-02, 1.6133e-01, 4.3844e-01, + 9.0563e-01, 5.6368e-01, 1.0912e-01, 5.9556e-01, + 2.2326e-01, 1.6742e-01, 7.5251e-01, 7.0751e-01, + 3.5590e-01, 6.2298e-01, 1.5239e-01, 9.7441e-01, + 8.9988e-01, 6.2619e-01, 8.5924e-01, 3.2392e-01, + 2.8971e-01, 6.8691e-01, 9.4770e-01, 3.3294e-01, + 6.4690e-01, 7.2508e-01, 6.3154e-01, 8.0059e-02, + 4.8946e-01, 7.8938e-01, 5.4911e-01, 4.3188e-01, + 6.8351e-01, 6.2535e-01, 9.4981e-01, 3.9289e-01, + 4.0848e-01, 1.7000e-01, 7.2092e-01, 1.2379e-01, + 3.1251e-01, 1.2660e-01, 9.4156e-01, 4.5765e-01, + 9.3671e-01, 6.6153e-01, 6.1442e-01, 5.7858e-01, + 1.9139e-01, 1.0934e-01, 7.4005e-01, 8.0790e-02, + 9.0105e-01, 6.4955e-01, 9.7739e-01, 7.9616e-01, + 1.3297e-01, 2.0742e-01, 9.6556e-01, 1.3455e-01, + 2.5186e-01, 2.1543e-01, 3.4826e-02, 7.6440e-01, + 2.2376e-01, 8.6586e-01, 4.7182e-01, 4.3325e-01, + 4.1675e-01, 8.3446e-01, 4.9581e-02, 6.7913e-01, + 3.0389e-02, 2.4170e-01, 8.3960e-01, 5.1508e-01, + 3.4965e-01, 9.7804e-01, 7.1034e-01, 1.7936e-02, + 5.5724e-01, 4.0039e-01, 9.6068e-01, 1.8722e-01, + 8.1980e-01, 5.2903e-01, 4.0793e-01, 2.2700e-01, + 7.0366e-01, 4.0431e-01, 6.8702e-02, 6.1410e-02, + 7.9224e-01, 6.0851e-02, 6.2886e-01, 2.3274e-01, + 1.4516e-01, 7.4570e-01, 6.6696e-01, 8.0239e-01, + 5.5099e-02, 2.6725e-01, 9.9516e-01, 1.6306e-01, + 2.6052e-01, 1.8739e-01, 5.1894e-01, 6.9062e-01, + 7.1895e-02, 7.6126e-01, 5.9960e-01, 1.0987e-01, + 6.1792e-01, 2.0756e-01, 4.6885e-01, 4.6274e-01, + 8.8747e-01, 9.5345e-01, 7.0894e-01, 5.9417e-01, + 3.9523e-02, 5.7206e-01, 3.2277e-01, 3.5319e-01, + 5.4237e-01, 9.8440e-01, 3.3902e-01, 8.1761e-01, + 9.4886e-02, 1.4636e-01, 7.9422e-02, 6.0671e-01, + 6.8205e-01, 1.0147e-01, 7.4110e-01, 4.9735e-01, + 7.2855e-01, 6.1982e-01, 5.0316e-02, 9.4204e-01, + 4.7305e-01, 8.0307e-02, 7.5121e-01, 9.2374e-02, + 3.4992e-01, 6.9429e-01, 1.6789e-01, 3.6168e-01, + 7.3613e-01, 2.2608e-01, 8.5376e-01, 6.5522e-01, + 3.6983e-01, 3.2533e-01, 7.0235e-01, 2.8870e-01, + 1.8154e-01, 4.7093e-02, 3.8686e-03, 3.4319e-01, + 7.2570e-01, 2.8863e-01, 9.0271e-01, 8.9351e-01, + 6.9524e-01, 2.5214e-01, 9.5820e-01, 3.7436e-01, + 4.2317e-01, 1.4961e-01, 4.3533e-01, 9.4417e-01]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.2136, 0.3814, 0.1034, ..., 0.1098, 0.3191, 0.2700]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 3.5914108753204346 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '363782', '-ss', '10000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.585279941558838} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), + col_indices=tensor([7943, 4488, 6154, 9391, 155, 1146, 4006, 8134, 8781, + 7101, 3276, 7191, 9320, 2859, 4578, 2750, 6596, 4201, + 2541, 6640, 9961, 1286, 5879, 9740, 3536, 2151, 9582, + 2021, 7827, 8693, 2313, 555, 3377, 7363, 334, 2888, + 9782, 3162, 5677, 4519, 3889, 4828, 247, 2616, 279, + 8565, 2538, 9525, 8485, 2616, 1166, 2089, 7055, 6468, + 9499, 1310, 5525, 2540, 8419, 935, 4661, 2785, 1947, + 1602, 2918, 4726, 3718, 3716, 5417, 2404, 2572, 1793, + 4269, 7015, 419, 4336, 5223, 1709, 8875, 645, 5198, + 3752, 5677, 5777, 9470, 6191, 7729, 3008, 6984, 7165, + 5063, 8482, 7789, 9298, 6624, 3445, 4654, 5489, 7051, + 2026, 5766, 3319, 8576, 4863, 735, 6400, 8243, 4596, + 9136, 5453, 8094, 6731, 4592, 6080, 2446, 2152, 9189, + 7168, 5575, 8736, 8708, 188, 2747, 5830, 9269, 8804, + 3159, 3201, 4041, 923, 2727, 2290, 84, 4623, 7603, + 3330, 9268, 1450, 9643, 7491, 1862, 6217, 7622, 6831, + 6030, 2019, 4765, 7685, 3438, 4110, 698, 7237, 1712, + 233, 3041, 9992, 7124, 3242, 6158, 3269, 3219, 7971, + 3346, 2455, 5227, 7583, 1444, 6727, 5034, 2207, 2810, + 6860, 3956, 406, 9630, 4569, 2333, 3303, 790, 9166, + 3001, 9674, 4130, 4005, 9208, 9872, 4115, 1140, 4295, + 1232, 2077, 9451, 8659, 2998, 5331, 5112, 5332, 473, + 2236, 9565, 7574, 3329, 2231, 9436, 1794, 1973, 926, + 9017, 624, 3226, 1901, 9136, 3272, 7061, 4208, 8821, + 7803, 6260, 839, 8051, 1195, 3556, 5978, 2134, 4703, + 5878, 6569, 631, 929, 936, 8619, 2484, 8239, 5928, + 7092, 2988, 7292, 9843, 5609, 7908, 9735, 1868, 8029, + 6880, 8241, 655, 7771, 7115, 4230, 2177, 5561, 519, + 9981, 4448, 1648, 5631, 1203, 3106, 9586, 8781, 334, + 6071, 676, 3, 2908, 206, 7480, 7816, 8182, 3140, + 5100, 6638, 2660, 7295, 3954, 4994, 5905, 5343, 875, + 1395, 1415, 8075, 1833, 8285, 3241, 5726, 82, 7838, + 5658, 9442, 7175, 6495, 1263, 5251, 545, 2259, 5163, + 5212, 9905, 1946, 7828, 3306, 3170, 1189, 5060, 6858, + 3265, 9161, 6049, 6284, 2600, 5696, 1666, 8160, 6654, + 4, 195, 1359, 4960, 8521, 7181, 8865, 7801, 6138, + 5232, 8342, 5270, 6210, 3360, 8441, 1762, 5683, 8982, + 5151, 6181, 2277, 3989, 2354, 7040, 690, 3818, 4654, + 8998, 6989, 7424, 1876, 2235, 6291, 65, 3846, 5433, + 653, 7328, 3161, 7270, 6440, 3854, 9530, 6576, 4282, + 3869, 6253, 5868, 5179, 2108, 4988, 6966, 2124, 1163, + 395, 7769, 5649, 9625, 8844, 7379, 7826, 6877, 1758, + 1205, 3960, 4313, 5313, 7450, 1611, 5494, 6504, 1330, + 5009, 8603, 3204, 8610, 7225, 9811, 5033, 8244, 8927, + 189, 6660, 2530, 5087, 7128, 633, 3653, 9666, 5288, + 7838, 705, 8757, 5051, 3379, 8676, 8102, 6270, 3427, + 6941, 8350, 2853, 3036, 8139, 4125, 9896, 6792, 341, + 7714, 2950, 6057, 9295, 6404, 6582, 9441, 7456, 9260, + 3870, 7429, 9215, 1715, 4911, 3116, 9023, 6965, 8146, + 8742, 1823, 1052, 3129, 7548, 9310, 5087, 6452, 8523, + 4919, 3317, 6285, 4958, 687, 1721, 2711, 1456, 1993, + 7026, 6960, 2734, 8274, 8550, 6512, 5209, 3870, 1135, + 3771, 8488, 5407, 5874, 5804, 1777, 3653, 2911, 182, + 3402, 9157, 8305, 1357, 7109, 8892, 7404, 6887, 1640, + 7537, 1505, 6301, 101, 7157, 9753, 9025, 8408, 1812, + 7187, 7261, 160, 6522, 7459, 3342, 9803, 9988, 543, + 3555, 999, 2319, 3754, 8264, 3371, 3736, 5469, 9452, + 7184, 2203, 820, 9411, 4278, 4780, 9218, 1947, 3157, + 2226, 4652, 8669, 5426, 7683, 880, 435, 2033, 9292, + 2455, 4770, 2217, 699, 7572, 3934, 5467, 6026, 7062, + 2922, 2864, 4813, 8049, 9857, 6142, 778, 3565, 3686, + 9116, 2737, 9009, 4447, 2474, 971, 265, 2434, 9165, + 1954, 5853, 4055, 4843, 127, 3125, 509, 2432, 6008, + 5150, 4816, 6842, 9257, 576, 5248, 3779, 6206, 9344, + 9008, 721, 1354, 447, 2489, 5014, 7789, 6532, 232, + 5436, 9948, 4343, 3831, 8334, 5048, 6427, 6482, 9779, + 6169, 9153, 4649, 9096, 6309, 9662, 269, 4722, 5201, + 401, 5744, 3228, 8446, 3133, 3731, 7468, 4532, 1166, + 5876, 2482, 2630, 5613, 1887, 4482, 2576, 2771, 7606, + 4597, 89, 5559, 9787, 1481, 5290, 3655, 322, 166, + 8009, 1493, 7027, 2850, 2006, 4514, 2168, 2174, 9048, + 1786, 4139, 406, 6480, 917, 9722, 7578, 9741, 4917, + 2992, 1489, 1747, 4978, 7936, 2582, 5507, 1532, 5524, + 7826, 3449, 10, 9159, 7860, 3540, 198, 862, 5753, + 3470, 8359, 7581, 3144, 3079, 6434, 7746, 2607, 9147, + 7397, 201, 8081, 4846, 4284, 699, 9972, 9537, 8613, + 9875, 2782, 4871, 244, 9191, 1131, 2811, 1247, 3144, + 8178, 3501, 9452, 4821, 5343, 3, 5004, 5736, 6936, + 7862, 3290, 3383, 5283, 3840, 9625, 5012, 4121, 8759, + 8619, 3041, 5033, 1753, 6166, 6909, 1428, 1761, 1897, + 5070, 6012, 1241, 5625, 8016, 7656, 2936, 7895, 6288, + 9171, 2385, 2390, 2228, 8525, 8334, 9316, 4166, 6851, + 6776, 8997, 5468, 5982, 840, 3981, 4943, 5782, 8333, + 8121, 5911, 8729, 9039, 537, 2752, 6485, 3047, 283, + 5307, 7386, 1100, 7487, 5842, 6557, 5254, 4333, 415, + 9591, 1641, 2548, 8771, 2243, 6011, 7901, 3548, 8089, + 8958, 3344, 8858, 702, 9886, 5874, 7708, 7200, 4618, + 4778, 5665, 4614, 8010, 7456, 3047, 9039, 2044, 9926, + 4002, 1862, 2650, 9698, 4716, 2451, 6247, 8897, 4989, + 8623, 9464, 5599, 7310, 740, 1061, 6357, 3766, 5965, + 4638, 6114, 5529, 2164, 1494, 5729, 4627, 3348, 8109, + 5015, 7896, 3749, 213, 7180, 2156, 7644, 3374, 8920, + 2280, 4385, 5660, 4940, 7376, 6062, 7689, 6701, 3982, + 6731, 4335, 5363, 6281, 7290, 491, 3312, 4385, 9124, + 2888, 314, 2496, 8388, 360, 7969, 9150, 4336, 3714, + 7446, 7899, 6546, 956, 3288, 4036, 5808, 9141, 1394, + 7843, 7906, 1832, 9783, 5676, 1090, 40, 4659, 3502, + 84, 6161, 2144, 5947, 2349, 4766, 6358, 2005, 8455, + 7173, 7646, 4290, 8339, 7908, 943, 4131, 6672, 9870, + 4086, 6590, 205, 6057, 8733, 8600, 2315, 9854, 949, + 6942, 3555, 4782, 9913, 2335, 3741, 105, 9676, 829, + 4513, 5377, 7160, 7815, 5725, 4449, 7984, 7022, 9075, + 2973, 7234, 3301, 4106, 1057, 2796, 5400, 9826, 9608, + 1399, 3273, 7886, 5410, 8781, 1618, 8921, 750, 6541, + 313, 693, 2706, 9062, 82, 1001, 7170, 1044, 8082, + 5581, 7140, 949, 2283, 1698, 7268, 3598, 2618, 7101, + 917, 6363, 1607, 9830, 8474, 3927, 7297, 5514, 3427, + 8343, 6039, 3891, 1347, 5609, 7, 7597, 7807, 2355, + 5270, 382, 5935, 7213, 1197, 9647, 3059, 1828, 1291, + 5826, 9873, 5640, 2784, 8784, 1051, 644, 8752, 810, + 4403, 4357, 4219, 1880, 6353, 2009, 6795, 232, 4527, + 4898]), + values=tensor([1.4008e-01, 7.3938e-01, 7.6639e-01, 5.0164e-01, + 1.7486e-01, 3.2598e-01, 5.6159e-01, 5.5178e-01, + 5.7399e-01, 3.9297e-01, 4.2201e-01, 2.1666e-01, + 8.8345e-04, 9.6154e-01, 8.3073e-01, 6.5757e-01, + 1.6074e-01, 7.8577e-01, 9.7772e-01, 1.0075e-01, + 2.5921e-01, 7.4860e-01, 1.8867e-01, 8.9320e-01, + 8.3174e-01, 6.0226e-01, 1.7683e-01, 3.6553e-01, + 5.7124e-01, 2.0441e-01, 6.4951e-01, 7.0821e-01, + 3.7566e-01, 8.9297e-01, 9.1514e-01, 6.5969e-01, + 2.0172e-01, 6.7599e-01, 2.1470e-01, 9.4784e-01, + 1.3850e-01, 4.2041e-01, 8.9476e-01, 5.7393e-01, + 8.5383e-01, 2.3294e-01, 9.3112e-01, 1.4895e-02, + 7.9940e-01, 1.4394e-01, 7.5610e-01, 7.5678e-01, + 7.1119e-01, 7.0345e-02, 9.2463e-01, 5.5449e-01, + 2.2250e-01, 7.0462e-02, 1.3814e-01, 7.0456e-01, + 6.8619e-01, 5.0257e-01, 1.3518e-01, 8.3724e-01, + 3.2626e-01, 4.5308e-01, 6.4764e-01, 5.6043e-01, + 1.1045e-01, 7.2989e-01, 3.4674e-01, 6.6224e-02, + 3.6046e-01, 1.9957e-01, 8.2177e-01, 5.4828e-02, + 5.7991e-02, 6.8134e-01, 1.6562e-01, 7.6522e-02, + 2.3683e-01, 7.7761e-01, 7.1370e-01, 4.4629e-01, + 8.3816e-01, 5.1936e-01, 5.6090e-01, 4.0387e-01, + 6.4428e-01, 7.7701e-01, 6.7169e-01, 2.6102e-01, + 7.5529e-03, 5.9419e-01, 7.6740e-01, 3.7976e-01, + 4.2995e-01, 9.5223e-01, 3.4165e-01, 4.6248e-01, + 2.2243e-01, 4.5279e-01, 4.3565e-01, 6.6677e-01, + 6.2478e-01, 4.4391e-01, 7.1044e-01, 5.8594e-01, + 1.8528e-01, 3.9540e-01, 7.3149e-01, 8.0810e-01, + 4.1755e-01, 3.1698e-01, 1.5593e-01, 4.5307e-02, + 1.7898e-01, 1.2264e-01, 5.7366e-01, 8.9976e-02, + 9.5322e-01, 6.5297e-01, 1.6100e-01, 3.2706e-01, + 1.5637e-01, 2.2980e-01, 7.5639e-01, 3.9695e-01, + 4.5194e-01, 8.5862e-01, 4.7966e-01, 1.6712e-01, + 2.8354e-01, 8.5715e-01, 8.2491e-01, 9.3895e-01, + 6.2207e-01, 7.4772e-01, 6.8222e-01, 7.8302e-01, + 3.6293e-01, 9.3747e-01, 4.3535e-01, 3.2649e-01, + 1.2576e-01, 6.7395e-01, 3.8755e-01, 7.3431e-03, + 5.8672e-01, 1.7514e-01, 6.2576e-02, 4.2600e-01, + 8.4353e-01, 4.4830e-01, 4.2652e-01, 3.4003e-01, + 5.6530e-01, 5.0825e-01, 6.3458e-01, 6.3771e-01, + 5.3740e-01, 6.0430e-01, 5.2080e-01, 8.9504e-01, + 8.5600e-01, 9.5176e-01, 1.4018e-02, 8.8048e-01, + 8.5488e-01, 3.8407e-01, 7.3008e-01, 8.9626e-01, + 9.8292e-01, 3.1930e-01, 2.7730e-01, 6.6716e-02, + 1.1928e-01, 3.4153e-01, 4.5995e-02, 6.9950e-01, + 6.8140e-01, 7.1533e-01, 7.6891e-01, 1.3632e-01, + 8.5117e-01, 1.3578e-01, 2.1992e-01, 5.9821e-01, + 6.4608e-01, 4.2725e-01, 2.6707e-01, 5.4533e-01, + 5.1069e-01, 4.1512e-01, 7.8236e-01, 6.3547e-01, + 3.3141e-01, 8.3363e-01, 3.3275e-01, 9.7171e-01, + 3.5198e-01, 3.2371e-01, 5.9398e-01, 4.4829e-01, + 1.6692e-01, 1.2956e-01, 4.9761e-01, 1.4321e-01, + 5.6927e-01, 3.3084e-01, 8.5313e-01, 1.4241e-02, + 1.6810e-01, 6.1849e-01, 5.3128e-01, 3.1383e-01, + 8.0268e-01, 8.3374e-01, 5.7558e-01, 9.4233e-01, + 8.0228e-02, 3.9858e-01, 2.0918e-01, 9.6143e-01, + 1.9960e-01, 3.6105e-01, 7.1222e-01, 2.0743e-01, + 8.8267e-01, 8.0173e-01, 7.1956e-01, 7.6413e-01, + 1.1618e-01, 5.6266e-01, 7.1777e-01, 2.1787e-01, + 3.1249e-01, 1.1366e-01, 7.2133e-01, 5.0897e-01, + 7.7747e-01, 5.1124e-01, 2.3964e-02, 1.7601e-01, + 5.2421e-01, 4.7343e-01, 4.1193e-01, 5.0398e-02, + 9.4604e-01, 4.4435e-01, 8.4770e-01, 8.0073e-01, + 8.2843e-01, 8.4026e-01, 9.5200e-03, 5.5657e-01, + 1.1322e-01, 9.5564e-01, 2.7161e-01, 4.7624e-01, + 5.9371e-01, 5.1445e-01, 9.1385e-01, 7.6815e-01, + 7.7340e-01, 2.4805e-01, 3.4765e-01, 6.3520e-01, + 4.1396e-01, 6.5529e-01, 6.4127e-01, 9.8354e-01, + 9.7802e-01, 9.5844e-02, 2.3629e-01, 2.5244e-02, + 5.8430e-01, 7.2587e-01, 3.9399e-01, 6.5657e-01, + 2.2602e-01, 1.5947e-01, 1.2436e-01, 2.3184e-02, + 4.0334e-01, 3.3395e-01, 7.9580e-01, 9.0331e-01, + 1.4314e-01, 3.6350e-01, 9.8742e-01, 3.9153e-01, + 5.7572e-01, 8.9712e-01, 6.8108e-02, 3.4880e-01, + 6.9105e-02, 9.5150e-01, 1.5018e-01, 7.4890e-01, + 9.4472e-01, 1.9367e-02, 3.8256e-02, 7.8180e-02, + 3.9791e-01, 6.8360e-01, 2.8489e-01, 6.6300e-01, + 8.7842e-02, 9.8383e-01, 9.0831e-01, 9.7155e-02, + 1.2693e-01, 8.7860e-01, 2.6256e-02, 5.6248e-01, + 6.7185e-02, 8.0618e-01, 5.5146e-01, 2.3212e-01, + 6.5006e-01, 5.1569e-01, 7.5629e-01, 5.0736e-01, + 8.6644e-01, 3.2805e-01, 2.3392e-01, 6.9532e-01, + 6.4069e-02, 8.0766e-01, 4.8519e-02, 9.4545e-01, + 9.2322e-01, 9.4059e-01, 8.8406e-01, 1.4705e-01, + 2.0696e-01, 6.4209e-01, 1.7211e-01, 7.7366e-01, + 8.8312e-01, 4.1724e-01, 5.9560e-01, 1.0047e-02, + 8.0776e-01, 8.5045e-01, 2.7704e-02, 2.9548e-01, + 8.7383e-01, 1.2672e-01, 6.2008e-01, 7.8048e-01, + 5.4722e-01, 3.7268e-02, 7.6316e-01, 5.4004e-01, + 8.2708e-01, 7.7993e-01, 5.1032e-01, 5.7951e-01, + 6.7007e-01, 6.9343e-01, 9.1925e-01, 4.3266e-01, + 8.2137e-01, 9.5167e-01, 1.3972e-01, 5.4549e-01, + 9.6649e-01, 4.2568e-01, 3.9725e-01, 3.5461e-01, + 7.7180e-01, 7.2418e-01, 7.8794e-01, 8.7493e-01, + 6.5834e-01, 9.4314e-01, 7.9979e-01, 6.5380e-01, + 3.7019e-01, 8.1362e-01, 6.5310e-01, 5.5138e-01, + 4.2526e-02, 9.5295e-01, 6.3106e-01, 6.6372e-01, + 6.5914e-01, 2.1948e-01, 6.8732e-01, 6.8666e-01, + 2.3578e-01, 6.7994e-01, 9.0510e-01, 8.3924e-01, + 4.9513e-01, 2.9955e-01, 1.8215e-02, 9.1885e-01, + 1.7408e-01, 1.8051e-01, 2.2848e-01, 6.6964e-02, + 3.9377e-01, 4.2686e-02, 1.3510e-01, 5.1147e-01, + 1.7646e-01, 6.7097e-01, 1.5327e-01, 8.9006e-01, + 2.5804e-01, 6.4589e-01, 4.3026e-01, 8.9192e-01, + 5.0256e-01, 5.1282e-01, 4.1308e-01, 2.4295e-01, + 3.1734e-02, 3.6877e-02, 2.2299e-02, 2.9965e-01, + 2.9078e-01, 3.8183e-01, 5.2222e-01, 5.7421e-01, + 1.1717e-01, 6.3181e-01, 5.8114e-01, 7.2116e-01, + 4.4703e-01, 4.2801e-01, 9.0478e-01, 3.9503e-01, + 1.8289e-01, 9.8264e-01, 7.7652e-01, 8.1865e-01, + 4.5727e-01, 3.9744e-01, 7.5562e-01, 1.2155e-01, + 9.7382e-02, 2.0197e-01, 4.8545e-01, 9.4925e-01, + 2.6545e-01, 3.5580e-01, 3.0269e-01, 1.1651e-02, + 4.1913e-01, 8.4954e-01, 1.1003e-01, 7.3324e-01, + 3.0650e-02, 8.6838e-01, 4.9323e-01, 8.1522e-01, + 3.4304e-01, 3.0905e-01, 3.9779e-01, 5.7834e-01, + 5.1821e-01, 5.0984e-01, 7.4684e-01, 5.0277e-01, + 5.7314e-01, 2.2013e-02, 1.2640e-01, 1.2089e-01, + 9.0576e-01, 5.1526e-01, 8.2341e-01, 1.4643e-02, + 9.2647e-01, 1.3228e-01, 6.2683e-01, 7.8975e-01, + 4.4056e-01, 5.0657e-01, 4.9976e-01, 2.1161e-01, + 5.5244e-01, 3.4723e-01, 2.1648e-01, 5.6745e-01, + 2.5556e-01, 8.8321e-03, 1.0900e-02, 2.1680e-01, + 8.8063e-01, 9.1328e-01, 3.2536e-02, 4.9694e-01, + 2.7345e-01, 7.4327e-01, 7.2809e-01, 6.6353e-01, + 5.3136e-01, 7.5753e-01, 4.8998e-01, 7.1511e-01, + 7.0253e-01, 6.4707e-01, 3.7836e-02, 7.7134e-01, + 1.5308e-02, 2.6444e-01, 4.6545e-01, 1.3966e-01, + 9.6812e-01, 3.7718e-01, 9.6591e-01, 4.2873e-01, + 7.8220e-01, 3.8017e-01, 3.5602e-01, 4.0939e-01, + 7.6208e-01, 1.8022e-01, 5.5876e-02, 6.7166e-01, + 3.8980e-01, 7.0437e-01, 9.9344e-01, 5.9567e-01, + 6.1296e-01, 8.9698e-01, 9.1062e-01, 9.2650e-01, + 9.1190e-01, 8.9253e-01, 4.9180e-01, 7.4096e-01, + 2.4088e-01, 1.0479e-01, 7.7261e-01, 4.3386e-01, + 3.9329e-01, 5.4304e-01, 3.6663e-01, 8.5654e-02, + 9.5144e-01, 1.5547e-01, 7.8376e-01, 1.1481e-01, + 5.2874e-01, 4.6678e-02, 1.6680e-01, 9.6803e-01, + 8.3213e-01, 5.9813e-01, 7.0737e-01, 8.3350e-01, + 3.7380e-01, 4.4355e-01, 8.7051e-01, 5.7225e-01, + 4.9317e-01, 3.6354e-01, 9.2835e-01, 5.9679e-01, + 1.3281e-01, 2.1930e-01, 7.9322e-01, 3.0523e-01, + 5.8165e-01, 7.5390e-01, 1.2114e-01, 5.3411e-02, + 4.1585e-01, 9.6187e-01, 4.2424e-01, 1.3533e-01, + 3.7712e-01, 1.8261e-01, 6.8088e-01, 1.8639e-01, + 5.1967e-01, 8.0666e-01, 5.0981e-01, 9.7923e-02, + 1.7373e-02, 5.5994e-01, 3.3362e-01, 2.4293e-01, + 1.6934e-01, 2.2530e-01, 9.7352e-01, 4.9510e-01, + 2.1393e-01, 5.8022e-01, 3.8276e-02, 8.7272e-02, + 6.8543e-01, 3.2756e-02, 5.6718e-01, 3.9117e-01, + 9.7834e-01, 6.5395e-01, 8.5529e-01, 4.8972e-01, + 1.9190e-01, 1.9049e-01, 4.8019e-01, 7.2147e-01, + 1.2100e-01, 3.2180e-01, 5.1040e-03, 7.9651e-01, + 2.7309e-01, 6.6645e-01, 2.9896e-01, 5.1748e-01, + 6.1241e-01, 5.6827e-01, 5.9954e-01, 6.7815e-01, + 6.2197e-01, 1.1702e-01, 4.1684e-01, 7.0624e-01, + 7.6888e-01, 6.1216e-01, 1.1353e-01, 9.6720e-01, + 1.2108e-01, 5.9995e-01, 1.8773e-01, 2.3973e-01, + 5.9648e-01, 1.6246e-01, 6.1599e-02, 3.9480e-01, + 5.0531e-01, 9.9736e-01, 2.5833e-01, 8.2165e-01, + 5.5800e-01, 6.4798e-01, 9.0038e-01, 9.9833e-01, + 9.2312e-01, 2.6677e-01, 6.5352e-01, 4.6482e-01, + 1.2201e-01, 6.7988e-01, 2.7359e-01, 5.8169e-01, + 8.4593e-01, 2.9999e-01, 1.1410e-01, 3.6589e-01, + 6.5950e-01, 8.4661e-01, 3.7005e-01, 6.3599e-01, + 8.8603e-01, 4.0464e-01, 1.8286e-01, 5.2775e-02, + 8.4989e-01, 3.3061e-01, 8.2236e-01, 4.3585e-01, + 7.4979e-01, 8.1839e-01, 2.9331e-01, 7.1902e-02, + 8.5449e-01, 2.4751e-01, 7.1396e-02, 1.2001e-01, + 9.4854e-01, 6.6576e-01, 9.7865e-01, 1.0903e-01, + 5.1127e-01, 1.3729e-01, 4.3680e-01, 9.3247e-01, + 5.1767e-01, 3.0724e-02, 8.0497e-02, 6.4769e-02, + 7.6391e-01, 2.0889e-02, 4.1965e-01, 9.0319e-01, + 4.3557e-01, 9.5238e-01, 4.0303e-02, 3.6623e-01, + 3.2743e-01, 1.2845e-01, 6.4784e-01, 8.7231e-01, + 6.8798e-01, 3.1354e-01, 5.3644e-01, 9.6932e-01, + 1.7454e-01, 2.1021e-01, 1.4568e-01, 8.3907e-01, + 6.2260e-01, 9.3888e-01, 3.9588e-01, 8.7395e-01, + 5.9658e-01, 9.8182e-02, 5.6640e-01, 6.3829e-02, + 6.9286e-01, 7.5561e-01, 1.5461e-01, 3.7725e-02, + 1.9831e-01, 2.6020e-01, 8.3708e-01, 1.0480e-01, + 9.0558e-01, 6.1646e-01, 7.0305e-01, 1.9392e-01, + 4.0235e-01, 2.5149e-02, 9.1578e-02, 5.7882e-01, + 2.5579e-01, 4.0794e-02, 7.2276e-01, 1.6891e-01, + 2.5039e-01, 9.9730e-01, 7.8170e-01, 6.1608e-01, + 7.7103e-01, 2.5630e-01, 1.4927e-01, 2.7998e-01, + 3.0817e-01, 7.3242e-02, 1.2753e-01, 4.1496e-01, + 5.8219e-01, 5.8755e-01, 9.8146e-01, 6.2375e-01, + 8.5660e-01, 2.1402e-01, 5.1545e-01, 1.2679e-01, + 3.2732e-01, 1.7006e-01, 4.3828e-01, 1.6170e-01, + 1.0399e-01, 5.3933e-01, 7.8541e-01, 1.1931e-01, + 1.5504e-01, 7.8948e-01, 1.5878e-01, 7.4734e-01, + 2.3345e-01, 2.3097e-01, 1.4671e-01, 3.7307e-01, + 8.0431e-01, 4.5794e-01, 9.2994e-01, 8.9926e-01, + 8.4547e-01, 5.0121e-02, 7.2131e-01, 6.2424e-01, + 6.3904e-01, 4.3546e-01, 8.0833e-01, 4.9642e-01, + 5.7037e-01, 3.9698e-01, 4.3301e-02, 4.0795e-01, + 6.9428e-01, 9.9629e-01, 9.0683e-01, 5.4597e-01, + 5.7624e-01, 9.9789e-01, 2.4283e-01, 5.9102e-01, + 3.8101e-01, 7.2091e-03, 6.9826e-01, 6.1377e-01, + 6.0709e-01, 4.9390e-01, 6.1114e-01, 7.2574e-01, + 8.2221e-01, 5.4550e-01, 3.0011e-01, 4.4517e-01, + 4.5758e-02, 4.6015e-01, 3.4893e-02, 2.0905e-01, + 7.1053e-01, 8.6429e-01, 1.4344e-01, 5.8718e-01, + 1.3326e-01, 6.4655e-01, 1.7744e-01, 7.3568e-01, + 4.4107e-01, 3.5360e-01, 7.8895e-01, 1.3426e-02, + 2.5589e-01, 8.9759e-01, 1.8598e-01, 1.1031e-01, + 6.4082e-02, 1.4471e-01, 6.4713e-01, 5.3510e-01, + 3.5916e-01, 2.3596e-01, 3.7914e-01, 4.5283e-01, + 4.0277e-01, 8.3793e-01, 3.6913e-01, 8.0491e-01, + 8.0560e-01, 8.3787e-01, 3.2988e-01, 2.7062e-01, + 5.2644e-01, 8.0191e-01, 3.0417e-01, 8.0992e-01, + 3.7054e-01, 6.5171e-01, 8.9851e-01, 7.9938e-01, + 7.9593e-01, 4.1200e-01, 7.2346e-01, 8.8886e-01, + 7.7392e-01, 3.0164e-01, 4.8903e-01, 7.0959e-01, + 2.3055e-04, 5.5567e-01, 3.2476e-02, 4.6940e-01, + 9.5992e-01, 3.3002e-01, 1.9968e-01, 3.6916e-01, + 9.3384e-01, 4.4547e-01, 8.4545e-01, 7.0652e-01, + 2.5484e-01, 6.6093e-01, 1.0142e-01, 4.0036e-01, + 8.8027e-02, 7.0693e-01, 6.1292e-01, 3.5279e-02, + 1.6464e-01, 7.4166e-01, 7.4512e-01, 3.1187e-01, + 9.3827e-01, 8.1291e-01, 6.8774e-01, 1.6535e-01, + 8.2353e-01, 4.4462e-01, 6.2390e-01, 2.5665e-01, + 2.4823e-01, 6.5084e-01, 2.8892e-01, 8.3557e-01, + 2.6616e-01, 8.8256e-01, 3.9677e-01, 7.0336e-01, + 8.3626e-01, 8.4230e-01, 1.2696e-01, 5.4260e-01, + 4.5014e-01, 1.2684e-01, 4.1101e-01, 4.8496e-01, + 7.6136e-01, 5.3988e-01, 4.7573e-01, 1.6785e-01, + 8.8662e-01, 6.3235e-01, 2.9589e-01, 2.8836e-01, + 9.5162e-01, 5.4258e-01, 2.7719e-01, 7.2819e-01, + 4.5646e-02, 7.4687e-01, 6.9970e-01, 6.6663e-01, + 4.4353e-01, 9.2703e-01, 1.7143e-01, 9.9752e-01, + 1.6120e-01, 9.1760e-02, 7.4539e-02, 6.2124e-01, + 3.9172e-01, 8.8093e-01, 8.8278e-01, 9.1996e-01, + 9.9713e-01, 4.7916e-01, 8.6919e-01, 9.8249e-01, + 8.6668e-01, 3.9161e-01, 6.4609e-01, 5.0516e-01, + 6.3812e-02, 4.1956e-01, 4.4304e-01, 5.3391e-01, + 9.4156e-01, 4.0458e-01, 2.9747e-01, 1.0297e-01, + 2.1881e-01, 5.0346e-01, 5.5620e-01, 1.2242e-01, + 9.4646e-01, 4.2415e-01, 1.2648e-01, 8.3879e-01, + 2.1895e-01, 7.2594e-01, 9.5334e-01, 4.1030e-01, + 6.5805e-01, 6.1371e-01, 6.3829e-01, 6.4855e-01, + 1.9689e-01, 7.6433e-01, 1.4868e-01, 1.2936e-01, + 1.2645e-01, 8.9930e-01, 1.6824e-01, 9.4670e-01, + 4.8028e-01, 6.9663e-01, 4.2572e-01, 8.7528e-01, + 8.1359e-02, 9.6745e-01, 2.7830e-01, 7.5427e-01, + 5.4086e-02, 9.3150e-01, 6.8940e-01, 8.9446e-01, + 4.2269e-01, 1.5823e-02, 6.6296e-01, 8.5098e-01, + 8.8125e-01, 8.8539e-01, 6.4149e-01, 9.0541e-01, + 8.6570e-01, 1.9544e-01, 4.7643e-01, 8.5814e-01]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.3920, 0.2913, 0.8672, ..., 0.9245, 0.8812, 0.1957]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 10.585279941558838 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), + col_indices=tensor([7943, 4488, 6154, 9391, 155, 1146, 4006, 8134, 8781, + 7101, 3276, 7191, 9320, 2859, 4578, 2750, 6596, 4201, + 2541, 6640, 9961, 1286, 5879, 9740, 3536, 2151, 9582, + 2021, 7827, 8693, 2313, 555, 3377, 7363, 334, 2888, + 9782, 3162, 5677, 4519, 3889, 4828, 247, 2616, 279, + 8565, 2538, 9525, 8485, 2616, 1166, 2089, 7055, 6468, + 9499, 1310, 5525, 2540, 8419, 935, 4661, 2785, 1947, + 1602, 2918, 4726, 3718, 3716, 5417, 2404, 2572, 1793, + 4269, 7015, 419, 4336, 5223, 1709, 8875, 645, 5198, + 3752, 5677, 5777, 9470, 6191, 7729, 3008, 6984, 7165, + 5063, 8482, 7789, 9298, 6624, 3445, 4654, 5489, 7051, + 2026, 5766, 3319, 8576, 4863, 735, 6400, 8243, 4596, + 9136, 5453, 8094, 6731, 4592, 6080, 2446, 2152, 9189, + 7168, 5575, 8736, 8708, 188, 2747, 5830, 9269, 8804, + 3159, 3201, 4041, 923, 2727, 2290, 84, 4623, 7603, + 3330, 9268, 1450, 9643, 7491, 1862, 6217, 7622, 6831, + 6030, 2019, 4765, 7685, 3438, 4110, 698, 7237, 1712, + 233, 3041, 9992, 7124, 3242, 6158, 3269, 3219, 7971, + 3346, 2455, 5227, 7583, 1444, 6727, 5034, 2207, 2810, + 6860, 3956, 406, 9630, 4569, 2333, 3303, 790, 9166, + 3001, 9674, 4130, 4005, 9208, 9872, 4115, 1140, 4295, + 1232, 2077, 9451, 8659, 2998, 5331, 5112, 5332, 473, + 2236, 9565, 7574, 3329, 2231, 9436, 1794, 1973, 926, + 9017, 624, 3226, 1901, 9136, 3272, 7061, 4208, 8821, + 7803, 6260, 839, 8051, 1195, 3556, 5978, 2134, 4703, + 5878, 6569, 631, 929, 936, 8619, 2484, 8239, 5928, + 7092, 2988, 7292, 9843, 5609, 7908, 9735, 1868, 8029, + 6880, 8241, 655, 7771, 7115, 4230, 2177, 5561, 519, + 9981, 4448, 1648, 5631, 1203, 3106, 9586, 8781, 334, + 6071, 676, 3, 2908, 206, 7480, 7816, 8182, 3140, + 5100, 6638, 2660, 7295, 3954, 4994, 5905, 5343, 875, + 1395, 1415, 8075, 1833, 8285, 3241, 5726, 82, 7838, + 5658, 9442, 7175, 6495, 1263, 5251, 545, 2259, 5163, + 5212, 9905, 1946, 7828, 3306, 3170, 1189, 5060, 6858, + 3265, 9161, 6049, 6284, 2600, 5696, 1666, 8160, 6654, + 4, 195, 1359, 4960, 8521, 7181, 8865, 7801, 6138, + 5232, 8342, 5270, 6210, 3360, 8441, 1762, 5683, 8982, + 5151, 6181, 2277, 3989, 2354, 7040, 690, 3818, 4654, + 8998, 6989, 7424, 1876, 2235, 6291, 65, 3846, 5433, + 653, 7328, 3161, 7270, 6440, 3854, 9530, 6576, 4282, + 3869, 6253, 5868, 5179, 2108, 4988, 6966, 2124, 1163, + 395, 7769, 5649, 9625, 8844, 7379, 7826, 6877, 1758, + 1205, 3960, 4313, 5313, 7450, 1611, 5494, 6504, 1330, + 5009, 8603, 3204, 8610, 7225, 9811, 5033, 8244, 8927, + 189, 6660, 2530, 5087, 7128, 633, 3653, 9666, 5288, + 7838, 705, 8757, 5051, 3379, 8676, 8102, 6270, 3427, + 6941, 8350, 2853, 3036, 8139, 4125, 9896, 6792, 341, + 7714, 2950, 6057, 9295, 6404, 6582, 9441, 7456, 9260, + 3870, 7429, 9215, 1715, 4911, 3116, 9023, 6965, 8146, + 8742, 1823, 1052, 3129, 7548, 9310, 5087, 6452, 8523, + 4919, 3317, 6285, 4958, 687, 1721, 2711, 1456, 1993, + 7026, 6960, 2734, 8274, 8550, 6512, 5209, 3870, 1135, + 3771, 8488, 5407, 5874, 5804, 1777, 3653, 2911, 182, + 3402, 9157, 8305, 1357, 7109, 8892, 7404, 6887, 1640, + 7537, 1505, 6301, 101, 7157, 9753, 9025, 8408, 1812, + 7187, 7261, 160, 6522, 7459, 3342, 9803, 9988, 543, + 3555, 999, 2319, 3754, 8264, 3371, 3736, 5469, 9452, + 7184, 2203, 820, 9411, 4278, 4780, 9218, 1947, 3157, + 2226, 4652, 8669, 5426, 7683, 880, 435, 2033, 9292, + 2455, 4770, 2217, 699, 7572, 3934, 5467, 6026, 7062, + 2922, 2864, 4813, 8049, 9857, 6142, 778, 3565, 3686, + 9116, 2737, 9009, 4447, 2474, 971, 265, 2434, 9165, + 1954, 5853, 4055, 4843, 127, 3125, 509, 2432, 6008, + 5150, 4816, 6842, 9257, 576, 5248, 3779, 6206, 9344, + 9008, 721, 1354, 447, 2489, 5014, 7789, 6532, 232, + 5436, 9948, 4343, 3831, 8334, 5048, 6427, 6482, 9779, + 6169, 9153, 4649, 9096, 6309, 9662, 269, 4722, 5201, + 401, 5744, 3228, 8446, 3133, 3731, 7468, 4532, 1166, + 5876, 2482, 2630, 5613, 1887, 4482, 2576, 2771, 7606, + 4597, 89, 5559, 9787, 1481, 5290, 3655, 322, 166, + 8009, 1493, 7027, 2850, 2006, 4514, 2168, 2174, 9048, + 1786, 4139, 406, 6480, 917, 9722, 7578, 9741, 4917, + 2992, 1489, 1747, 4978, 7936, 2582, 5507, 1532, 5524, + 7826, 3449, 10, 9159, 7860, 3540, 198, 862, 5753, + 3470, 8359, 7581, 3144, 3079, 6434, 7746, 2607, 9147, + 7397, 201, 8081, 4846, 4284, 699, 9972, 9537, 8613, + 9875, 2782, 4871, 244, 9191, 1131, 2811, 1247, 3144, + 8178, 3501, 9452, 4821, 5343, 3, 5004, 5736, 6936, + 7862, 3290, 3383, 5283, 3840, 9625, 5012, 4121, 8759, + 8619, 3041, 5033, 1753, 6166, 6909, 1428, 1761, 1897, + 5070, 6012, 1241, 5625, 8016, 7656, 2936, 7895, 6288, + 9171, 2385, 2390, 2228, 8525, 8334, 9316, 4166, 6851, + 6776, 8997, 5468, 5982, 840, 3981, 4943, 5782, 8333, + 8121, 5911, 8729, 9039, 537, 2752, 6485, 3047, 283, + 5307, 7386, 1100, 7487, 5842, 6557, 5254, 4333, 415, + 9591, 1641, 2548, 8771, 2243, 6011, 7901, 3548, 8089, + 8958, 3344, 8858, 702, 9886, 5874, 7708, 7200, 4618, + 4778, 5665, 4614, 8010, 7456, 3047, 9039, 2044, 9926, + 4002, 1862, 2650, 9698, 4716, 2451, 6247, 8897, 4989, + 8623, 9464, 5599, 7310, 740, 1061, 6357, 3766, 5965, + 4638, 6114, 5529, 2164, 1494, 5729, 4627, 3348, 8109, + 5015, 7896, 3749, 213, 7180, 2156, 7644, 3374, 8920, + 2280, 4385, 5660, 4940, 7376, 6062, 7689, 6701, 3982, + 6731, 4335, 5363, 6281, 7290, 491, 3312, 4385, 9124, + 2888, 314, 2496, 8388, 360, 7969, 9150, 4336, 3714, + 7446, 7899, 6546, 956, 3288, 4036, 5808, 9141, 1394, + 7843, 7906, 1832, 9783, 5676, 1090, 40, 4659, 3502, + 84, 6161, 2144, 5947, 2349, 4766, 6358, 2005, 8455, + 7173, 7646, 4290, 8339, 7908, 943, 4131, 6672, 9870, + 4086, 6590, 205, 6057, 8733, 8600, 2315, 9854, 949, + 6942, 3555, 4782, 9913, 2335, 3741, 105, 9676, 829, + 4513, 5377, 7160, 7815, 5725, 4449, 7984, 7022, 9075, + 2973, 7234, 3301, 4106, 1057, 2796, 5400, 9826, 9608, + 1399, 3273, 7886, 5410, 8781, 1618, 8921, 750, 6541, + 313, 693, 2706, 9062, 82, 1001, 7170, 1044, 8082, + 5581, 7140, 949, 2283, 1698, 7268, 3598, 2618, 7101, + 917, 6363, 1607, 9830, 8474, 3927, 7297, 5514, 3427, + 8343, 6039, 3891, 1347, 5609, 7, 7597, 7807, 2355, + 5270, 382, 5935, 7213, 1197, 9647, 3059, 1828, 1291, + 5826, 9873, 5640, 2784, 8784, 1051, 644, 8752, 810, + 4403, 4357, 4219, 1880, 6353, 2009, 6795, 232, 4527, + 4898]), + values=tensor([1.4008e-01, 7.3938e-01, 7.6639e-01, 5.0164e-01, + 1.7486e-01, 3.2598e-01, 5.6159e-01, 5.5178e-01, + 5.7399e-01, 3.9297e-01, 4.2201e-01, 2.1666e-01, + 8.8345e-04, 9.6154e-01, 8.3073e-01, 6.5757e-01, + 1.6074e-01, 7.8577e-01, 9.7772e-01, 1.0075e-01, + 2.5921e-01, 7.4860e-01, 1.8867e-01, 8.9320e-01, + 8.3174e-01, 6.0226e-01, 1.7683e-01, 3.6553e-01, + 5.7124e-01, 2.0441e-01, 6.4951e-01, 7.0821e-01, + 3.7566e-01, 8.9297e-01, 9.1514e-01, 6.5969e-01, + 2.0172e-01, 6.7599e-01, 2.1470e-01, 9.4784e-01, + 1.3850e-01, 4.2041e-01, 8.9476e-01, 5.7393e-01, + 8.5383e-01, 2.3294e-01, 9.3112e-01, 1.4895e-02, + 7.9940e-01, 1.4394e-01, 7.5610e-01, 7.5678e-01, + 7.1119e-01, 7.0345e-02, 9.2463e-01, 5.5449e-01, + 2.2250e-01, 7.0462e-02, 1.3814e-01, 7.0456e-01, + 6.8619e-01, 5.0257e-01, 1.3518e-01, 8.3724e-01, + 3.2626e-01, 4.5308e-01, 6.4764e-01, 5.6043e-01, + 1.1045e-01, 7.2989e-01, 3.4674e-01, 6.6224e-02, + 3.6046e-01, 1.9957e-01, 8.2177e-01, 5.4828e-02, + 5.7991e-02, 6.8134e-01, 1.6562e-01, 7.6522e-02, + 2.3683e-01, 7.7761e-01, 7.1370e-01, 4.4629e-01, + 8.3816e-01, 5.1936e-01, 5.6090e-01, 4.0387e-01, + 6.4428e-01, 7.7701e-01, 6.7169e-01, 2.6102e-01, + 7.5529e-03, 5.9419e-01, 7.6740e-01, 3.7976e-01, + 4.2995e-01, 9.5223e-01, 3.4165e-01, 4.6248e-01, + 2.2243e-01, 4.5279e-01, 4.3565e-01, 6.6677e-01, + 6.2478e-01, 4.4391e-01, 7.1044e-01, 5.8594e-01, + 1.8528e-01, 3.9540e-01, 7.3149e-01, 8.0810e-01, + 4.1755e-01, 3.1698e-01, 1.5593e-01, 4.5307e-02, + 1.7898e-01, 1.2264e-01, 5.7366e-01, 8.9976e-02, + 9.5322e-01, 6.5297e-01, 1.6100e-01, 3.2706e-01, + 1.5637e-01, 2.2980e-01, 7.5639e-01, 3.9695e-01, + 4.5194e-01, 8.5862e-01, 4.7966e-01, 1.6712e-01, + 2.8354e-01, 8.5715e-01, 8.2491e-01, 9.3895e-01, + 6.2207e-01, 7.4772e-01, 6.8222e-01, 7.8302e-01, + 3.6293e-01, 9.3747e-01, 4.3535e-01, 3.2649e-01, + 1.2576e-01, 6.7395e-01, 3.8755e-01, 7.3431e-03, + 5.8672e-01, 1.7514e-01, 6.2576e-02, 4.2600e-01, + 8.4353e-01, 4.4830e-01, 4.2652e-01, 3.4003e-01, + 5.6530e-01, 5.0825e-01, 6.3458e-01, 6.3771e-01, + 5.3740e-01, 6.0430e-01, 5.2080e-01, 8.9504e-01, + 8.5600e-01, 9.5176e-01, 1.4018e-02, 8.8048e-01, + 8.5488e-01, 3.8407e-01, 7.3008e-01, 8.9626e-01, + 9.8292e-01, 3.1930e-01, 2.7730e-01, 6.6716e-02, + 1.1928e-01, 3.4153e-01, 4.5995e-02, 6.9950e-01, + 6.8140e-01, 7.1533e-01, 7.6891e-01, 1.3632e-01, + 8.5117e-01, 1.3578e-01, 2.1992e-01, 5.9821e-01, + 6.4608e-01, 4.2725e-01, 2.6707e-01, 5.4533e-01, + 5.1069e-01, 4.1512e-01, 7.8236e-01, 6.3547e-01, + 3.3141e-01, 8.3363e-01, 3.3275e-01, 9.7171e-01, + 3.5198e-01, 3.2371e-01, 5.9398e-01, 4.4829e-01, + 1.6692e-01, 1.2956e-01, 4.9761e-01, 1.4321e-01, + 5.6927e-01, 3.3084e-01, 8.5313e-01, 1.4241e-02, + 1.6810e-01, 6.1849e-01, 5.3128e-01, 3.1383e-01, + 8.0268e-01, 8.3374e-01, 5.7558e-01, 9.4233e-01, + 8.0228e-02, 3.9858e-01, 2.0918e-01, 9.6143e-01, + 1.9960e-01, 3.6105e-01, 7.1222e-01, 2.0743e-01, + 8.8267e-01, 8.0173e-01, 7.1956e-01, 7.6413e-01, + 1.1618e-01, 5.6266e-01, 7.1777e-01, 2.1787e-01, + 3.1249e-01, 1.1366e-01, 7.2133e-01, 5.0897e-01, + 7.7747e-01, 5.1124e-01, 2.3964e-02, 1.7601e-01, + 5.2421e-01, 4.7343e-01, 4.1193e-01, 5.0398e-02, + 9.4604e-01, 4.4435e-01, 8.4770e-01, 8.0073e-01, + 8.2843e-01, 8.4026e-01, 9.5200e-03, 5.5657e-01, + 1.1322e-01, 9.5564e-01, 2.7161e-01, 4.7624e-01, + 5.9371e-01, 5.1445e-01, 9.1385e-01, 7.6815e-01, + 7.7340e-01, 2.4805e-01, 3.4765e-01, 6.3520e-01, + 4.1396e-01, 6.5529e-01, 6.4127e-01, 9.8354e-01, + 9.7802e-01, 9.5844e-02, 2.3629e-01, 2.5244e-02, + 5.8430e-01, 7.2587e-01, 3.9399e-01, 6.5657e-01, + 2.2602e-01, 1.5947e-01, 1.2436e-01, 2.3184e-02, + 4.0334e-01, 3.3395e-01, 7.9580e-01, 9.0331e-01, + 1.4314e-01, 3.6350e-01, 9.8742e-01, 3.9153e-01, + 5.7572e-01, 8.9712e-01, 6.8108e-02, 3.4880e-01, + 6.9105e-02, 9.5150e-01, 1.5018e-01, 7.4890e-01, + 9.4472e-01, 1.9367e-02, 3.8256e-02, 7.8180e-02, + 3.9791e-01, 6.8360e-01, 2.8489e-01, 6.6300e-01, + 8.7842e-02, 9.8383e-01, 9.0831e-01, 9.7155e-02, + 1.2693e-01, 8.7860e-01, 2.6256e-02, 5.6248e-01, + 6.7185e-02, 8.0618e-01, 5.5146e-01, 2.3212e-01, + 6.5006e-01, 5.1569e-01, 7.5629e-01, 5.0736e-01, + 8.6644e-01, 3.2805e-01, 2.3392e-01, 6.9532e-01, + 6.4069e-02, 8.0766e-01, 4.8519e-02, 9.4545e-01, + 9.2322e-01, 9.4059e-01, 8.8406e-01, 1.4705e-01, + 2.0696e-01, 6.4209e-01, 1.7211e-01, 7.7366e-01, + 8.8312e-01, 4.1724e-01, 5.9560e-01, 1.0047e-02, + 8.0776e-01, 8.5045e-01, 2.7704e-02, 2.9548e-01, + 8.7383e-01, 1.2672e-01, 6.2008e-01, 7.8048e-01, + 5.4722e-01, 3.7268e-02, 7.6316e-01, 5.4004e-01, + 8.2708e-01, 7.7993e-01, 5.1032e-01, 5.7951e-01, + 6.7007e-01, 6.9343e-01, 9.1925e-01, 4.3266e-01, + 8.2137e-01, 9.5167e-01, 1.3972e-01, 5.4549e-01, + 9.6649e-01, 4.2568e-01, 3.9725e-01, 3.5461e-01, + 7.7180e-01, 7.2418e-01, 7.8794e-01, 8.7493e-01, + 6.5834e-01, 9.4314e-01, 7.9979e-01, 6.5380e-01, + 3.7019e-01, 8.1362e-01, 6.5310e-01, 5.5138e-01, + 4.2526e-02, 9.5295e-01, 6.3106e-01, 6.6372e-01, + 6.5914e-01, 2.1948e-01, 6.8732e-01, 6.8666e-01, + 2.3578e-01, 6.7994e-01, 9.0510e-01, 8.3924e-01, + 4.9513e-01, 2.9955e-01, 1.8215e-02, 9.1885e-01, + 1.7408e-01, 1.8051e-01, 2.2848e-01, 6.6964e-02, + 3.9377e-01, 4.2686e-02, 1.3510e-01, 5.1147e-01, + 1.7646e-01, 6.7097e-01, 1.5327e-01, 8.9006e-01, + 2.5804e-01, 6.4589e-01, 4.3026e-01, 8.9192e-01, + 5.0256e-01, 5.1282e-01, 4.1308e-01, 2.4295e-01, + 3.1734e-02, 3.6877e-02, 2.2299e-02, 2.9965e-01, + 2.9078e-01, 3.8183e-01, 5.2222e-01, 5.7421e-01, + 1.1717e-01, 6.3181e-01, 5.8114e-01, 7.2116e-01, + 4.4703e-01, 4.2801e-01, 9.0478e-01, 3.9503e-01, + 1.8289e-01, 9.8264e-01, 7.7652e-01, 8.1865e-01, + 4.5727e-01, 3.9744e-01, 7.5562e-01, 1.2155e-01, + 9.7382e-02, 2.0197e-01, 4.8545e-01, 9.4925e-01, + 2.6545e-01, 3.5580e-01, 3.0269e-01, 1.1651e-02, + 4.1913e-01, 8.4954e-01, 1.1003e-01, 7.3324e-01, + 3.0650e-02, 8.6838e-01, 4.9323e-01, 8.1522e-01, + 3.4304e-01, 3.0905e-01, 3.9779e-01, 5.7834e-01, + 5.1821e-01, 5.0984e-01, 7.4684e-01, 5.0277e-01, + 5.7314e-01, 2.2013e-02, 1.2640e-01, 1.2089e-01, + 9.0576e-01, 5.1526e-01, 8.2341e-01, 1.4643e-02, + 9.2647e-01, 1.3228e-01, 6.2683e-01, 7.8975e-01, + 4.4056e-01, 5.0657e-01, 4.9976e-01, 2.1161e-01, + 5.5244e-01, 3.4723e-01, 2.1648e-01, 5.6745e-01, + 2.5556e-01, 8.8321e-03, 1.0900e-02, 2.1680e-01, + 8.8063e-01, 9.1328e-01, 3.2536e-02, 4.9694e-01, + 2.7345e-01, 7.4327e-01, 7.2809e-01, 6.6353e-01, + 5.3136e-01, 7.5753e-01, 4.8998e-01, 7.1511e-01, + 7.0253e-01, 6.4707e-01, 3.7836e-02, 7.7134e-01, + 1.5308e-02, 2.6444e-01, 4.6545e-01, 1.3966e-01, + 9.6812e-01, 3.7718e-01, 9.6591e-01, 4.2873e-01, + 7.8220e-01, 3.8017e-01, 3.5602e-01, 4.0939e-01, + 7.6208e-01, 1.8022e-01, 5.5876e-02, 6.7166e-01, + 3.8980e-01, 7.0437e-01, 9.9344e-01, 5.9567e-01, + 6.1296e-01, 8.9698e-01, 9.1062e-01, 9.2650e-01, + 9.1190e-01, 8.9253e-01, 4.9180e-01, 7.4096e-01, + 2.4088e-01, 1.0479e-01, 7.7261e-01, 4.3386e-01, + 3.9329e-01, 5.4304e-01, 3.6663e-01, 8.5654e-02, + 9.5144e-01, 1.5547e-01, 7.8376e-01, 1.1481e-01, + 5.2874e-01, 4.6678e-02, 1.6680e-01, 9.6803e-01, + 8.3213e-01, 5.9813e-01, 7.0737e-01, 8.3350e-01, + 3.7380e-01, 4.4355e-01, 8.7051e-01, 5.7225e-01, + 4.9317e-01, 3.6354e-01, 9.2835e-01, 5.9679e-01, + 1.3281e-01, 2.1930e-01, 7.9322e-01, 3.0523e-01, + 5.8165e-01, 7.5390e-01, 1.2114e-01, 5.3411e-02, + 4.1585e-01, 9.6187e-01, 4.2424e-01, 1.3533e-01, + 3.7712e-01, 1.8261e-01, 6.8088e-01, 1.8639e-01, + 5.1967e-01, 8.0666e-01, 5.0981e-01, 9.7923e-02, + 1.7373e-02, 5.5994e-01, 3.3362e-01, 2.4293e-01, + 1.6934e-01, 2.2530e-01, 9.7352e-01, 4.9510e-01, + 2.1393e-01, 5.8022e-01, 3.8276e-02, 8.7272e-02, + 6.8543e-01, 3.2756e-02, 5.6718e-01, 3.9117e-01, + 9.7834e-01, 6.5395e-01, 8.5529e-01, 4.8972e-01, + 1.9190e-01, 1.9049e-01, 4.8019e-01, 7.2147e-01, + 1.2100e-01, 3.2180e-01, 5.1040e-03, 7.9651e-01, + 2.7309e-01, 6.6645e-01, 2.9896e-01, 5.1748e-01, + 6.1241e-01, 5.6827e-01, 5.9954e-01, 6.7815e-01, + 6.2197e-01, 1.1702e-01, 4.1684e-01, 7.0624e-01, + 7.6888e-01, 6.1216e-01, 1.1353e-01, 9.6720e-01, + 1.2108e-01, 5.9995e-01, 1.8773e-01, 2.3973e-01, + 5.9648e-01, 1.6246e-01, 6.1599e-02, 3.9480e-01, + 5.0531e-01, 9.9736e-01, 2.5833e-01, 8.2165e-01, + 5.5800e-01, 6.4798e-01, 9.0038e-01, 9.9833e-01, + 9.2312e-01, 2.6677e-01, 6.5352e-01, 4.6482e-01, + 1.2201e-01, 6.7988e-01, 2.7359e-01, 5.8169e-01, + 8.4593e-01, 2.9999e-01, 1.1410e-01, 3.6589e-01, + 6.5950e-01, 8.4661e-01, 3.7005e-01, 6.3599e-01, + 8.8603e-01, 4.0464e-01, 1.8286e-01, 5.2775e-02, + 8.4989e-01, 3.3061e-01, 8.2236e-01, 4.3585e-01, + 7.4979e-01, 8.1839e-01, 2.9331e-01, 7.1902e-02, + 8.5449e-01, 2.4751e-01, 7.1396e-02, 1.2001e-01, + 9.4854e-01, 6.6576e-01, 9.7865e-01, 1.0903e-01, + 5.1127e-01, 1.3729e-01, 4.3680e-01, 9.3247e-01, + 5.1767e-01, 3.0724e-02, 8.0497e-02, 6.4769e-02, + 7.6391e-01, 2.0889e-02, 4.1965e-01, 9.0319e-01, + 4.3557e-01, 9.5238e-01, 4.0303e-02, 3.6623e-01, + 3.2743e-01, 1.2845e-01, 6.4784e-01, 8.7231e-01, + 6.8798e-01, 3.1354e-01, 5.3644e-01, 9.6932e-01, + 1.7454e-01, 2.1021e-01, 1.4568e-01, 8.3907e-01, + 6.2260e-01, 9.3888e-01, 3.9588e-01, 8.7395e-01, + 5.9658e-01, 9.8182e-02, 5.6640e-01, 6.3829e-02, + 6.9286e-01, 7.5561e-01, 1.5461e-01, 3.7725e-02, + 1.9831e-01, 2.6020e-01, 8.3708e-01, 1.0480e-01, + 9.0558e-01, 6.1646e-01, 7.0305e-01, 1.9392e-01, + 4.0235e-01, 2.5149e-02, 9.1578e-02, 5.7882e-01, + 2.5579e-01, 4.0794e-02, 7.2276e-01, 1.6891e-01, + 2.5039e-01, 9.9730e-01, 7.8170e-01, 6.1608e-01, + 7.7103e-01, 2.5630e-01, 1.4927e-01, 2.7998e-01, + 3.0817e-01, 7.3242e-02, 1.2753e-01, 4.1496e-01, + 5.8219e-01, 5.8755e-01, 9.8146e-01, 6.2375e-01, + 8.5660e-01, 2.1402e-01, 5.1545e-01, 1.2679e-01, + 3.2732e-01, 1.7006e-01, 4.3828e-01, 1.6170e-01, + 1.0399e-01, 5.3933e-01, 7.8541e-01, 1.1931e-01, + 1.5504e-01, 7.8948e-01, 1.5878e-01, 7.4734e-01, + 2.3345e-01, 2.3097e-01, 1.4671e-01, 3.7307e-01, + 8.0431e-01, 4.5794e-01, 9.2994e-01, 8.9926e-01, + 8.4547e-01, 5.0121e-02, 7.2131e-01, 6.2424e-01, + 6.3904e-01, 4.3546e-01, 8.0833e-01, 4.9642e-01, + 5.7037e-01, 3.9698e-01, 4.3301e-02, 4.0795e-01, + 6.9428e-01, 9.9629e-01, 9.0683e-01, 5.4597e-01, + 5.7624e-01, 9.9789e-01, 2.4283e-01, 5.9102e-01, + 3.8101e-01, 7.2091e-03, 6.9826e-01, 6.1377e-01, + 6.0709e-01, 4.9390e-01, 6.1114e-01, 7.2574e-01, + 8.2221e-01, 5.4550e-01, 3.0011e-01, 4.4517e-01, + 4.5758e-02, 4.6015e-01, 3.4893e-02, 2.0905e-01, + 7.1053e-01, 8.6429e-01, 1.4344e-01, 5.8718e-01, + 1.3326e-01, 6.4655e-01, 1.7744e-01, 7.3568e-01, + 4.4107e-01, 3.5360e-01, 7.8895e-01, 1.3426e-02, + 2.5589e-01, 8.9759e-01, 1.8598e-01, 1.1031e-01, + 6.4082e-02, 1.4471e-01, 6.4713e-01, 5.3510e-01, + 3.5916e-01, 2.3596e-01, 3.7914e-01, 4.5283e-01, + 4.0277e-01, 8.3793e-01, 3.6913e-01, 8.0491e-01, + 8.0560e-01, 8.3787e-01, 3.2988e-01, 2.7062e-01, + 5.2644e-01, 8.0191e-01, 3.0417e-01, 8.0992e-01, + 3.7054e-01, 6.5171e-01, 8.9851e-01, 7.9938e-01, + 7.9593e-01, 4.1200e-01, 7.2346e-01, 8.8886e-01, + 7.7392e-01, 3.0164e-01, 4.8903e-01, 7.0959e-01, + 2.3055e-04, 5.5567e-01, 3.2476e-02, 4.6940e-01, + 9.5992e-01, 3.3002e-01, 1.9968e-01, 3.6916e-01, + 9.3384e-01, 4.4547e-01, 8.4545e-01, 7.0652e-01, + 2.5484e-01, 6.6093e-01, 1.0142e-01, 4.0036e-01, + 8.8027e-02, 7.0693e-01, 6.1292e-01, 3.5279e-02, + 1.6464e-01, 7.4166e-01, 7.4512e-01, 3.1187e-01, + 9.3827e-01, 8.1291e-01, 6.8774e-01, 1.6535e-01, + 8.2353e-01, 4.4462e-01, 6.2390e-01, 2.5665e-01, + 2.4823e-01, 6.5084e-01, 2.8892e-01, 8.3557e-01, + 2.6616e-01, 8.8256e-01, 3.9677e-01, 7.0336e-01, + 8.3626e-01, 8.4230e-01, 1.2696e-01, 5.4260e-01, + 4.5014e-01, 1.2684e-01, 4.1101e-01, 4.8496e-01, + 7.6136e-01, 5.3988e-01, 4.7573e-01, 1.6785e-01, + 8.8662e-01, 6.3235e-01, 2.9589e-01, 2.8836e-01, + 9.5162e-01, 5.4258e-01, 2.7719e-01, 7.2819e-01, + 4.5646e-02, 7.4687e-01, 6.9970e-01, 6.6663e-01, + 4.4353e-01, 9.2703e-01, 1.7143e-01, 9.9752e-01, + 1.6120e-01, 9.1760e-02, 7.4539e-02, 6.2124e-01, + 3.9172e-01, 8.8093e-01, 8.8278e-01, 9.1996e-01, + 9.9713e-01, 4.7916e-01, 8.6919e-01, 9.8249e-01, + 8.6668e-01, 3.9161e-01, 6.4609e-01, 5.0516e-01, + 6.3812e-02, 4.1956e-01, 4.4304e-01, 5.3391e-01, + 9.4156e-01, 4.0458e-01, 2.9747e-01, 1.0297e-01, + 2.1881e-01, 5.0346e-01, 5.5620e-01, 1.2242e-01, + 9.4646e-01, 4.2415e-01, 1.2648e-01, 8.3879e-01, + 2.1895e-01, 7.2594e-01, 9.5334e-01, 4.1030e-01, + 6.5805e-01, 6.1371e-01, 6.3829e-01, 6.4855e-01, + 1.9689e-01, 7.6433e-01, 1.4868e-01, 1.2936e-01, + 1.2645e-01, 8.9930e-01, 1.6824e-01, 9.4670e-01, + 4.8028e-01, 6.9663e-01, 4.2572e-01, 8.7528e-01, + 8.1359e-02, 9.6745e-01, 2.7830e-01, 7.5427e-01, + 5.4086e-02, 9.3150e-01, 6.8940e-01, 8.9446e-01, + 4.2269e-01, 1.5823e-02, 6.6296e-01, 8.5098e-01, + 8.8125e-01, 8.8539e-01, 6.4149e-01, 9.0541e-01, + 8.6570e-01, 1.9544e-01, 4.7643e-01, 8.5814e-01]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.3920, 0.2913, 0.8672, ..., 0.9245, 0.8812, 0.1957]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 10.585279941558838 seconds + +[39.18, 40.08, 38.95, 38.39, 39.05, 38.86, 38.48, 38.43, 38.49, 38.42] +[64.69] +13.222010135650635 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 363782, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.585279941558838, 'TIME_S_1KI': 0.029097866143896176, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 855.3318356752395, 'W': 64.69} +[39.18, 40.08, 38.95, 38.39, 39.05, 38.86, 38.48, 38.43, 38.49, 38.42, 40.2, 38.44, 38.35, 38.82, 38.9, 38.53, 38.83, 38.37, 38.44, 38.39] +697.5050000000001 +34.87525000000001 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 363782, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.585279941558838, 'TIME_S_1KI': 0.029097866143896176, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 855.3318356752395, 'W': 64.69, 'J_1KI': 2.3512208841428097, 'W_1KI': 0.17782628057462985, 'W_D': 29.81474999999999, 'J_D': 394.2109266918896, 'W_D_1KI': 0.08195773842576046, 'J_D_1KI': 0.00022529355060382441} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_500000_1e-05.json b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_500000_1e-05.json new file mode 100644 index 0000000..f3fd74b --- /dev/null +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_500000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 1366, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.481968879699707, "TIME_S_1KI": 7.673476485870942, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 980.9324438238144, "W": 72.78, "J_1KI": 718.1057421843444, "W_1KI": 53.2796486090776, "W_D": 37.9805, "J_D": 511.9030596681833, "W_D_1KI": 27.804172767203514, "J_D_1KI": 20.35444565681077} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_500000_1e-05.output b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_500000_1e-05.output new file mode 100644 index 0000000..170f45c --- /dev/null +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_500000_1e-05.output @@ -0,0 +1,68 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '500000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 7.686005115509033} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 3, 7, ..., 2499986, + 2499989, 2500000]), + col_indices=tensor([176994, 249617, 373837, ..., 283997, 343168, + 447931]), + values=tensor([0.4576, 0.5348, 0.2572, ..., 0.1314, 0.2229, 0.5974]), + size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.1382, 0.9782, 0.8741, ..., 0.2337, 0.6569, 0.8329]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 2500000 +Density: 1e-05 +Time: 7.686005115509033 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1366', '-ss', '500000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.481968879699707} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 4, 9, ..., 2499988, + 2499995, 2500000]), + col_indices=tensor([ 13301, 29016, 299078, ..., 480591, 481476, + 496604]), + values=tensor([0.4578, 0.5414, 0.1917, ..., 0.8449, 0.5002, 0.9459]), + size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.0252, 0.3938, 0.2908, ..., 0.4459, 0.5549, 0.8752]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 2500000 +Density: 1e-05 +Time: 10.481968879699707 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 4, 9, ..., 2499988, + 2499995, 2500000]), + col_indices=tensor([ 13301, 29016, 299078, ..., 480591, 481476, + 496604]), + values=tensor([0.4578, 0.5414, 0.1917, ..., 0.8449, 0.5002, 0.9459]), + size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.0252, 0.3938, 0.2908, ..., 0.4459, 0.5549, 0.8752]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 2500000 +Density: 1e-05 +Time: 10.481968879699707 seconds + +[39.21, 38.47, 38.56, 38.59, 38.63, 38.48, 38.95, 38.74, 38.52, 38.83] +[72.78] +13.478049516677856 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1366, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.481968879699707, 'TIME_S_1KI': 7.673476485870942, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 980.9324438238144, 'W': 72.78} +[39.21, 38.47, 38.56, 38.59, 38.63, 38.48, 38.95, 38.74, 38.52, 38.83, 39.07, 38.47, 38.63, 38.57, 38.58, 38.77, 38.83, 38.82, 38.46, 38.73] +695.99 +34.7995 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1366, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.481968879699707, 'TIME_S_1KI': 7.673476485870942, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 980.9324438238144, 'W': 72.78, 'J_1KI': 718.1057421843444, 'W_1KI': 53.2796486090776, 'W_D': 37.9805, 'J_D': 511.9030596681833, 'W_D_1KI': 27.804172767203514, 'J_D_1KI': 20.35444565681077} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_50000_0.0001.json b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_50000_0.0001.json new file mode 100644 index 0000000..3949dab --- /dev/null +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_50000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 15344, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.396661281585693, "TIME_S_1KI": 0.6775717727832178, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 846.4673494148254, "W": 65.08, "J_1KI": 55.166015994188314, "W_1KI": 4.241397288842545, "W_D": 30.18325, "J_D": 392.5804490507841, "W_D_1KI": 1.9671044056308655, "J_D_1KI": 0.1282002349863703} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_50000_0.0001.output b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_50000_0.0001.output new file mode 100644 index 0000000..4ae3041 --- /dev/null +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_50000_0.0001.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.6842620372772217} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 3, 10, ..., 249991, 249995, + 250000]), + col_indices=tensor([ 5258, 47122, 48422, ..., 30033, 41208, 46342]), + values=tensor([0.6499, 0.7211, 0.6182, ..., 0.7244, 0.8782, 0.8107]), + size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) +tensor([0.4190, 0.1278, 0.1748, ..., 0.3464, 0.8679, 0.1666]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 250000 +Density: 0.0001 +Time: 0.6842620372772217 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '15344', '-ss', '50000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.396661281585693} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 8, 9, ..., 249992, 249997, + 250000]), + col_indices=tensor([10534, 13796, 13942, ..., 20381, 35132, 47921]), + values=tensor([0.7820, 0.3755, 0.2967, ..., 0.2418, 0.5762, 0.2824]), + size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) +tensor([0.5105, 0.5604, 0.4598, ..., 0.4891, 0.0194, 0.7500]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 250000 +Density: 0.0001 +Time: 10.396661281585693 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 8, 9, ..., 249992, 249997, + 250000]), + col_indices=tensor([10534, 13796, 13942, ..., 20381, 35132, 47921]), + values=tensor([0.7820, 0.3755, 0.2967, ..., 0.2418, 0.5762, 0.2824]), + size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) +tensor([0.5105, 0.5604, 0.4598, ..., 0.4891, 0.0194, 0.7500]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 250000 +Density: 0.0001 +Time: 10.396661281585693 seconds + +[39.48, 38.54, 38.4, 39.05, 39.65, 38.93, 38.49, 38.76, 38.48, 39.28] +[65.08] +13.006566524505615 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 15344, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.396661281585693, 'TIME_S_1KI': 0.6775717727832178, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 846.4673494148254, 'W': 65.08} +[39.48, 38.54, 38.4, 39.05, 39.65, 38.93, 38.49, 38.76, 38.48, 39.28, 39.19, 38.51, 38.7, 38.61, 39.0, 38.52, 39.05, 38.49, 38.55, 38.46] +697.935 +34.89675 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 15344, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.396661281585693, 'TIME_S_1KI': 0.6775717727832178, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 846.4673494148254, 'W': 65.08, 'J_1KI': 55.166015994188314, 'W_1KI': 4.241397288842545, 'W_D': 30.18325, 'J_D': 392.5804490507841, 'W_D_1KI': 1.9671044056308655, 'J_D_1KI': 0.1282002349863703} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_50000_0.001.json b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_50000_0.001.json new file mode 100644 index 0000000..bde3932 --- /dev/null +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_50000_0.001.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 3489, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.437294721603394, "TIME_S_1KI": 2.991486019376152, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 933.3928768968582, "W": 69.22, "J_1KI": 267.52447030577764, "W_1KI": 19.83949555746632, "W_D": 34.06175, "J_D": 459.30359469288595, "W_D_1KI": 9.762611063341934, "J_D_1KI": 2.798111511419299} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_50000_0.001.output b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_50000_0.001.output new file mode 100644 index 0000000..4299e13 --- /dev/null +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_50000_0.001.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '0.001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 3.0088562965393066} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 34, 93, ..., 2499916, + 2499957, 2500000]), + col_indices=tensor([ 603, 3952, 4942, ..., 45684, 45744, 47378]), + values=tensor([0.2755, 0.3359, 0.2897, ..., 0.6537, 0.9903, 0.6398]), + size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.0226, 0.9900, 0.4586, ..., 0.9619, 0.5778, 0.7456]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 2500000 +Density: 0.001 +Time: 3.0088562965393066 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '3489', '-ss', '50000', '-sd', '0.001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.437294721603394} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 60, 107, ..., 2499916, + 2499955, 2500000]), + col_indices=tensor([ 84, 88, 1962, ..., 43229, 45310, 46070]), + values=tensor([0.8625, 0.0720, 0.1202, ..., 0.4148, 0.7410, 0.3059]), + size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.1590, 0.6012, 0.6850, ..., 0.6120, 0.4384, 0.7195]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 2500000 +Density: 0.001 +Time: 10.437294721603394 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 60, 107, ..., 2499916, + 2499955, 2500000]), + col_indices=tensor([ 84, 88, 1962, ..., 43229, 45310, 46070]), + values=tensor([0.8625, 0.0720, 0.1202, ..., 0.4148, 0.7410, 0.3059]), + size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.1590, 0.6012, 0.6850, ..., 0.6120, 0.4384, 0.7195]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 2500000 +Density: 0.001 +Time: 10.437294721603394 seconds + +[39.1, 38.45, 44.52, 38.52, 39.08, 38.38, 40.78, 38.54, 38.4, 38.35] +[69.22] +13.484439134597778 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 3489, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.437294721603394, 'TIME_S_1KI': 2.991486019376152, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 933.3928768968582, 'W': 69.22} +[39.1, 38.45, 44.52, 38.52, 39.08, 38.38, 40.78, 38.54, 38.4, 38.35, 39.37, 38.65, 38.68, 38.35, 38.4, 38.76, 38.81, 38.76, 38.48, 38.39] +703.165 +35.158249999999995 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 3489, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.437294721603394, 'TIME_S_1KI': 2.991486019376152, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 933.3928768968582, 'W': 69.22, 'J_1KI': 267.52447030577764, 'W_1KI': 19.83949555746632, 'W_D': 34.06175, 'J_D': 459.30359469288595, 'W_D_1KI': 9.762611063341934, 'J_D_1KI': 2.798111511419299} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_50000_1e-05.json b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_50000_1e-05.json new file mode 100644 index 0000000..eb380f5 --- /dev/null +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_50000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 35734, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.471917629241943, "TIME_S_1KI": 0.2930519289539918, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 841.987050704956, "W": 64.44, "J_1KI": 23.562630847510942, "W_1KI": 1.803324564840208, "W_D": 29.634499999999996, "J_D": 387.2108202066421, "W_D_1KI": 0.8293082218615323, "J_D_1KI": 0.023207819495761246} diff --git a/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_50000_1e-05.output b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_50000_1e-05.output new file mode 100644 index 0000000..96eed5a --- /dev/null +++ b/pytorch/output_synthetic_1core/epyc_7313p_1_csr_10_10_10_synthetic_50000_1e-05.output @@ -0,0 +1,81 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.3157460689544678} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 1, ..., 25000, 25000, 25000]), + col_indices=tensor([ 4062, 9525, 48228, ..., 39550, 26780, 46383]), + values=tensor([0.9682, 0.2653, 0.7546, ..., 0.8059, 0.5876, 0.9597]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.6423, 0.4854, 0.6493, ..., 0.6821, 0.6803, 0.2283]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 0.3157460689544678 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '33254', '-ss', '50000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 9.771223545074463} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 1, ..., 25000, 25000, 25000]), + col_indices=tensor([27980, 12083, 1659, ..., 17852, 35908, 47898]), + values=tensor([0.9789, 0.4410, 0.2389, ..., 0.6711, 0.3630, 0.6906]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.9986, 0.5860, 0.4640, ..., 0.2646, 0.6800, 0.7666]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 9.771223545074463 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '35734', '-ss', '50000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.471917629241943} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 1, ..., 24999, 25000, 25000]), + col_indices=tensor([14210, 9782, 13262, ..., 32699, 48019, 38373]), + values=tensor([0.8162, 0.2704, 0.1597, ..., 0.7469, 0.6704, 0.2691]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.5208, 0.6581, 0.5659, ..., 0.1337, 0.4152, 0.4244]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 10.471917629241943 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 1, ..., 24999, 25000, 25000]), + col_indices=tensor([14210, 9782, 13262, ..., 32699, 48019, 38373]), + values=tensor([0.8162, 0.2704, 0.1597, ..., 0.7469, 0.6704, 0.2691]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.5208, 0.6581, 0.5659, ..., 0.1337, 0.4152, 0.4244]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 10.471917629241943 seconds + +[39.24, 38.48, 38.44, 38.43, 38.45, 38.48, 38.5, 39.07, 38.96, 38.4] +[64.44] +13.066217422485352 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 35734, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.471917629241943, 'TIME_S_1KI': 0.2930519289539918, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 841.987050704956, 'W': 64.44} +[39.24, 38.48, 38.44, 38.43, 38.45, 38.48, 38.5, 39.07, 38.96, 38.4, 39.76, 38.41, 38.52, 38.56, 38.6, 38.96, 38.81, 38.77, 38.7, 38.54] +696.11 +34.8055 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 35734, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.471917629241943, 'TIME_S_1KI': 0.2930519289539918, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 841.987050704956, 'W': 64.44, 'J_1KI': 23.562630847510942, 'W_1KI': 1.803324564840208, 'W_D': 29.634499999999996, 'J_D': 387.2108202066421, 'W_D_1KI': 0.8293082218615323, 'J_D_1KI': 0.023207819495761246} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_100000_0.0001.json b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_100000_0.0001.json new file mode 100644 index 0000000..2a06eb8 --- /dev/null +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_100000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 3646, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.427528619766235, "TIME_S_1KI": 2.8599913932436194, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 692.8558839225768, "W": 47.94, "J_1KI": 190.03178385150215, "W_1KI": 13.14865606143719, "W_D": 31.4125, "J_D": 453.99114421606066, "W_D_1KI": 8.615606143719145, "J_D_1KI": 2.3630296609213235} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_100000_0.0001.output b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_100000_0.0001.output new file mode 100644 index 0000000..cc7a205 --- /dev/null +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_100000_0.0001.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '100000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 2.879791498184204} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 10, 23, ..., 999979, + 999989, 1000000]), + col_indices=tensor([ 5015, 13201, 16372, ..., 56043, 65196, 77096]), + values=tensor([0.8877, 0.8022, 0.3967, ..., 0.7199, 0.8399, 0.8151]), + size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.6595, 0.9245, 0.4951, ..., 0.4587, 0.0765, 0.0892]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 1000000 +Density: 0.0001 +Time: 2.879791498184204 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '3646', '-ss', '100000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.427528619766235} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 8, 24, ..., 999984, + 999992, 1000000]), + col_indices=tensor([12724, 24596, 29019, ..., 72798, 83516, 98300]), + values=tensor([0.5582, 0.8508, 0.8777, ..., 0.7164, 0.8705, 0.2253]), + size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.8849, 0.3552, 0.8045, ..., 0.9875, 0.5127, 0.0107]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 1000000 +Density: 0.0001 +Time: 10.427528619766235 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 8, 24, ..., 999984, + 999992, 1000000]), + col_indices=tensor([12724, 24596, 29019, ..., 72798, 83516, 98300]), + values=tensor([0.5582, 0.8508, 0.8777, ..., 0.7164, 0.8705, 0.2253]), + size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.8849, 0.3552, 0.8045, ..., 0.9875, 0.5127, 0.0107]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 1000000 +Density: 0.0001 +Time: 10.427528619766235 seconds + +[18.35, 17.89, 18.28, 18.14, 17.94, 18.1, 18.09, 18.19, 18.06, 18.09] +[47.94] +14.452563285827637 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 3646, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.427528619766235, 'TIME_S_1KI': 2.8599913932436194, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 692.8558839225768, 'W': 47.94} +[18.35, 17.89, 18.28, 18.14, 17.94, 18.1, 18.09, 18.19, 18.06, 18.09, 18.01, 18.32, 17.86, 17.98, 18.22, 18.07, 19.34, 21.72, 17.99, 18.27] +330.54999999999995 +16.527499999999996 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 3646, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.427528619766235, 'TIME_S_1KI': 2.8599913932436194, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 692.8558839225768, 'W': 47.94, 'J_1KI': 190.03178385150215, 'W_1KI': 13.14865606143719, 'W_D': 31.4125, 'J_D': 453.99114421606066, 'W_D_1KI': 8.615606143719145, 'J_D_1KI': 2.3630296609213235} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_100000_1e-05.json b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_100000_1e-05.json new file mode 100644 index 0000000..1871367 --- /dev/null +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_100000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 8006, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.406643390655518, "TIME_S_1KI": 1.2998555321828025, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 663.0740174865723, "W": 46.720000000000006, "J_1KI": 82.82213558413343, "W_1KI": 5.835623282538097, "W_D": 30.276250000000005, "J_D": 429.69594867140063, "W_D_1KI": 3.7816949787659264, "J_D_1KI": 0.47235760414263384} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_100000_1e-05.output b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_100000_1e-05.output new file mode 100644 index 0000000..b29167b --- /dev/null +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_100000_1e-05.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '100000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 1.3114714622497559} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2, 2, ..., 99998, 99998, + 100000]), + col_indices=tensor([15714, 63018, 47083, ..., 95898, 11433, 73543]), + values=tensor([0.8298, 0.7556, 0.0451, ..., 0.9622, 0.2125, 0.4932]), + size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) +tensor([0.8440, 0.1023, 0.7738, ..., 0.5206, 0.7518, 0.6360]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 100000 +Density: 1e-05 +Time: 1.3114714622497559 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '8006', '-ss', '100000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.406643390655518} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 1, ..., 100000, 100000, + 100000]), + col_indices=tensor([38549, 23010, 96204, ..., 15384, 78128, 94145]), + values=tensor([0.9276, 0.2040, 0.0329, ..., 0.0402, 0.0179, 0.0490]), + size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) +tensor([0.1445, 0.8456, 0.7445, ..., 0.5274, 0.1855, 0.5940]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 100000 +Density: 1e-05 +Time: 10.406643390655518 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 1, ..., 100000, 100000, + 100000]), + col_indices=tensor([38549, 23010, 96204, ..., 15384, 78128, 94145]), + values=tensor([0.9276, 0.2040, 0.0329, ..., 0.0402, 0.0179, 0.0490]), + size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) +tensor([0.1445, 0.8456, 0.7445, ..., 0.5274, 0.1855, 0.5940]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 100000 +Density: 1e-05 +Time: 10.406643390655518 seconds + +[20.45, 19.81, 17.91, 18.51, 18.24, 17.88, 18.26, 18.12, 17.9, 18.59] +[46.72] +14.192508935928345 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 8006, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.406643390655518, 'TIME_S_1KI': 1.2998555321828025, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 663.0740174865723, 'W': 46.720000000000006} +[20.45, 19.81, 17.91, 18.51, 18.24, 17.88, 18.26, 18.12, 17.9, 18.59, 18.4, 18.11, 18.06, 18.12, 17.9, 18.34, 18.04, 17.94, 17.82, 18.39] +328.875 +16.44375 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 8006, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.406643390655518, 'TIME_S_1KI': 1.2998555321828025, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 663.0740174865723, 'W': 46.720000000000006, 'J_1KI': 82.82213558413343, 'W_1KI': 5.835623282538097, 'W_D': 30.276250000000005, 'J_D': 429.69594867140063, 'W_D_1KI': 3.7816949787659264, 'J_D_1KI': 0.47235760414263384} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.0001.json b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.0001.json new file mode 100644 index 0000000..eaa436a --- /dev/null +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 85057, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.436183214187622, "TIME_S_1KI": 0.12269634732223829, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 663.123476600647, "W": 46.56, "J_1KI": 7.796224609387199, "W_1KI": 0.5473976274733414, "W_D": 8.939750000000004, "J_D": 127.32298324614769, "W_D_1KI": 0.10510304854391765, "J_D_1KI": 0.0012356778224475076} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.0001.output b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.0001.output new file mode 100644 index 0000000..0f19044 --- /dev/null +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.0001.output @@ -0,0 +1,81 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.138319730758667} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 2, ..., 9998, 9999, 10000]), + col_indices=tensor([6848, 9607, 2682, ..., 9449, 6129, 3470]), + values=tensor([0.4694, 0.9529, 0.1463, ..., 0.1268, 0.1399, 0.3765]), + size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) +tensor([0.5998, 0.7790, 0.8385, ..., 0.1561, 0.5420, 0.2267]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000 +Density: 0.0001 +Time: 0.138319730758667 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '75911', '-ss', '10000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 9.370872497558594} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 2, ..., 10000, 10000, 10000]), + col_indices=tensor([2414, 5580, 2005, ..., 9768, 442, 1851]), + values=tensor([0.7205, 0.5630, 0.0022, ..., 0.3635, 0.2630, 0.6566]), + size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) +tensor([0.5071, 0.1792, 0.6304, ..., 0.9432, 0.9596, 0.2753]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000 +Density: 0.0001 +Time: 9.370872497558594 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '85057', '-ss', '10000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.436183214187622} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 3, ..., 10000, 10000, 10000]), + col_indices=tensor([2255, 7580, 9802, ..., 6433, 5292, 8461]), + values=tensor([0.3444, 0.5478, 0.9067, ..., 0.7957, 0.9972, 0.7349]), + size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) +tensor([0.8453, 0.7973, 0.9010, ..., 0.7504, 0.8828, 0.5942]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000 +Density: 0.0001 +Time: 10.436183214187622 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 3, ..., 10000, 10000, 10000]), + col_indices=tensor([2255, 7580, 9802, ..., 6433, 5292, 8461]), + values=tensor([0.3444, 0.5478, 0.9067, ..., 0.7957, 0.9972, 0.7349]), + size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) +tensor([0.8453, 0.7973, 0.9010, ..., 0.7504, 0.8828, 0.5942]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000 +Density: 0.0001 +Time: 10.436183214187622 seconds + +[38.19, 37.44, 39.94, 42.89, 39.51, 39.81, 47.03, 47.24, 47.36, 43.53] +[46.56] +14.242342710494995 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 85057, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.436183214187622, 'TIME_S_1KI': 0.12269634732223829, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 663.123476600647, 'W': 46.56} +[38.19, 37.44, 39.94, 42.89, 39.51, 39.81, 47.03, 47.24, 47.36, 43.53, 45.01, 44.41, 42.1, 40.98, 40.92, 39.18, 41.09, 39.73, 39.61, 39.6] +752.405 +37.62025 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 85057, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.436183214187622, 'TIME_S_1KI': 0.12269634732223829, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 663.123476600647, 'W': 46.56, 'J_1KI': 7.796224609387199, 'W_1KI': 0.5473976274733414, 'W_D': 8.939750000000004, 'J_D': 127.32298324614769, 'W_D_1KI': 0.10510304854391765, 'J_D_1KI': 0.0012356778224475076} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.001.json b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.001.json new file mode 100644 index 0000000..aaafc55 --- /dev/null +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.001.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 34558, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.457140684127808, "TIME_S_1KI": 0.3025968135924477, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 669.6752694511413, "W": 47.19, "J_1KI": 19.37829936486895, "W_1KI": 1.3655304126396204, "W_D": 30.795499999999997, "J_D": 437.020232260704, "W_D_1KI": 0.8911250651079344, "J_D_1KI": 0.02578636104832266} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.001.output b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.001.output new file mode 100644 index 0000000..0fdae4e --- /dev/null +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.001.output @@ -0,0 +1,85 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.3263256549835205} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 10, 22, ..., 99981, 99992, + 100000]), + col_indices=tensor([ 85, 1274, 1422, ..., 6599, 6784, 7278]), + values=tensor([0.2164, 0.2550, 1.0000, ..., 0.9260, 0.0708, 0.0725]), + size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) +tensor([0.6027, 0.7133, 0.6416, ..., 0.5356, 0.1307, 0.5576]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 100000 +Density: 0.001 +Time: 0.3263256549835205 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '32176', '-ss', '10000', '-sd', '0.001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 9.776132822036743} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 9, 20, ..., 99981, 99994, + 100000]), + col_indices=tensor([ 544, 706, 2472, ..., 6055, 7261, 9945]), + values=tensor([0.4979, 0.3488, 0.7538, ..., 0.1989, 0.3068, 0.3191]), + size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) +tensor([0.5709, 0.1010, 0.9044, ..., 0.7157, 0.3275, 0.4556]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 100000 +Density: 0.001 +Time: 9.776132822036743 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '34558', '-ss', '10000', '-sd', '0.001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.457140684127808} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 10, 24, ..., 99980, 99989, + 100000]), + col_indices=tensor([ 44, 4326, 6855, ..., 8487, 8731, 9188]), + values=tensor([0.5894, 0.7815, 0.8660, ..., 0.0108, 0.2427, 0.5894]), + size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) +tensor([0.0531, 0.8679, 0.3068, ..., 0.5318, 0.1294, 0.3589]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 100000 +Density: 0.001 +Time: 10.457140684127808 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 10, 24, ..., 99980, 99989, + 100000]), + col_indices=tensor([ 44, 4326, 6855, ..., 8487, 8731, 9188]), + values=tensor([0.5894, 0.7815, 0.8660, ..., 0.0108, 0.2427, 0.5894]), + size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) +tensor([0.0531, 0.8679, 0.3068, ..., 0.5318, 0.1294, 0.3589]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 100000 +Density: 0.001 +Time: 10.457140684127808 seconds + +[19.5, 18.03, 18.32, 17.98, 18.23, 18.17, 18.6, 17.99, 18.33, 18.09] +[47.19] +14.191041946411133 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 34558, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.457140684127808, 'TIME_S_1KI': 0.3025968135924477, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 669.6752694511413, 'W': 47.19} +[19.5, 18.03, 18.32, 17.98, 18.23, 18.17, 18.6, 17.99, 18.33, 18.09, 18.43, 17.95, 18.1, 18.53, 18.09, 18.56, 18.03, 17.91, 18.04, 18.04] +327.89 +16.3945 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 34558, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.457140684127808, 'TIME_S_1KI': 0.3025968135924477, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 669.6752694511413, 'W': 47.19, 'J_1KI': 19.37829936486895, 'W_1KI': 1.3655304126396204, 'W_D': 30.795499999999997, 'J_D': 437.020232260704, 'W_D_1KI': 0.8911250651079344, 'J_D_1KI': 0.02578636104832266} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.01.json b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.01.json new file mode 100644 index 0000000..b18c025 --- /dev/null +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.01.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 5537, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.417654037475586, "TIME_S_1KI": 1.8814618091882944, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 687.7580058908463, "W": 47.74000000000001, "J_1KI": 124.21130682514833, "W_1KI": 8.621997471554996, "W_D": 31.48425000000001, "J_D": 453.5723711137177, "W_D_1KI": 5.686156763590393, "J_D_1KI": 1.0269381910042248} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.01.output b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.01.output new file mode 100644 index 0000000..42d7009 --- /dev/null +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.01.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.01', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 1.8961181640625} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 96, 195, ..., 999806, + 999906, 1000000]), + col_indices=tensor([ 19, 113, 151, ..., 9681, 9759, 9836]), + values=tensor([0.1144, 0.7732, 0.9749, ..., 0.1321, 0.3947, 0.2714]), + size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.1354, 0.8257, 0.6569, ..., 0.0257, 0.7874, 0.8457]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000000 +Density: 0.01 +Time: 1.8961181640625 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '5537', '-ss', '10000', '-sd', '0.01', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.417654037475586} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 103, 198, ..., 999795, + 999893, 1000000]), + col_indices=tensor([ 194, 313, 451, ..., 9690, 9776, 9879]), + values=tensor([0.2779, 0.8250, 0.2083, ..., 0.7384, 0.0572, 0.6638]), + size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.5010, 0.3969, 0.7780, ..., 0.5969, 0.2345, 0.7915]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000000 +Density: 0.01 +Time: 10.417654037475586 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 103, 198, ..., 999795, + 999893, 1000000]), + col_indices=tensor([ 194, 313, 451, ..., 9690, 9776, 9879]), + values=tensor([0.2779, 0.8250, 0.2083, ..., 0.7384, 0.0572, 0.6638]), + size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.5010, 0.3969, 0.7780, ..., 0.5969, 0.2345, 0.7915]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000000 +Density: 0.01 +Time: 10.417654037475586 seconds + +[18.42, 18.05, 18.03, 18.24, 18.1, 18.01, 17.83, 17.89, 18.16, 18.06] +[47.74] +14.406326055526733 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 5537, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.417654037475586, 'TIME_S_1KI': 1.8814618091882944, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 687.7580058908463, 'W': 47.74000000000001} +[18.42, 18.05, 18.03, 18.24, 18.1, 18.01, 17.83, 17.89, 18.16, 18.06, 18.38, 17.81, 18.07, 18.25, 18.24, 17.94, 18.02, 18.06, 18.02, 17.93] +325.115 +16.25575 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 5537, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.417654037475586, 'TIME_S_1KI': 1.8814618091882944, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 687.7580058908463, 'W': 47.74000000000001, 'J_1KI': 124.21130682514833, 'W_1KI': 8.621997471554996, 'W_D': 31.48425000000001, 'J_D': 453.5723711137177, 'W_D_1KI': 5.686156763590393, 'J_D_1KI': 1.0269381910042248} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.05.json b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.05.json new file mode 100644 index 0000000..8a616ae --- /dev/null +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.05.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.884310483932495, "TIME_S_1KI": 10.884310483932495, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 825.0359781861306, "W": 47.81, "J_1KI": 825.0359781861306, "W_1KI": 47.81, "W_D": 31.353, "J_D": 541.0448237621785, "W_D_1KI": 31.352999999999998, "J_D_1KI": 31.352999999999998} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.05.output b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.05.output new file mode 100644 index 0000000..aad2263 --- /dev/null +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_0.05.output @@ -0,0 +1,45 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.884310483932495} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 518, 1026, ..., 4999007, + 4999483, 5000000]), + col_indices=tensor([ 3, 39, 78, ..., 9968, 9975, 9994]), + values=tensor([0.2142, 0.4373, 0.1249, ..., 0.9529, 0.9095, 0.5518]), + size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.2404, 0.3133, 0.0015, ..., 0.7254, 0.6117, 0.4995]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000000 +Density: 0.05 +Time: 10.884310483932495 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 518, 1026, ..., 4999007, + 4999483, 5000000]), + col_indices=tensor([ 3, 39, 78, ..., 9968, 9975, 9994]), + values=tensor([0.2142, 0.4373, 0.1249, ..., 0.9529, 0.9095, 0.5518]), + size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.2404, 0.3133, 0.0015, ..., 0.7254, 0.6117, 0.4995]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000000 +Density: 0.05 +Time: 10.884310483932495 seconds + +[18.07, 17.88, 18.1, 21.37, 18.24, 18.16, 18.18, 18.01, 18.03, 17.87] +[47.81] +17.256556749343872 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.884310483932495, 'TIME_S_1KI': 10.884310483932495, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 825.0359781861306, 'W': 47.81} +[18.07, 17.88, 18.1, 21.37, 18.24, 18.16, 18.18, 18.01, 18.03, 17.87, 18.49, 18.1, 18.43, 18.06, 18.42, 17.93, 18.03, 17.8, 18.13, 18.11] +329.14 +16.457 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.884310483932495, 'TIME_S_1KI': 10.884310483932495, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 825.0359781861306, 'W': 47.81, 'J_1KI': 825.0359781861306, 'W_1KI': 47.81, 'W_D': 31.353, 'J_D': 541.0448237621785, 'W_D_1KI': 31.352999999999998, 'J_D_1KI': 31.352999999999998} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_1e-05.json b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_1e-05.json new file mode 100644 index 0000000..a0720a2 --- /dev/null +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 225343, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.386851072311401, "TIME_S_1KI": 0.04609351553991649, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 661.4945677185059, "W": 46.24, "J_1KI": 2.935500848566434, "W_1KI": 0.20519829770616352, "W_D": 30.072000000000003, "J_D": 430.2003598709107, "W_D_1KI": 0.1334498963801849, "J_D_1KI": 0.0005922078625925141} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_1e-05.output b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_1e-05.output new file mode 100644 index 0000000..6742334 --- /dev/null +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_10000_1e-05.output @@ -0,0 +1,1521 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.06630802154541016} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), + col_indices=tensor([6116, 9123, 2230, 4007, 2708, 6506, 8700, 3316, 2761, + 1361, 1958, 5168, 9287, 8535, 3319, 5344, 902, 1975, + 488, 7509, 3585, 6731, 5003, 3621, 9227, 602, 6973, + 8702, 9039, 2485, 4067, 2477, 9061, 2388, 1777, 7081, + 5954, 215, 9598, 6942, 5591, 9010, 7196, 7714, 5337, + 1993, 6247, 2446, 6356, 9820, 7249, 3274, 1887, 2531, + 135, 4906, 4233, 322, 743, 3780, 3850, 995, 6910, + 9173, 1426, 5060, 4803, 1325, 8341, 4031, 7649, 3889, + 2513, 8971, 7759, 3358, 2558, 8091, 7627, 5455, 9323, + 4647, 1893, 5017, 4607, 6431, 7258, 1502, 6846, 4712, + 6760, 477, 7596, 524, 2899, 8608, 9797, 2612, 3584, + 7461, 3936, 7937, 8808, 4443, 6151, 2930, 8931, 2432, + 2320, 4314, 7498, 4175, 5649, 4525, 3428, 2414, 2246, + 8311, 112, 444, 1035, 4057, 4976, 2482, 1046, 9577, + 2837, 2113, 6259, 917, 5852, 6925, 5508, 4578, 5723, + 9556, 8979, 7160, 5267, 3922, 1922, 2596, 9081, 757, + 772, 3039, 9566, 4359, 6540, 8900, 662, 5830, 4448, + 605, 4778, 5765, 2865, 7567, 2462, 7522, 2141, 8074, + 6915, 2553, 6285, 1865, 4856, 9508, 5786, 2622, 772, + 7170, 5197, 3410, 8239, 635, 8957, 2007, 378, 8804, + 324, 4438, 5879, 6394, 7346, 8499, 1491, 6973, 9493, + 6934, 7564, 4608, 611, 1904, 5276, 8435, 5763, 6936, + 7524, 3677, 8083, 5405, 3909, 5138, 3565, 6302, 8355, + 9878, 6658, 8098, 5492, 4667, 3600, 435, 3485, 5110, + 5400, 7331, 3046, 771, 8076, 8253, 925, 6498, 1888, + 6020, 629, 8119, 4089, 6057, 4670, 6181, 4064, 7866, + 5463, 9176, 7650, 1100, 663, 4965, 6767, 7260, 4483, + 8084, 1545, 1791, 5532, 805, 3597, 2559, 1895, 2659, + 9098, 2448, 1014, 4415, 7809, 1273, 2238, 2647, 3696, + 5133, 3262, 8595, 4825, 4418, 8681, 3451, 6551, 4396, + 9283, 5009, 5175, 4601, 5413, 1313, 4805, 9367, 8911, + 7493, 3270, 4398, 5992, 9663, 6315, 5793, 6224, 9291, + 3783, 8917, 9634, 3445, 7019, 2536, 2368, 8219, 3595, + 23, 3502, 2962, 8019, 7473, 393, 190, 1589, 354, + 421, 8045, 1755, 5639, 7761, 5386, 5069, 5542, 8965, + 5927, 3847, 2964, 869, 4371, 2320, 9236, 6638, 1008, + 6453, 2815, 2880, 9144, 8967, 2748, 3389, 389, 3962, + 9143, 4322, 4180, 6736, 4718, 241, 2062, 33, 7546, + 1341, 3003, 357, 5780, 5018, 1298, 8692, 264, 3354, + 5052, 1461, 3543, 2731, 5615, 3803, 4521, 4194, 1495, + 5020, 5937, 7198, 48, 9071, 2680, 527, 4924, 603, + 8901, 7030, 3950, 9444, 1090, 2958, 8064, 9214, 1497, + 6814, 7285, 2474, 3729, 4898, 1679, 9556, 9438, 6495, + 465, 1893, 294, 3214, 8299, 5873, 2230, 5817, 7990, + 2168, 9309, 7987, 8274, 5938, 435, 4649, 3960, 4215, + 1498, 9365, 332, 6793, 4740, 6775, 9445, 2955, 1861, + 5114, 9359, 6453, 1653, 2620, 1677, 9057, 7245, 3148, + 9808, 3603, 7182, 9616, 2668, 6950, 3580, 2228, 9825, + 1975, 8036, 4804, 5680, 4088, 61, 9590, 1512, 881, + 4266, 8720, 4260, 9052, 7548, 3975, 1985, 5354, 9292, + 6028, 4459, 8614, 9302, 7355, 5136, 4232, 794, 3208, + 9008, 5430, 4587, 2688, 536, 5794, 319, 4309, 7870, + 7743, 5154, 9925, 9472, 381, 2331, 5810, 8907, 8351, + 204, 845, 4770, 6471, 6978, 2770, 3097, 912, 1195, + 3427, 9600, 6282, 5328, 1541, 3058, 8533, 2647, 4897, + 3771, 4338, 1308, 4810, 7849, 4548, 3988, 5788, 6866, + 2785, 971, 9156, 7115, 9269, 8400, 811, 7446, 1919, + 7380, 6442, 4826, 5591, 9322, 9800, 5043, 2093, 7573, + 5766, 8810, 551, 6920, 3350, 1995, 899, 7606, 7900, + 5362, 3168, 6232, 3279, 1780, 4131, 7640, 2283, 9115, + 9698, 675, 5864, 4274, 7254, 4409, 1918, 8317, 35, + 3785, 7903, 7315, 8852, 6747, 807, 8576, 8906, 691, + 708, 6138, 6393, 2318, 2878, 2137, 7541, 3877, 1155, + 3556, 2641, 6169, 302, 8956, 5326, 6536, 5200, 412, + 6163, 7006, 3525, 2868, 5384, 6923, 3304, 6397, 2096, + 5354, 9686, 8274, 6558, 6562, 390, 1816, 3737, 906, + 4664, 2719, 5710, 310, 8612, 9508, 9122, 9007, 9401, + 1823, 9881, 6071, 796, 9171, 8620, 4054, 9568, 7418, + 1371, 7178, 7465, 5873, 8086, 1945, 2932, 4795, 4874, + 4361, 1566, 1859, 6801, 889, 1530, 8341, 526, 5690, + 993, 7020, 4621, 254, 6955, 8349, 4162, 2379, 7334, + 5526, 2880, 6973, 3255, 9449, 6690, 9887, 2367, 9592, + 2579, 4989, 210, 1033, 646, 1002, 8725, 9305, 5186, + 4944, 2755, 4073, 8430, 314, 1754, 580, 3005, 8962, + 1021, 7176, 9239, 8170, 6447, 8806, 6643, 9503, 507, + 8012, 9409, 4496, 8897, 6044, 6733, 6611, 1828, 9900, + 3040, 1872, 1549, 3695, 7165, 2451, 6269, 9445, 8195, + 2903, 9122, 4531, 2056, 8807, 3151, 2547, 1657, 2273, + 1590, 4281, 6979, 1159, 3231, 8829, 5167, 4499, 5400, + 7648, 5702, 2986, 5866, 7356, 1464, 7970, 6150, 9827, + 2152, 1626, 1304, 9381, 4432, 1369, 7126, 1255, 5108, + 4506, 234, 4239, 132, 3138, 9487, 6305, 1172, 9024, + 4948, 2728, 1129, 7172, 1126, 5029, 2929, 1979, 8307, + 8506, 9558, 5890, 4859, 8500, 2366, 9475, 5070, 9045, + 2751, 233, 5241, 3389, 3674, 4678, 5172, 9659, 400, + 1980, 5834, 8329, 7689, 2697, 3046, 7936, 6546, 7332, + 6777, 5367, 9296, 5637, 7409, 5271, 5843, 1628, 38, + 1744, 5001, 1131, 801, 8117, 3676, 785, 4693, 5487, + 6285, 1190, 3167, 8654, 8822, 2339, 47, 2664, 6031, + 8050, 6869, 9573, 6678, 1322, 9064, 6480, 3937, 6511, + 6143, 8334, 9131, 2370, 8996, 1669, 5226, 9766, 1824, + 3992, 5018, 23, 8217, 1028, 6132, 9099, 304, 1850, + 6441, 8232, 6512, 4372, 1929, 5266, 8857, 264, 9346, + 4432, 5493, 121, 8839, 2095, 7843, 7190, 4607, 4890, + 3219, 1710, 9271, 3380, 6743, 9430, 1641, 6592, 2928, + 5995, 4066, 1771, 1180, 600, 6746, 9407, 4354, 8033, + 9794, 1271, 2958, 5326, 2059, 2853, 5833, 5370, 4952, + 8664, 8669, 8180, 9495, 6108, 666, 6438, 881, 440, + 5024, 9721, 7337, 2980, 132, 1124, 6697, 3531, 1354, + 981, 689, 6023, 2054, 5122, 7310, 3624, 6808, 8340, + 8753, 3317, 9169, 9486, 7113, 3170, 2177, 6450, 1559, + 6842, 9080, 3467, 5262, 2559, 9529, 7907, 6164, 3026, + 7921, 3217, 9438, 3022, 6316, 342, 4475, 8175, 7752, + 9356, 7486, 8041, 991, 9993, 4182, 6884, 6225, 1247, + 9300, 5234, 1257, 2288, 5243, 6258, 6794, 4713, 2122, + 8191, 769, 8990, 1254, 2344, 141, 5772, 6214, 9001, + 3153, 6464, 2996, 5805, 9634, 1592, 5527, 2658, 1883, + 8395, 7135, 2541, 5087, 9538, 3540, 7749, 7973, 831, + 4913, 2841, 4647, 9817, 2556, 9375, 853, 5124, 5509, + 2704, 840, 4367, 9711, 9079, 1260, 2057, 1725, 949, + 96, 5237, 1185, 9212, 8567, 4357, 1257, 1227, 4061, + 8093]), + values=tensor([7.6292e-02, 1.3733e-01, 8.6340e-01, 9.4424e-01, + 1.9235e-01, 5.6371e-01, 7.5005e-01, 9.6035e-01, + 5.4652e-01, 7.2704e-01, 2.0061e-01, 3.8431e-01, + 4.9008e-01, 2.3402e-01, 9.6473e-01, 4.0271e-01, + 3.9719e-01, 1.8499e-01, 5.7396e-01, 3.4007e-01, + 8.9125e-01, 4.8184e-02, 9.6291e-01, 8.7623e-01, + 8.1434e-01, 9.1212e-01, 8.3738e-01, 7.4692e-01, + 8.6232e-01, 5.9658e-01, 3.8390e-01, 1.2173e-01, + 1.6088e-01, 5.3462e-01, 4.0381e-01, 5.1533e-01, + 6.9512e-01, 3.4221e-01, 8.2979e-01, 7.4057e-01, + 4.4480e-01, 4.8069e-01, 1.1078e-01, 4.3458e-01, + 4.4134e-01, 1.6455e-02, 3.6857e-01, 6.8906e-01, + 8.1974e-01, 2.2236e-01, 4.7233e-01, 7.6053e-01, + 9.2475e-02, 1.6473e-02, 6.1086e-01, 6.6880e-01, + 5.2316e-01, 4.7895e-01, 1.6209e-01, 6.0722e-01, + 2.1034e-01, 1.8663e-01, 1.8910e-01, 5.1840e-01, + 7.8493e-01, 5.5073e-01, 2.6377e-02, 6.9171e-01, + 2.8827e-01, 9.3324e-01, 6.2362e-01, 8.2941e-01, + 3.2976e-01, 9.4037e-01, 7.1596e-01, 9.2905e-01, + 9.2469e-01, 2.9364e-01, 1.6241e-01, 8.9817e-01, + 6.3859e-01, 9.0965e-01, 3.3103e-02, 9.0378e-01, + 6.2088e-01, 6.7137e-01, 8.8445e-01, 1.3306e-01, + 8.3919e-01, 7.1363e-01, 3.6161e-01, 4.1206e-01, + 4.2193e-02, 6.4785e-01, 8.6616e-01, 8.2678e-01, + 7.9753e-01, 6.5357e-01, 3.6461e-02, 2.4495e-01, + 1.9720e-01, 2.2564e-01, 8.0147e-01, 9.3425e-01, + 4.4951e-01, 6.8110e-01, 1.3599e-01, 5.7298e-01, + 9.3012e-01, 7.4797e-01, 5.9241e-01, 3.2273e-01, + 5.9752e-01, 9.2767e-01, 5.1155e-01, 7.1364e-01, + 1.2931e-01, 2.8869e-01, 2.1716e-01, 4.0307e-02, + 7.1452e-01, 5.4570e-02, 8.2235e-01, 9.9671e-01, + 7.4898e-01, 9.3414e-01, 5.8253e-01, 7.9204e-01, + 8.2828e-01, 4.4751e-01, 8.7535e-01, 2.2996e-01, + 4.7605e-01, 2.9067e-01, 5.8135e-01, 6.2743e-01, + 1.0374e-02, 7.8085e-01, 2.8711e-01, 1.9268e-01, + 4.2163e-01, 9.3098e-04, 9.6071e-01, 4.5789e-01, + 3.0781e-01, 7.5996e-02, 7.1203e-01, 4.6133e-01, + 1.9179e-01, 9.2485e-01, 6.0405e-01, 3.2170e-01, + 1.8621e-01, 7.8704e-01, 2.0949e-01, 7.9217e-01, + 1.6256e-01, 5.6096e-01, 2.4176e-01, 1.9077e-01, + 4.5650e-01, 6.8304e-01, 6.8049e-01, 4.1863e-01, + 5.2766e-01, 7.0753e-01, 3.9208e-01, 7.1875e-01, + 5.1901e-01, 7.6835e-01, 7.9472e-01, 5.7001e-01, + 5.4355e-01, 2.3401e-01, 4.2292e-01, 2.7282e-01, + 1.5011e-01, 3.6825e-01, 8.5572e-01, 4.2280e-01, + 1.5819e-01, 3.0753e-01, 7.9383e-01, 9.9868e-01, + 5.9618e-01, 8.2913e-01, 5.4785e-01, 7.7623e-01, + 3.7890e-02, 6.8649e-01, 6.5935e-01, 6.6648e-01, + 2.8165e-01, 5.0125e-01, 8.1625e-02, 2.7851e-01, + 7.3229e-01, 5.8045e-01, 7.8022e-01, 6.5332e-01, + 4.9722e-01, 8.5537e-01, 7.9195e-01, 8.2148e-01, + 2.7819e-01, 9.8535e-01, 6.7735e-01, 6.6299e-01, + 9.7569e-01, 2.6440e-01, 2.8812e-01, 3.7260e-01, + 6.1383e-02, 9.8745e-01, 8.9501e-01, 7.9012e-01, + 3.0046e-03, 6.9384e-01, 9.1280e-01, 6.9629e-02, + 2.7866e-01, 6.0304e-01, 2.2870e-01, 5.2804e-02, + 8.0674e-01, 3.2916e-01, 9.5116e-01, 1.3652e-01, + 5.8970e-01, 2.3871e-01, 9.0168e-01, 2.6913e-01, + 6.6687e-01, 1.9441e-01, 2.1488e-01, 7.4845e-01, + 1.1506e-01, 7.1025e-01, 1.3343e-01, 4.3147e-01, + 7.3254e-01, 9.6925e-01, 5.0310e-01, 4.0862e-01, + 2.7675e-02, 6.2677e-01, 3.0785e-02, 8.7414e-01, + 2.1732e-01, 8.6132e-01, 8.5208e-01, 8.6776e-01, + 9.5881e-01, 3.4451e-01, 7.4389e-01, 1.7165e-02, + 6.1416e-02, 3.1576e-01, 7.1681e-02, 1.3700e-03, + 5.4638e-01, 3.8174e-02, 3.4709e-01, 1.4305e-01, + 7.7577e-01, 1.5800e-01, 2.5315e-01, 1.7669e-01, + 3.0251e-01, 9.2423e-01, 1.4954e-01, 4.5657e-01, + 2.2978e-02, 3.6579e-01, 1.3830e-01, 3.1186e-01, + 6.5761e-01, 1.7644e-01, 8.1005e-01, 7.9112e-01, + 7.6500e-01, 5.0518e-02, 9.8594e-01, 9.3822e-01, + 7.8622e-01, 2.1085e-01, 5.5649e-01, 7.6701e-01, + 8.6285e-01, 1.8183e-01, 3.2740e-02, 4.8134e-01, + 3.3495e-01, 4.9922e-02, 6.1406e-02, 7.9639e-01, + 9.6820e-02, 1.9509e-01, 7.9436e-01, 3.4949e-01, + 5.5507e-01, 9.3760e-02, 8.4082e-01, 7.4911e-02, + 2.0244e-01, 8.4158e-01, 4.5437e-01, 4.6200e-01, + 7.8281e-01, 5.6430e-01, 2.1152e-01, 1.1629e-01, + 1.9897e-01, 3.1425e-01, 3.5026e-01, 5.1941e-01, + 9.8623e-01, 8.0512e-01, 3.4513e-02, 6.7857e-01, + 4.1816e-01, 7.6297e-01, 9.2547e-01, 2.6104e-01, + 8.1682e-01, 4.3099e-01, 5.8041e-01, 3.4073e-02, + 5.2862e-01, 5.1975e-02, 4.2264e-01, 1.1665e-01, + 3.8810e-01, 4.1540e-01, 6.7858e-01, 2.2419e-01, + 4.2870e-01, 3.3181e-01, 7.8883e-02, 8.3469e-01, + 1.0084e-01, 5.1010e-01, 3.6026e-01, 5.8228e-01, + 5.6810e-01, 2.8248e-01, 5.0647e-01, 4.0258e-01, + 4.2743e-01, 8.4632e-01, 5.3554e-01, 6.5090e-01, + 3.5715e-01, 9.7601e-01, 3.3872e-01, 1.5496e-01, + 8.3006e-01, 5.0418e-01, 6.9200e-01, 8.0583e-01, + 1.9650e-01, 8.8935e-01, 8.0422e-02, 6.9236e-01, + 4.5778e-01, 1.3102e-01, 1.8904e-01, 1.5958e-01, + 3.8435e-01, 2.6345e-01, 3.8901e-01, 1.8237e-01, + 8.3207e-01, 7.2942e-01, 3.4569e-01, 6.7292e-01, + 7.6331e-01, 8.0788e-01, 1.0877e-02, 8.1853e-01, + 8.3246e-01, 3.6368e-01, 8.0749e-01, 6.7944e-01, + 9.3962e-01, 7.1481e-01, 8.2467e-01, 2.3720e-01, + 2.7542e-02, 6.8095e-01, 1.0368e-01, 6.7194e-01, + 1.0479e-01, 7.9165e-01, 2.1297e-02, 2.0730e-02, + 3.8141e-01, 9.6166e-01, 8.6930e-01, 4.2073e-01, + 2.5932e-01, 2.3961e-01, 9.3855e-01, 1.2536e-01, + 9.9198e-01, 5.0149e-01, 1.4459e-01, 3.6921e-01, + 9.4060e-01, 6.9765e-01, 6.5926e-01, 9.4826e-02, + 1.4297e-01, 9.7199e-01, 9.2023e-01, 8.9138e-01, + 3.7324e-01, 1.0321e-01, 1.9921e-01, 8.3564e-01, + 2.4986e-01, 4.9795e-01, 2.8622e-02, 1.7386e-01, + 1.4263e-01, 8.9473e-01, 6.6143e-01, 3.1516e-01, + 1.7354e-01, 5.6727e-01, 7.7193e-01, 3.5273e-01, + 1.8512e-01, 4.1658e-01, 5.3853e-01, 8.3578e-01, + 6.3036e-01, 9.6190e-01, 6.8052e-01, 4.9802e-01, + 9.9218e-01, 9.3350e-01, 4.9292e-01, 7.9521e-01, + 6.8003e-01, 8.8502e-02, 5.6164e-01, 5.8685e-01, + 2.2649e-01, 4.7049e-01, 8.8696e-01, 5.7076e-01, + 8.7441e-01, 7.3233e-01, 4.1924e-01, 8.2306e-01, + 8.0621e-01, 1.1291e-01, 3.6505e-01, 8.5140e-01, + 6.1966e-01, 4.3601e-01, 4.7155e-01, 7.7953e-01, + 2.1177e-02, 9.7688e-02, 6.5088e-01, 4.5174e-01, + 4.5730e-01, 3.5247e-01, 5.3817e-01, 1.8409e-01, + 4.3721e-01, 3.6312e-01, 1.8724e-01, 4.5425e-01, + 3.5614e-01, 3.7101e-01, 4.7265e-01, 6.3708e-01, + 1.3279e-01, 2.9473e-01, 4.6383e-01, 5.4977e-01, + 7.3313e-01, 3.2890e-01, 2.0081e-01, 5.9486e-01, + 8.9168e-01, 8.4497e-01, 2.3011e-01, 5.5048e-01, + 8.6752e-02, 1.3523e-01, 3.5439e-01, 7.4537e-01, + 3.6407e-01, 7.5417e-01, 8.9886e-01, 9.3496e-01, + 4.7596e-01, 2.8324e-01, 3.0609e-01, 7.2095e-01, + 9.8370e-01, 8.3011e-01, 4.0133e-01, 1.6791e-01, + 1.1896e-01, 4.7232e-02, 8.1253e-01, 4.1000e-01, + 6.4639e-01, 9.0279e-01, 6.6295e-02, 9.1535e-01, + 7.5554e-01, 8.0943e-01, 1.2045e-02, 2.3788e-01, + 2.7486e-01, 1.8747e-01, 7.5191e-02, 7.4175e-01, + 8.0994e-01, 1.0639e-01, 1.2756e-01, 5.2657e-01, + 8.7900e-01, 7.2713e-01, 7.1680e-01, 3.5256e-01, + 2.8073e-01, 5.4246e-01, 9.2780e-01, 4.8756e-01, + 4.6708e-01, 3.5820e-01, 1.7134e-02, 8.1107e-01, + 6.3185e-01, 4.7038e-01, 9.7016e-01, 3.2185e-01, + 4.5108e-01, 6.8084e-01, 2.2407e-01, 2.0779e-01, + 1.4545e-01, 1.3683e-01, 9.1549e-01, 9.4544e-01, + 2.0136e-01, 9.8733e-01, 8.2640e-01, 2.6373e-01, + 2.2831e-01, 4.1784e-01, 4.8973e-02, 7.6857e-03, + 5.6025e-01, 3.4747e-01, 5.2796e-02, 2.0327e-01, + 3.2370e-01, 8.2799e-01, 2.0355e-03, 9.6161e-01, + 2.7352e-01, 3.2839e-01, 3.4822e-01, 3.7765e-02, + 4.8491e-01, 5.5830e-01, 3.9370e-01, 6.4758e-01, + 1.0243e-01, 1.9377e-01, 1.2500e-01, 8.4209e-01, + 5.3488e-01, 5.7637e-02, 7.5094e-01, 3.8499e-01, + 6.2593e-01, 8.2551e-01, 9.6206e-02, 9.0218e-01, + 4.3345e-01, 3.5948e-01, 4.2098e-01, 8.6707e-01, + 1.8134e-01, 3.3927e-01, 7.3745e-01, 4.5590e-01, + 6.7830e-01, 6.4065e-01, 9.7528e-01, 4.9618e-01, + 8.9165e-01, 3.4304e-02, 8.0689e-02, 6.2198e-01, + 9.2500e-01, 5.7231e-01, 5.4601e-01, 7.1177e-01, + 7.7343e-02, 7.5183e-01, 3.6338e-01, 2.9592e-01, + 8.9967e-01, 8.1056e-01, 9.8945e-01, 1.1409e-01, + 6.8590e-01, 4.2383e-01, 2.3391e-01, 4.0650e-01, + 4.4290e-01, 3.1725e-02, 4.4467e-01, 5.8922e-01, + 1.4654e-01, 2.2579e-01, 6.2783e-01, 7.7082e-02, + 3.2716e-01, 5.5930e-01, 1.1019e-01, 6.9282e-01, + 5.5649e-01, 5.8669e-01, 7.4220e-01, 5.8864e-01, + 6.0411e-01, 7.6133e-01, 6.2205e-01, 6.2570e-01, + 7.2584e-01, 5.1946e-01, 5.6949e-01, 7.4947e-01, + 2.5956e-01, 4.2420e-01, 5.3398e-01, 5.2985e-02, + 2.9698e-01, 9.7598e-01, 2.2000e-01, 2.1776e-01, + 8.9574e-01, 2.7824e-01, 4.6983e-01, 1.9870e-01, + 4.3874e-01, 3.9832e-01, 3.2144e-01, 7.9946e-01, + 2.7243e-01, 6.0530e-01, 4.2165e-01, 2.7238e-01, + 8.9068e-02, 5.5144e-01, 1.2004e-01, 7.9008e-01, + 5.7050e-01, 5.5040e-01, 6.4786e-01, 5.9082e-01, + 2.8414e-01, 5.8125e-01, 4.9365e-01, 8.0514e-01, + 5.9486e-01, 3.8399e-01, 1.3782e-01, 1.0333e-01, + 6.7468e-01, 2.0844e-01, 8.8832e-01, 1.9593e-01, + 6.2889e-01, 3.3247e-01, 2.1187e-01, 1.0866e-01, + 2.0868e-01, 2.9680e-02, 4.5547e-01, 8.9422e-01, + 3.9077e-01, 9.9746e-02, 6.2239e-01, 2.3448e-02, + 2.4295e-01, 8.7667e-02, 5.8614e-01, 8.2636e-01, + 5.1072e-01, 7.6563e-01, 3.5627e-01, 6.3236e-01, + 3.7013e-01, 4.1772e-01, 7.5071e-01, 8.5104e-01, + 8.4592e-01, 8.7538e-01, 2.2850e-01, 2.1287e-01, + 4.2400e-01, 8.6322e-01, 7.6443e-01, 2.5537e-01, + 3.8058e-02, 2.5064e-01, 3.0419e-01, 2.4691e-01, + 7.9434e-01, 5.8579e-02, 3.7704e-01, 2.7202e-01, + 3.3513e-01, 7.6560e-01, 3.1665e-01, 9.0649e-01, + 1.2467e-01, 6.1186e-01, 7.5907e-01, 7.2652e-01, + 6.4693e-01, 3.8269e-01, 7.9164e-01, 9.1999e-01, + 1.9315e-01, 1.7714e-01, 9.3746e-01, 3.9480e-02, + 8.9898e-01, 2.2585e-01, 2.7630e-01, 9.8067e-01, + 5.0769e-01, 3.5560e-01, 4.0877e-01, 8.3725e-01, + 9.4753e-01, 3.9868e-02, 2.2712e-01, 6.4876e-01, + 2.0055e-01, 7.8593e-01, 9.6043e-01, 6.8935e-01, + 4.1430e-01, 6.7393e-01, 7.4050e-02, 6.2638e-02, + 6.5713e-01, 4.9647e-01, 1.3031e-01, 7.4834e-01, + 1.5344e-01, 2.4760e-01, 4.2542e-01, 7.5322e-01, + 6.8415e-01, 4.7731e-01, 4.6063e-02, 7.8762e-01, + 9.8819e-01, 1.5537e-02, 2.0399e-01, 8.6580e-01, + 3.8878e-01, 4.1408e-01, 7.1853e-01, 5.4475e-01, + 1.1841e-01, 9.9366e-02, 5.5889e-01, 3.4656e-01, + 4.7116e-01, 7.6149e-01, 6.8969e-01, 8.6509e-01, + 4.7826e-01, 3.1348e-01, 1.3528e-02, 9.7726e-01, + 8.7322e-01, 2.1379e-01, 1.1895e-01, 9.4370e-01, + 8.8868e-01, 5.1800e-02, 1.4262e-01, 9.4395e-03, + 6.6922e-01, 1.2772e-01, 8.8232e-01, 1.9197e-01, + 3.3807e-01, 3.2444e-01, 4.3646e-01, 4.0366e-01, + 5.0795e-01, 5.1602e-01, 2.6266e-01, 8.6772e-01, + 3.1398e-03, 4.6534e-01, 6.6573e-01, 8.1341e-01, + 8.4108e-01, 8.7572e-01, 3.6295e-01, 1.5345e-01, + 6.9330e-01, 3.8809e-01, 8.3208e-01, 4.0353e-02, + 2.4857e-01, 9.1322e-01, 6.2572e-01, 4.6669e-01, + 9.4864e-01, 1.0186e-01, 4.3731e-01, 9.0551e-01, + 4.8981e-01, 6.3189e-01, 5.3961e-01, 1.7844e-01, + 6.5284e-01, 4.2512e-01, 1.6321e-01, 5.7377e-01, + 2.5314e-02, 5.3958e-01, 4.9314e-01, 1.8401e-01, + 2.5260e-01, 7.6402e-01, 3.6973e-01, 2.2137e-01, + 1.0628e-01, 1.0192e-01, 9.5441e-01, 9.2272e-01, + 5.2896e-01, 5.5054e-01, 8.6129e-01, 6.3769e-01, + 5.1177e-01, 7.6008e-01, 3.0811e-01, 7.8965e-01, + 2.3055e-01, 1.2552e-01, 1.6684e-01, 9.5996e-02, + 9.7730e-01, 7.6621e-01, 2.6800e-01, 5.5650e-01, + 3.5195e-01, 9.4167e-01, 2.7102e-01, 9.3503e-01, + 6.2169e-01, 1.2476e-01, 1.0551e-01, 8.2415e-01, + 1.4182e-01, 7.2223e-01, 4.8949e-01, 7.9973e-01, + 5.6231e-01, 4.6153e-02, 4.4980e-02, 7.4129e-01, + 5.3866e-01, 4.8765e-01, 2.4167e-01, 2.0624e-01, + 9.9122e-01, 2.5684e-02, 6.2336e-01, 7.9183e-01, + 6.1223e-01, 5.1773e-01, 4.3163e-01, 1.9391e-01, + 4.6406e-01, 5.6346e-01, 2.6337e-01, 2.5415e-01, + 3.7639e-02, 2.6401e-01, 3.7948e-01, 1.8675e-01, + 9.4166e-02, 9.4510e-01, 4.5571e-02, 6.7933e-01, + 3.6024e-01, 4.7940e-01, 9.1696e-01, 7.1344e-01, + 2.2195e-01, 5.6368e-01, 8.2792e-01, 6.7382e-01, + 9.6245e-01, 3.8226e-01, 7.2001e-01, 8.0994e-01, + 2.4846e-01, 7.3084e-01, 1.4812e-01, 9.5053e-01, + 3.1924e-01, 4.2193e-01, 8.5927e-01, 6.3362e-01, + 7.5842e-02, 1.6576e-01, 1.6158e-01, 7.8704e-01, + 9.9236e-01, 8.8717e-01, 8.8558e-02, 9.1824e-01, + 5.4881e-01, 9.6073e-01, 6.8978e-01, 5.6150e-01, + 5.5971e-02, 1.2710e-01, 3.7060e-01, 8.4473e-01, + 8.7565e-01, 6.8438e-01, 1.2531e-01, 8.4563e-01, + 5.0923e-01, 8.0637e-01, 4.8932e-01, 6.3520e-01, + 6.7736e-02, 4.1724e-01, 9.5857e-01, 6.6929e-01, + 7.5370e-01, 7.1422e-01, 5.5127e-01, 7.0222e-02, + 6.1092e-03, 6.9753e-01, 7.7642e-01, 1.3287e-01, + 6.9913e-02, 4.3096e-01, 9.1632e-01, 3.9274e-01, + 1.5659e-02, 7.8518e-01, 6.1763e-01, 6.1145e-01, + 3.1190e-01, 5.7320e-02, 5.9041e-01, 1.3355e-01, + 3.5387e-01, 4.2908e-01, 8.7031e-01, 2.4563e-01, + 9.5923e-01, 8.7749e-01, 4.2582e-01, 2.2163e-01, + 9.4781e-01, 5.1842e-01, 5.3461e-01, 3.6847e-01, + 6.4925e-01, 8.7326e-01, 9.1968e-01, 9.8020e-01, + 9.5646e-01, 9.5035e-01, 3.2753e-02, 6.7257e-01, + 2.0325e-01, 6.5615e-01, 3.5141e-01, 5.3907e-01]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.5197, 0.1343, 0.9407, ..., 0.1023, 0.5237, 0.0220]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 0.06630802154541016 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '158351', '-ss', '10000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 7.378459692001343} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), + col_indices=tensor([3030, 59, 6550, 5129, 1609, 5117, 7383, 9965, 3582, + 3502, 6345, 6436, 6545, 1264, 2983, 1876, 8807, 2513, + 1370, 9845, 3410, 1788, 9280, 9662, 1023, 5271, 4153, + 4966, 4311, 2499, 1351, 830, 9219, 80, 3996, 2842, + 7114, 2706, 7320, 1382, 918, 2923, 9877, 4768, 3727, + 9013, 967, 4451, 7441, 5152, 1538, 6863, 4268, 9001, + 4281, 9503, 6429, 8410, 3672, 4516, 1695, 339, 7612, + 3853, 503, 5817, 6729, 1224, 5432, 764, 7789, 9927, + 4207, 9375, 7672, 5553, 2923, 8869, 3033, 248, 9790, + 3596, 455, 6400, 8397, 9560, 6512, 4381, 185, 4100, + 9584, 4048, 7087, 5738, 4019, 9557, 6085, 6728, 6633, + 101, 4333, 6438, 6166, 4315, 8383, 4034, 9750, 3066, + 2471, 5789, 4395, 2815, 7182, 6690, 2540, 8742, 1904, + 5243, 4296, 5959, 4343, 4260, 4115, 6532, 9325, 6153, + 9591, 8540, 3207, 1585, 6761, 3379, 3260, 9088, 3717, + 685, 5872, 8610, 8260, 5683, 3038, 6214, 9531, 2340, + 9865, 9337, 5977, 4107, 6434, 2342, 3715, 9621, 3053, + 4316, 7097, 1902, 3448, 5792, 1219, 759, 2509, 8648, + 9649, 4677, 2456, 614, 5611, 9487, 8106, 7, 1745, + 2835, 9097, 1727, 8069, 784, 7118, 7010, 2729, 3409, + 5685, 4035, 6333, 2490, 6148, 6575, 1922, 1160, 1257, + 9009, 3350, 5822, 3312, 2407, 6575, 4614, 4540, 1789, + 1661, 4097, 2425, 4228, 4887, 9365, 8894, 7648, 2017, + 5068, 7509, 823, 195, 821, 2531, 6022, 3985, 3280, + 7691, 2509, 4294, 6786, 1816, 7402, 5559, 3397, 5943, + 858, 6125, 9032, 8306, 7874, 2186, 6459, 9673, 1977, + 16, 2819, 1027, 5589, 2216, 6997, 8074, 671, 9956, + 2431, 1532, 4240, 452, 8355, 8520, 5044, 6356, 9717, + 1142, 9795, 3277, 1923, 5307, 9303, 6719, 8279, 7511, + 1335, 4212, 3277, 6006, 1726, 4642, 9122, 5487, 2829, + 9002, 5207, 4895, 1683, 4291, 8421, 4130, 6353, 1377, + 5906, 1897, 6611, 4080, 1407, 585, 8107, 8247, 5543, + 2328, 3484, 7395, 3540, 1966, 6816, 5563, 3652, 7319, + 4142, 6363, 8838, 503, 2602, 2880, 4026, 152, 9796, + 1747, 3128, 5142, 5791, 7601, 196, 1981, 8139, 2949, + 4909, 1975, 4395, 858, 8238, 724, 3667, 9865, 3855, + 138, 5368, 6194, 9181, 8967, 8549, 3812, 2142, 4423, + 5959, 8082, 6957, 8140, 8868, 8523, 9166, 4265, 5420, + 4181, 8242, 1122, 9352, 1314, 1217, 5467, 2336, 897, + 1594, 3805, 7775, 6292, 8815, 492, 2178, 6932, 7231, + 5464, 8924, 4607, 9274, 7105, 5147, 8488, 9592, 1521, + 5225, 9395, 9857, 8855, 5329, 7366, 3988, 199, 8135, + 3842, 6474, 7231, 7178, 1580, 4649, 1813, 3718, 5061, + 7663, 248, 5825, 6001, 8654, 6399, 3504, 8170, 4599, + 1078, 9618, 2131, 5690, 1645, 262, 680, 1277, 6857, + 3961, 721, 2643, 2321, 6588, 9579, 4261, 1614, 5705, + 1191, 5048, 2942, 1583, 3120, 5053, 6565, 3767, 7025, + 1100, 4355, 6361, 541, 2760, 3441, 5809, 5135, 2105, + 7594, 3729, 666, 5685, 7057, 1778, 6063, 4639, 2534, + 3964, 3187, 5975, 5483, 2504, 9370, 7508, 6786, 929, + 5644, 5683, 1086, 8478, 6786, 9380, 8635, 7017, 7238, + 7467, 7979, 8925, 9783, 9232, 7359, 7623, 2270, 971, + 4750, 9371, 718, 2696, 6998, 8080, 3912, 5282, 3940, + 8588, 2946, 619, 1510, 2099, 3551, 4960, 9524, 3432, + 1593, 1068, 4649, 555, 1068, 1689, 4514, 7841, 1140, + 7463, 9725, 181, 9549, 3768, 6604, 6287, 127, 392, + 4432, 4768, 1077, 642, 1198, 5507, 5343, 5457, 4768, + 5963, 9306, 148, 251, 5680, 4486, 4565, 9802, 6833, + 397, 5887, 7332, 2043, 5186, 3750, 476, 9438, 655, + 3787, 9911, 7128, 1751, 9121, 5496, 4143, 8965, 6945, + 6512, 7635, 7, 1867, 9006, 6414, 9482, 4176, 8995, + 9634, 4222, 1135, 6863, 6145, 352, 8959, 7504, 3779, + 5162, 7551, 4978, 9974, 9515, 244, 1235, 3633, 8051, + 4975, 4624, 6742, 6585, 9093, 2627, 3173, 800, 3970, + 2546, 4565, 9219, 1267, 5979, 1366, 4034, 2123, 4826, + 2993, 1756, 3418, 7034, 2404, 9484, 1274, 8343, 8493, + 7313, 7383, 5797, 3324, 8794, 2261, 4095, 5386, 7256, + 1553, 2453, 7794, 2425, 1378, 923, 8521, 7054, 3251, + 9944, 222, 6060, 2597, 841, 5029, 241, 2448, 7153, + 1754, 9192, 3251, 9003, 4258, 965, 5487, 9877, 1407, + 5857, 5577, 4873, 5167, 1070, 2192, 8383, 5800, 5115, + 1550, 8430, 7929, 2829, 476, 6383, 7041, 9817, 944, + 1938, 1781, 6844, 4754, 7495, 5752, 245, 3045, 513, + 6041, 2578, 7841, 9961, 6617, 6588, 2348, 3896, 3814, + 6306, 4128, 2769, 8400, 1921, 7813, 7570, 1902, 7530, + 7840, 4843, 4855, 4851, 7007, 7884, 204, 4953, 5658, + 6148, 7130, 2138, 6793, 341, 4971, 1598, 8475, 2999, + 3160, 6501, 9297, 2442, 4932, 3812, 5473, 1295, 7195, + 7968, 9486, 6434, 5443, 9007, 3854, 3015, 7589, 2580, + 2496, 3065, 3343, 7236, 6924, 8826, 6177, 4552, 5816, + 2114, 1485, 144, 354, 3335, 7377, 5343, 2440, 8287, + 2294, 5366, 4663, 7797, 3151, 9315, 6355, 4810, 114, + 8681, 6794, 3524, 2601, 3956, 8045, 7908, 8928, 5559, + 1902, 5390, 9595, 6448, 6949, 5791, 9737, 4440, 5290, + 4816, 4084, 7437, 2734, 1612, 1655, 4908, 3686, 665, + 9602, 8235, 5605, 6907, 4228, 5876, 4913, 8307, 9150, + 8639, 7967, 7381, 6505, 2366, 4699, 2784, 68, 8896, + 4247, 8241, 1203, 2390, 3625, 746, 9101, 2998, 5038, + 5677, 2395, 2134, 940, 5232, 6468, 8303, 7362, 8939, + 5432, 2488, 6765, 9603, 3903, 3668, 4199, 2888, 6841, + 9474, 8211, 8523, 9117, 9034, 7995, 5270, 6466, 766, + 1434, 2417, 1016, 9405, 818, 5517, 3352, 7580, 261, + 3658, 6492, 3168, 5058, 3775, 1324, 8648, 6816, 2412, + 7397, 3598, 5056, 3440, 5958, 8049, 1771, 111, 4598, + 8679, 5370, 8364, 1742, 6048, 1505, 4355, 6804, 184, + 1681, 6781, 2514, 4329, 6441, 5616, 6551, 8936, 9061, + 2902, 3224, 1250, 1972, 6436, 1607, 2412, 4057, 265, + 2370, 7233, 8691, 7897, 796, 7944, 5701, 7304, 2458, + 2347, 2242, 1766, 6981, 8197, 4263, 8384, 6440, 5315, + 6798, 5859, 2232, 8383, 5407, 9442, 8356, 5302, 387, + 3876, 410, 1304, 1145, 4955, 1705, 7354, 9892, 1845, + 1442, 8952, 3360, 3650, 7087, 7119, 9959, 405, 4108, + 308, 5986, 1954, 3993, 824, 7444, 9450, 1888, 6858, + 3619, 8253, 5493, 5506, 2727, 7819, 3917, 3109, 5033, + 8416, 9067, 4550, 6890, 4862, 8772, 3900, 4998, 7497, + 3397, 8403, 7971, 483, 7901, 1585, 4652, 4984, 2301, + 863, 9175, 8905, 6187, 1485, 7549, 8289, 6156, 7343, + 4622, 6092, 9744, 2017, 1732, 2871, 8274, 926, 6781, + 1559, 8975, 1878, 8600, 943, 6048, 2064, 1328, 3991, + 6711, 852, 9217, 4189, 8860, 6699, 7281, 6991, 4911, + 7264, 8380, 3513, 1421, 9636, 6147, 9679, 2654, 4596, + 5819]), + values=tensor([8.5002e-01, 4.0213e-02, 9.1253e-01, 2.2431e-01, + 7.0130e-01, 1.0872e-01, 5.0717e-01, 8.6787e-01, + 3.8797e-01, 8.5474e-02, 2.2217e-02, 5.1779e-01, + 9.7056e-01, 7.3706e-02, 7.3188e-01, 7.7849e-01, + 8.2346e-01, 2.4260e-01, 7.5024e-02, 8.0911e-01, + 8.7757e-01, 6.7674e-01, 7.9534e-01, 3.9115e-02, + 6.6762e-01, 2.2564e-01, 8.6394e-01, 9.0823e-01, + 7.3267e-01, 8.0430e-01, 6.6621e-01, 8.4621e-01, + 2.5323e-01, 6.1414e-01, 2.3294e-01, 8.7489e-01, + 8.5234e-01, 6.0473e-01, 5.9725e-01, 9.5903e-01, + 5.3677e-01, 5.3216e-01, 7.3269e-01, 6.4280e-01, + 1.5468e-01, 6.6137e-01, 6.3899e-01, 3.2078e-01, + 3.6882e-01, 4.9352e-01, 9.6426e-01, 5.8507e-01, + 1.8324e-01, 1.1925e-01, 4.5652e-01, 1.0293e-01, + 4.3238e-01, 2.9597e-01, 3.8101e-01, 1.5863e-01, + 7.3804e-01, 1.0645e-01, 4.8662e-01, 4.6824e-01, + 3.2667e-01, 4.1442e-01, 2.6910e-01, 2.9546e-01, + 3.1143e-01, 7.5538e-01, 6.0373e-01, 3.6330e-01, + 2.0420e-01, 2.0736e-01, 5.6918e-01, 8.3971e-01, + 4.9280e-01, 1.1509e-01, 1.6242e-01, 3.0494e-01, + 4.1115e-01, 2.6350e-01, 8.6493e-01, 2.2754e-01, + 9.5823e-01, 1.7468e-01, 9.7716e-01, 3.3426e-03, + 5.2224e-01, 5.1504e-01, 7.6618e-01, 9.4096e-01, + 1.0026e-01, 7.2147e-01, 8.9091e-03, 6.5578e-01, + 5.7680e-01, 6.2380e-01, 1.2388e-01, 4.8371e-02, + 6.0207e-01, 5.4194e-01, 8.6673e-01, 6.8807e-01, + 9.2816e-01, 3.7517e-01, 3.0093e-01, 4.7584e-01, + 3.9720e-01, 1.4799e-01, 3.7378e-01, 6.3618e-01, + 6.9998e-01, 3.6491e-02, 8.6223e-04, 2.0838e-01, + 3.3022e-01, 5.8860e-01, 5.0472e-01, 4.5864e-01, + 6.9251e-01, 8.7311e-01, 6.0810e-01, 8.0723e-01, + 4.6900e-02, 5.2803e-01, 2.8674e-01, 6.3796e-01, + 7.6113e-01, 2.8559e-02, 1.1819e-01, 6.8456e-01, + 7.3463e-01, 7.1508e-01, 9.9122e-02, 5.2849e-01, + 6.0787e-01, 7.9490e-01, 7.6185e-01, 1.4280e-01, + 1.1419e-01, 4.2900e-01, 5.6288e-01, 9.7748e-01, + 4.2712e-01, 2.6940e-02, 8.9639e-01, 6.0532e-01, + 9.4589e-02, 8.6930e-01, 3.3279e-01, 7.2853e-01, + 9.8308e-01, 1.3934e-01, 8.0534e-01, 1.7934e-01, + 7.4819e-02, 8.3434e-01, 1.7989e-01, 6.3853e-01, + 7.4590e-01, 7.1550e-01, 1.9937e-01, 3.3854e-01, + 3.1956e-01, 1.2080e-01, 4.5433e-01, 4.1144e-01, + 2.9245e-01, 7.0957e-01, 7.9118e-01, 6.7318e-01, + 7.1152e-02, 9.6943e-01, 9.0645e-01, 9.5728e-01, + 9.2584e-02, 4.5463e-01, 8.9875e-01, 4.2892e-01, + 7.4012e-01, 9.2096e-02, 3.5517e-01, 5.1190e-02, + 6.3615e-02, 8.3725e-01, 8.0348e-01, 2.6847e-01, + 5.9974e-01, 9.9716e-03, 9.4549e-01, 4.1603e-01, + 9.4601e-01, 1.3903e-01, 9.9025e-01, 9.7393e-01, + 9.8532e-01, 6.1307e-01, 5.3268e-01, 4.6562e-01, + 9.4921e-01, 8.8215e-03, 2.0442e-01, 7.9116e-01, + 2.8725e-01, 7.4589e-01, 7.7301e-01, 7.9280e-01, + 7.5700e-01, 9.5566e-01, 2.0767e-01, 6.8747e-01, + 3.2254e-01, 6.0591e-01, 8.4403e-01, 4.9854e-01, + 6.9777e-01, 7.2884e-01, 3.1959e-01, 5.6763e-01, + 5.5468e-01, 1.0836e-01, 4.2999e-01, 8.2260e-01, + 2.5615e-01, 5.2061e-01, 5.0681e-01, 8.6740e-01, + 5.6621e-01, 6.8303e-01, 2.0291e-01, 7.6646e-01, + 6.7874e-01, 8.9417e-01, 5.9343e-02, 8.4751e-01, + 5.5985e-01, 6.8764e-01, 9.9525e-01, 2.6092e-01, + 9.1041e-01, 2.3029e-01, 3.7572e-01, 8.6059e-01, + 8.3437e-01, 6.3063e-01, 6.6503e-01, 3.3086e-01, + 3.8668e-01, 3.0906e-01, 2.7012e-01, 7.8278e-01, + 2.2158e-01, 6.9139e-01, 6.5837e-01, 1.2809e-01, + 3.5816e-01, 6.1952e-01, 8.8501e-01, 3.0352e-01, + 9.6048e-01, 7.8246e-01, 4.9874e-01, 7.3178e-01, + 8.2835e-01, 7.3414e-01, 1.6573e-01, 8.4634e-01, + 1.7703e-01, 6.2453e-01, 9.3052e-01, 2.7888e-01, + 3.2672e-02, 7.9726e-02, 3.0782e-01, 9.7174e-02, + 8.3718e-01, 2.3853e-01, 8.6109e-01, 8.2272e-01, + 6.8108e-01, 1.7347e-01, 8.2108e-01, 9.7998e-01, + 2.2742e-01, 9.0193e-02, 3.2084e-01, 2.8788e-01, + 1.5575e-01, 6.6682e-01, 8.1101e-01, 4.9994e-01, + 1.9732e-01, 4.4363e-01, 5.4428e-01, 8.9883e-01, + 2.5187e-01, 1.0721e-01, 8.9044e-01, 1.5542e-01, + 1.3403e-01, 2.2363e-01, 2.7378e-03, 8.7162e-01, + 1.6844e-01, 8.5566e-01, 6.6880e-01, 2.6291e-01, + 6.9538e-01, 6.8331e-01, 6.7787e-01, 2.3285e-01, + 4.7663e-01, 2.6981e-01, 6.4868e-01, 1.7524e-01, + 7.6707e-02, 1.8944e-01, 5.6575e-01, 1.4722e-01, + 1.5100e-01, 8.5911e-01, 9.9343e-03, 8.9457e-01, + 3.1699e-02, 3.8765e-01, 1.3483e-01, 3.6732e-01, + 9.7429e-01, 5.4296e-01, 6.7326e-01, 6.9972e-01, + 8.9702e-01, 7.0386e-01, 9.6002e-01, 8.9700e-02, + 8.9882e-01, 6.7725e-01, 4.6299e-01, 1.7159e-01, + 4.9117e-01, 8.9196e-01, 9.6851e-01, 4.7800e-01, + 9.5385e-02, 5.6297e-01, 5.6356e-01, 5.9294e-01, + 7.0319e-01, 1.3678e-01, 6.3563e-01, 9.4198e-01, + 2.3151e-02, 7.7163e-01, 3.0962e-01, 3.7165e-01, + 8.7651e-01, 9.7121e-01, 3.9310e-01, 5.2847e-02, + 3.2199e-01, 4.9537e-01, 9.5545e-01, 2.3507e-01, + 2.3767e-01, 8.1347e-01, 2.2219e-01, 9.0933e-01, + 1.9777e-01, 3.1588e-01, 7.3552e-01, 4.9202e-01, + 9.8937e-01, 6.6430e-01, 2.4427e-01, 6.2592e-01, + 5.9817e-01, 5.8423e-01, 7.5325e-01, 4.4538e-01, + 6.4641e-01, 6.7568e-01, 9.0316e-01, 5.5413e-01, + 3.8122e-01, 9.0955e-01, 7.2073e-01, 4.8867e-01, + 4.8279e-01, 9.4816e-01, 9.0381e-01, 5.4589e-01, + 7.8337e-01, 4.4529e-01, 1.8979e-01, 9.5264e-01, + 9.6492e-01, 3.9527e-01, 9.6845e-01, 9.5259e-01, + 5.5068e-01, 1.6060e-01, 4.7763e-01, 4.3552e-01, + 1.6896e-01, 5.4887e-01, 3.7587e-01, 3.8465e-02, + 3.5658e-01, 1.2049e-01, 5.7336e-01, 5.1729e-01, + 6.4706e-01, 6.5190e-01, 2.3036e-02, 6.5191e-01, + 9.0814e-01, 2.3785e-01, 2.2227e-01, 5.1431e-01, + 8.5854e-01, 2.9207e-02, 3.6869e-02, 5.3267e-01, + 8.1353e-01, 3.7039e-01, 3.4545e-01, 3.4090e-01, + 3.6383e-01, 2.7003e-01, 7.6825e-01, 2.3112e-01, + 6.1238e-01, 9.1115e-01, 4.0282e-01, 6.2263e-01, + 3.1260e-01, 3.4693e-01, 9.2334e-01, 8.4803e-01, + 2.0720e-01, 8.3284e-01, 6.1706e-01, 2.3491e-01, + 6.2029e-01, 5.0295e-01, 9.5597e-02, 8.6604e-01, + 5.4461e-01, 3.0985e-01, 2.8640e-01, 5.8299e-01, + 5.9539e-01, 7.8610e-01, 4.0644e-01, 1.9591e-01, + 9.8714e-01, 5.5422e-01, 6.6009e-01, 6.5623e-01, + 4.7211e-01, 9.7577e-01, 5.4376e-02, 4.8873e-01, + 2.5046e-01, 9.7071e-01, 4.5692e-01, 2.9522e-01, + 4.3800e-01, 4.4981e-01, 3.1010e-01, 7.2093e-01, + 2.6378e-01, 8.8650e-01, 7.2618e-01, 1.0382e-01, + 3.4808e-01, 8.4350e-01, 4.2346e-01, 7.4116e-01, + 3.2027e-01, 3.5928e-01, 2.6143e-01, 2.6928e-01, + 4.8273e-01, 8.1424e-01, 9.5944e-01, 2.4768e-01, + 2.9919e-01, 8.7165e-01, 2.5121e-01, 9.5261e-02, + 4.9475e-01, 5.9006e-01, 4.4138e-02, 1.6527e-01, + 3.6531e-01, 8.1856e-02, 7.2132e-01, 6.7393e-01, + 5.0358e-01, 4.7375e-02, 1.9737e-01, 4.0566e-01, + 8.9374e-01, 5.1706e-01, 3.3197e-01, 9.4194e-01, + 8.1128e-01, 9.0815e-01, 1.8022e-01, 5.6491e-01, + 6.4344e-01, 4.0320e-01, 3.2057e-01, 9.2835e-01, + 3.8514e-01, 4.6926e-01, 5.3728e-01, 9.9096e-01, + 2.7444e-01, 1.3943e-01, 5.0450e-02, 2.0364e-01, + 7.2101e-01, 6.4227e-01, 7.3437e-02, 3.4761e-01, + 2.5405e-01, 9.1278e-01, 4.7995e-01, 9.5488e-01, + 7.4371e-01, 6.6603e-01, 2.3974e-01, 3.4592e-02, + 7.3876e-01, 3.4801e-01, 8.8779e-01, 4.3777e-01, + 4.3845e-01, 5.7543e-01, 9.6446e-01, 6.2161e-01, + 7.6066e-01, 9.4877e-01, 5.3776e-01, 3.1055e-01, + 7.1135e-01, 1.1340e-01, 2.6750e-01, 5.9840e-01, + 6.3359e-01, 4.7302e-01, 7.2304e-01, 3.4893e-01, + 9.9141e-01, 8.1124e-01, 5.0608e-01, 2.3399e-01, + 7.4022e-01, 9.5753e-01, 2.3787e-01, 4.4086e-01, + 4.1907e-02, 8.5994e-01, 4.2848e-01, 5.6001e-02, + 1.8901e-01, 2.6258e-01, 9.2142e-01, 8.5102e-01, + 1.6385e-01, 8.9360e-01, 4.7573e-01, 8.3904e-01, + 7.2303e-01, 2.1523e-01, 9.5797e-02, 8.4965e-01, + 1.5582e-02, 6.9949e-01, 2.0990e-01, 6.6230e-01, + 3.3945e-01, 4.4961e-01, 4.7358e-01, 3.6442e-01, + 9.2621e-01, 9.1263e-01, 3.3093e-01, 9.9546e-01, + 1.2292e-01, 5.8902e-01, 4.0507e-01, 2.5828e-01, + 5.6008e-01, 1.4206e-01, 2.5683e-01, 3.6288e-01, + 6.3017e-01, 4.5414e-01, 3.9705e-01, 2.1577e-01, + 1.3292e-01, 1.8034e-01, 8.8991e-01, 7.1935e-01, + 5.9429e-01, 9.9354e-01, 1.7179e-01, 7.5835e-01, + 2.3578e-01, 2.3525e-01, 7.7626e-02, 8.0092e-01, + 7.3054e-01, 4.1056e-01, 8.3357e-01, 5.1139e-01, + 5.9262e-01, 6.1930e-01, 2.4519e-01, 7.1002e-01, + 1.0359e-01, 9.4412e-01, 2.0540e-01, 4.4538e-01, + 1.9801e-01, 8.4549e-01, 1.3250e-01, 9.6561e-01, + 3.2952e-01, 4.5267e-01, 8.1779e-01, 4.9954e-01, + 8.1181e-01, 5.0196e-01, 8.1658e-01, 5.2260e-01, + 4.8766e-01, 6.1090e-01, 2.7996e-03, 6.1966e-01, + 1.0513e-01, 5.5944e-01, 5.8645e-01, 3.3516e-01, + 6.7152e-01, 9.7838e-01, 3.8614e-01, 2.2510e-01, + 1.1594e-01, 4.2558e-01, 7.5483e-01, 2.2281e-01, + 6.4874e-01, 6.2431e-01, 7.1246e-01, 2.0051e-01, + 6.8784e-01, 7.5154e-01, 2.2389e-01, 2.9409e-01, + 6.7033e-01, 1.3873e-01, 2.2023e-01, 4.2485e-01, + 8.6454e-01, 3.0450e-01, 6.0648e-02, 1.0412e-01, + 3.9554e-01, 4.9764e-01, 4.2581e-01, 8.2417e-01, + 6.6608e-01, 8.9779e-01, 4.4620e-01, 8.4021e-01, + 4.3955e-01, 1.4273e-02, 3.7131e-01, 7.9727e-01, + 7.8979e-01, 3.4960e-02, 5.8742e-01, 1.6448e-01, + 7.6381e-01, 4.3659e-01, 2.7623e-01, 6.5986e-01, + 4.9064e-01, 4.3570e-01, 6.8144e-01, 6.4062e-01, + 1.8843e-01, 3.4080e-02, 2.0154e-01, 6.7966e-01, + 4.2961e-01, 2.9540e-01, 1.6401e-01, 3.6909e-02, + 3.3548e-01, 3.2363e-01, 2.6177e-01, 9.3368e-02, + 1.4344e-01, 9.0926e-01, 1.7042e-01, 2.4324e-02, + 6.5289e-01, 1.4628e-03, 1.9798e-01, 9.2151e-01, + 4.7723e-01, 3.7485e-01, 8.2334e-01, 8.3544e-02, + 2.4561e-01, 8.0684e-01, 7.7035e-01, 6.6984e-01, + 5.7007e-01, 6.7637e-01, 8.0901e-01, 6.7966e-01, + 8.4204e-01, 8.8033e-01, 9.1838e-02, 9.9538e-01, + 6.2287e-01, 7.6179e-01, 3.8147e-01, 3.1116e-01, + 1.9657e-01, 6.2511e-01, 1.3860e-01, 9.4396e-02, + 9.4701e-01, 1.3069e-01, 3.6507e-01, 4.5613e-01, + 8.2271e-01, 7.6979e-01, 7.9135e-01, 9.0423e-01, + 5.5221e-02, 3.2789e-01, 5.3398e-01, 7.2227e-01, + 5.5077e-01, 7.9912e-01, 3.1821e-01, 2.9968e-01, + 2.6198e-01, 4.4762e-01, 4.1259e-01, 3.5473e-01, + 3.3291e-01, 7.9301e-01, 1.9792e-01, 8.2528e-01, + 5.6413e-01, 3.8333e-01, 6.6165e-01, 9.5147e-01, + 5.6272e-01, 3.4675e-01, 8.4375e-01, 5.5159e-01, + 5.3099e-01, 4.9407e-01, 7.9268e-02, 8.1325e-01, + 3.4302e-01, 3.0490e-01, 6.8784e-01, 6.0200e-01, + 4.9785e-01, 9.9652e-01, 4.9685e-01, 3.7151e-02, + 7.1723e-01, 5.1630e-01, 1.6186e-01, 9.6119e-01, + 1.1189e-01, 1.5225e-01, 1.4287e-01, 6.2875e-01, + 2.7014e-01, 2.2493e-01, 8.1982e-01, 8.4144e-01, + 5.0012e-01, 1.4440e-01, 9.4782e-01, 4.6966e-02, + 8.0094e-02, 3.2817e-01, 6.3697e-01, 8.5243e-01, + 7.4477e-01, 6.9831e-01, 2.5635e-01, 4.9113e-01, + 9.0614e-01, 7.4352e-01, 2.9479e-01, 8.5765e-02, + 2.8369e-01, 6.9140e-01, 2.1910e-02, 9.4584e-01, + 7.8362e-01, 4.3661e-01, 7.1737e-01, 7.5240e-01, + 2.1046e-01, 5.2459e-01, 3.5669e-01, 3.3327e-01, + 6.2195e-01, 6.0351e-02, 4.2394e-01, 2.4002e-01, + 3.9737e-01, 2.4284e-01, 1.9289e-01, 1.7477e-02, + 2.0540e-01, 6.2604e-01, 7.9723e-01, 1.8385e-01, + 4.4053e-01, 8.8051e-01, 3.9557e-01, 8.8700e-01, + 5.1404e-01, 1.1995e-01, 7.9981e-01, 9.5382e-01, + 2.5272e-01, 3.5468e-01, 9.4974e-01, 8.9205e-01, + 3.6139e-01, 3.4499e-01, 2.7777e-01, 4.5664e-02, + 3.3382e-01, 1.0880e-01, 1.0491e-01, 1.3107e-01, + 8.1198e-01, 2.3710e-01, 9.5701e-01, 7.4072e-01, + 7.6013e-01, 7.4297e-01, 5.3934e-01, 3.8833e-02, + 7.9923e-01, 3.5716e-01, 4.5914e-01, 7.5921e-01, + 5.7660e-01, 8.6321e-01, 2.2011e-02, 7.0175e-02, + 8.7068e-01, 9.6840e-01, 7.8858e-01, 3.6922e-01, + 1.5989e-01, 9.9897e-01, 9.2523e-01, 9.9307e-01, + 3.7901e-01, 8.1987e-01, 3.4500e-01, 1.5604e-01, + 7.8108e-01, 4.1640e-01, 3.1537e-02, 7.8822e-01, + 1.3566e-02, 7.9552e-01, 2.6343e-01, 1.6404e-01, + 8.5056e-01, 4.8415e-01, 8.7964e-01, 4.9371e-02, + 5.3510e-01, 5.4496e-01, 6.0403e-01, 6.4549e-01, + 6.2952e-01, 3.9012e-01, 1.5224e-01, 4.3444e-01, + 8.5023e-01, 4.7839e-01, 6.2135e-01, 6.2664e-01, + 1.0599e-01, 8.8547e-01, 3.4726e-01, 6.0114e-01, + 4.3156e-01, 6.2812e-01, 8.9258e-01, 3.4239e-01, + 6.5832e-01, 4.1027e-01, 6.5773e-01, 7.6454e-01, + 9.4528e-01, 3.2822e-01, 4.7317e-01, 6.1735e-01, + 3.4826e-01, 8.6858e-01, 1.5556e-01, 8.6319e-02, + 3.9145e-01, 3.8480e-01, 5.3481e-01, 2.1462e-01, + 5.6472e-01, 9.8377e-01, 9.3747e-01, 1.9774e-01, + 1.9057e-01, 3.2741e-01, 6.2384e-01, 7.4136e-01, + 2.1178e-01, 7.3846e-02, 9.0975e-01, 3.2634e-01, + 5.8112e-01, 2.1702e-01, 2.5733e-01, 3.8455e-02, + 6.9794e-02, 5.3320e-01, 3.1507e-01, 4.9119e-01, + 3.2327e-01, 6.8532e-01, 5.8372e-01, 7.8756e-01, + 2.1891e-01, 3.5249e-01, 4.3209e-01, 4.3462e-02, + 6.6437e-01, 9.2221e-02, 7.4176e-01, 5.1241e-01, + 8.4088e-01, 7.2546e-01, 1.0085e-02, 4.4493e-01, + 7.6520e-01, 2.9433e-01, 5.2500e-01, 9.3563e-01, + 1.7180e-01, 8.6186e-01, 7.7692e-01, 9.7679e-01, + 8.5362e-01, 5.9534e-01, 4.0603e-01, 5.1477e-02, + 3.0904e-01, 3.9728e-01, 4.2540e-01, 1.5835e-01, + 8.9235e-02, 3.2287e-01, 6.8976e-01, 5.8624e-01, + 4.1334e-01, 8.0596e-01, 9.5544e-01, 5.8646e-02, + 1.3845e-01, 5.1892e-01, 4.5679e-01, 1.9582e-01, + 1.2285e-01, 6.1279e-01, 7.3482e-01, 6.7204e-01]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.4203, 0.6136, 0.5758, ..., 0.4091, 0.3563, 0.6125]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 7.378459692001343 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '225343', '-ss', '10000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.386851072311401} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 1, ..., 1000, 1000, 1000]), + col_indices=tensor([5090, 5520, 6854, 5240, 6540, 5414, 9539, 8466, 479, + 3119, 5272, 7854, 2035, 3254, 301, 9387, 5412, 9403, + 3029, 6749, 4880, 1485, 7157, 5629, 6151, 4478, 7699, + 7698, 6954, 7468, 2219, 5639, 6353, 506, 8308, 5821, + 2487, 7627, 3842, 7369, 6744, 2867, 7111, 7921, 1986, + 380, 9961, 4202, 9024, 661, 5897, 7449, 9845, 9461, + 9917, 234, 7756, 4104, 195, 2757, 4588, 1755, 600, + 3208, 9769, 495, 8241, 6634, 6218, 247, 649, 2255, + 6934, 5056, 3570, 5404, 4033, 4528, 6168, 3330, 5154, + 6668, 8969, 4990, 5914, 7294, 7798, 8937, 1984, 811, + 8267, 6000, 8441, 2901, 6504, 2951, 6191, 5592, 9657, + 5206, 4311, 4344, 6838, 4035, 8212, 9827, 8714, 8242, + 2597, 1268, 6941, 152, 4041, 7546, 5546, 9553, 8677, + 3838, 1475, 6605, 2849, 8979, 1585, 9524, 5732, 668, + 8770, 2014, 4555, 5432, 5784, 211, 829, 5623, 601, + 2334, 1210, 8619, 2536, 8949, 1829, 5741, 5371, 2300, + 3074, 3033, 4257, 6930, 5374, 2094, 8363, 8250, 6651, + 7561, 1388, 1839, 6107, 6362, 2380, 7307, 2838, 7221, + 3519, 6205, 3890, 3976, 4925, 3385, 1072, 9414, 2059, + 8855, 6070, 1702, 9893, 388, 4416, 3865, 1170, 3494, + 5538, 3081, 189, 2709, 2842, 6301, 7706, 8161, 9291, + 2769, 7658, 3415, 1110, 8398, 478, 2076, 5495, 5446, + 8782, 6300, 9602, 7484, 2093, 9250, 2777, 8249, 4928, + 2881, 9270, 1050, 2161, 2931, 2310, 1049, 8115, 3593, + 1809, 941, 3744, 1194, 3342, 9878, 6173, 5475, 9309, + 4801, 9295, 4078, 622, 4058, 6546, 2174, 1250, 3334, + 5694, 8789, 7302, 5052, 3464, 3176, 6460, 6096, 3332, + 213, 105, 7605, 1853, 506, 1606, 6777, 7316, 5398, + 8931, 5969, 4321, 5680, 7873, 95, 6160, 4933, 6865, + 5591, 7447, 4679, 921, 3881, 2291, 4538, 5253, 6704, + 1367, 7057, 4866, 205, 2657, 1962, 5628, 663, 5095, + 1120, 7753, 3664, 5253, 1416, 3161, 6425, 5128, 3164, + 6290, 5671, 1125, 3995, 1998, 5960, 1764, 146, 2947, + 5808, 9352, 6461, 4335, 459, 5492, 7868, 7568, 1136, + 6162, 4143, 8794, 7939, 2386, 5360, 1123, 3979, 4759, + 6589, 8868, 7581, 8042, 6445, 8358, 2368, 5279, 5299, + 9066, 2927, 6449, 5126, 9410, 2256, 9577, 6938, 3964, + 1164, 9207, 482, 8277, 7320, 5132, 4346, 7324, 8992, + 5310, 2655, 3277, 5668, 2397, 2897, 550, 727, 2417, + 433, 4420, 7753, 7792, 4331, 9413, 1735, 9320, 8721, + 6954, 4204, 4649, 5618, 2016, 8183, 5689, 9063, 3738, + 2959, 3961, 4009, 3606, 4760, 1230, 2217, 5835, 899, + 5586, 9110, 8053, 9627, 2842, 2192, 3166, 4583, 8158, + 4940, 1032, 4696, 2026, 6388, 2745, 2712, 7092, 1068, + 6904, 4938, 9153, 2849, 5497, 9818, 7411, 8049, 8663, + 7400, 8022, 8738, 7227, 1194, 3739, 8622, 8207, 2749, + 9175, 8238, 9065, 9556, 3203, 9575, 8134, 2289, 9054, + 2794, 6202, 2265, 6391, 98, 2630, 7976, 8036, 3067, + 1792, 5338, 363, 1223, 6083, 1229, 6539, 7336, 9634, + 7650, 4192, 95, 4556, 6967, 3917, 3894, 9298, 4210, + 1864, 9331, 8210, 6617, 3743, 6287, 2538, 238, 3971, + 4196, 5629, 9006, 3099, 383, 6739, 7853, 1507, 4211, + 5982, 5409, 9920, 7890, 591, 2525, 3725, 6493, 3034, + 3234, 6824, 9969, 7746, 6555, 420, 331, 3665, 6915, + 9255, 6959, 1855, 8868, 53, 4402, 8159, 4409, 437, + 335, 9024, 8990, 8821, 3866, 9075, 5859, 1760, 4060, + 6735, 9065, 4222, 4171, 2823, 8557, 3508, 8301, 8364, + 1888, 6711, 7704, 7616, 700, 6570, 9066, 4571, 8351, + 9210, 7549, 1287, 2369, 7405, 5372, 3041, 8555, 2099, + 8354, 1590, 5248, 7669, 3628, 5312, 8811, 9656, 91, + 6749, 2151, 1335, 1000, 3671, 9405, 6954, 7743, 8173, + 1053, 2058, 4192, 5319, 304, 2356, 1950, 9207, 92, + 6497, 2983, 9159, 7556, 3250, 1554, 5610, 7836, 3795, + 8012, 9512, 688, 5982, 7033, 541, 5439, 6622, 5227, + 1460, 8716, 7845, 2503, 4777, 2879, 4671, 1973, 3787, + 7162, 397, 4461, 6623, 4298, 2561, 3316, 7915, 5983, + 1463, 8647, 7375, 9336, 4967, 8147, 7114, 4177, 6572, + 589, 3945, 1105, 9035, 144, 8793, 5666, 4624, 5196, + 7941, 6950, 4479, 4119, 2123, 3611, 697, 3474, 3332, + 321, 4913, 8438, 6810, 8281, 7730, 135, 2273, 9671, + 9509, 3960, 9361, 3386, 8984, 5288, 6392, 4006, 7514, + 9570, 2995, 2185, 1986, 5814, 2642, 5245, 7837, 8338, + 9556, 4510, 7836, 9711, 5626, 4884, 1758, 7786, 8389, + 1547, 8704, 9162, 1234, 5544, 8023, 7139, 2852, 716, + 3911, 326, 7817, 8217, 3818, 4420, 8158, 4153, 4601, + 7754, 6866, 7422, 4481, 6488, 984, 8828, 1955, 379, + 1624, 1303, 6290, 8219, 6816, 2475, 9043, 4031, 8584, + 1795, 4011, 965, 6538, 341, 7259, 7483, 3110, 6233, + 5102, 1097, 4896, 3220, 5529, 7988, 1701, 3588, 10, + 2698, 9881, 1569, 6687, 453, 2430, 6957, 711, 9279, + 1596, 9071, 3667, 407, 7168, 5764, 9571, 5484, 6683, + 4948, 5349, 937, 8097, 6338, 3961, 9400, 3604, 7579, + 7706, 3756, 8824, 1022, 3037, 3053, 8543, 5584, 7875, + 2400, 4692, 543, 8436, 3410, 3578, 186, 2825, 4894, + 4326, 5710, 1051, 4806, 1754, 5220, 2270, 1501, 4413, + 674, 5529, 5007, 6644, 1894, 8344, 1904, 5600, 8997, + 7614, 6042, 5049, 7997, 4898, 5487, 4108, 3312, 9233, + 8389, 608, 4442, 5243, 5032, 8614, 5739, 5802, 4120, + 8899, 99, 2193, 8861, 5225, 9792, 1275, 9868, 5618, + 2605, 6218, 8444, 2643, 1279, 9216, 6571, 5281, 8680, + 2287, 8748, 8280, 4767, 9473, 1334, 6986, 3525, 3169, + 3974, 363, 6562, 574, 5621, 1586, 9124, 9590, 3765, + 1685, 734, 386, 1332, 1723, 1290, 9672, 3553, 9301, + 1364, 307, 2456, 1290, 4339, 5612, 9566, 1808, 3981, + 2608, 1116, 9731, 3516, 6888, 8925, 556, 5146, 1699, + 9152, 2113, 5887, 9273, 781, 5425, 3828, 8470, 84, + 4795, 3201, 5889, 8067, 9356, 9322, 9600, 2467, 238, + 3969, 4521, 2069, 7924, 1028, 6107, 7144, 727, 9093, + 1824, 3094, 3039, 5739, 8995, 1898, 8954, 2989, 1413, + 3277, 5865, 6456, 1730, 4656, 2233, 195, 5096, 2376, + 7691, 1029, 8697, 3625, 5246, 3695, 431, 2145, 9293, + 6188, 3268, 7555, 1926, 4810, 5639, 5945, 3037, 1338, + 1725, 4126, 2764, 3990, 1925, 4031, 1867, 4112, 2508, + 4960, 1189, 1309, 433, 7697, 1040, 4522, 2213, 5963, + 5735, 5373, 1987, 8913, 9575, 2432, 6960, 9607, 6164, + 404, 2986, 2433, 3250, 7219, 1524, 6099, 456, 8056, + 975, 4344, 3991, 3094, 9425, 8383, 1533, 6432, 3860, + 1956, 7982, 5506, 5690, 5861, 7053, 2115, 4411, 4091, + 6524, 4624, 2372, 7084, 4769, 3223, 9544, 2559, 9666, + 5145, 4409, 2858, 6595, 9077, 3107, 5138, 7219, 5582, + 386, 8287, 8166, 6451, 1770, 6684, 1635, 9826, 113, + 951]), + values=tensor([8.6107e-01, 6.9271e-01, 4.8368e-01, 9.8101e-01, + 9.6646e-01, 7.4405e-01, 9.3604e-01, 4.7222e-01, + 3.6113e-01, 7.3932e-02, 7.2732e-01, 5.3118e-02, + 7.3120e-01, 9.0814e-01, 8.9645e-01, 6.7127e-01, + 7.8345e-01, 4.4017e-02, 8.0039e-01, 4.4358e-01, + 2.7672e-01, 1.8812e-01, 1.5166e-01, 3.1698e-01, + 4.1803e-01, 2.4922e-01, 3.5443e-01, 5.8008e-01, + 5.2338e-01, 1.6648e-01, 7.3597e-01, 8.1915e-01, + 1.9507e-01, 5.2186e-01, 6.8481e-01, 3.0218e-01, + 3.0589e-01, 6.4079e-01, 5.7065e-01, 5.6508e-02, + 2.2168e-01, 9.3404e-01, 5.9158e-01, 2.2703e-01, + 6.3212e-01, 1.4065e-01, 3.4281e-01, 9.7137e-01, + 4.7761e-02, 5.1358e-01, 7.9179e-01, 2.7935e-01, + 1.5324e-01, 5.4348e-01, 2.7165e-01, 9.6685e-01, + 1.0560e-01, 3.3051e-01, 5.8331e-02, 1.6726e-01, + 6.8070e-01, 9.7579e-01, 1.7781e-01, 1.5625e-01, + 5.7095e-01, 2.6864e-01, 2.1547e-01, 5.5164e-01, + 8.3829e-01, 5.1841e-01, 7.4553e-01, 5.9540e-01, + 5.4239e-01, 3.0666e-01, 8.0495e-01, 4.9085e-01, + 5.0594e-01, 3.5705e-01, 8.9499e-01, 1.7606e-01, + 4.2988e-01, 7.8070e-01, 7.1563e-01, 8.7994e-01, + 8.0990e-01, 6.9514e-02, 9.3172e-01, 6.6499e-01, + 8.3186e-01, 3.9669e-01, 6.3901e-01, 3.7501e-01, + 2.7733e-01, 7.5182e-01, 9.9888e-01, 6.0397e-01, + 9.4930e-01, 1.5247e-02, 7.5542e-01, 8.3683e-01, + 8.1190e-01, 5.5766e-01, 3.1907e-03, 2.4997e-02, + 5.9621e-01, 6.8092e-01, 7.4604e-01, 3.6392e-01, + 7.3749e-01, 7.5782e-01, 9.0594e-01, 3.8310e-02, + 7.0973e-01, 2.0418e-03, 1.5030e-01, 6.4446e-01, + 2.9902e-01, 3.9235e-01, 4.6097e-01, 9.6647e-01, + 7.6297e-01, 6.5696e-01, 9.6598e-01, 2.9419e-01, + 7.4848e-01, 5.4178e-01, 8.6408e-01, 3.0556e-01, + 9.5660e-02, 9.8731e-01, 2.3206e-01, 3.0445e-01, + 2.6357e-01, 8.1990e-01, 4.5005e-01, 4.1712e-01, + 4.7212e-01, 9.0916e-01, 6.7266e-01, 8.1816e-01, + 5.4044e-01, 3.8804e-01, 3.8725e-01, 9.6701e-01, + 9.6611e-01, 5.3198e-01, 4.3312e-01, 3.1391e-01, + 7.3887e-01, 4.4383e-01, 1.0121e-01, 2.9852e-01, + 9.4549e-01, 2.7228e-02, 5.7431e-01, 2.2691e-01, + 6.5419e-01, 3.0407e-01, 1.7702e-01, 8.9772e-01, + 5.5873e-01, 2.6340e-01, 7.9858e-01, 8.4542e-01, + 5.6910e-01, 9.8542e-03, 9.3160e-01, 7.7917e-01, + 4.4325e-01, 4.6030e-01, 3.1062e-01, 5.2371e-01, + 3.6051e-01, 6.6182e-01, 7.9523e-01, 7.4930e-01, + 8.5091e-01, 1.0500e-01, 9.1884e-01, 6.4083e-01, + 6.1612e-01, 6.9416e-01, 3.3945e-01, 6.8962e-01, + 5.5544e-01, 7.6810e-01, 2.7725e-02, 2.1387e-01, + 6.7922e-01, 6.5621e-01, 5.8679e-01, 3.5568e-01, + 3.4572e-01, 6.7690e-01, 2.0641e-02, 5.9726e-01, + 9.7926e-01, 7.6343e-01, 6.6564e-01, 7.0179e-01, + 7.5190e-01, 1.6662e-01, 6.3861e-01, 8.6067e-01, + 4.9108e-01, 1.6626e-01, 2.8908e-01, 8.6825e-01, + 2.2293e-01, 6.4829e-01, 9.6432e-01, 3.1724e-01, + 6.7990e-01, 3.1823e-01, 6.4497e-01, 2.9139e-01, + 7.7949e-01, 8.9843e-01, 7.5448e-01, 8.9106e-01, + 2.3395e-02, 6.9438e-02, 5.5248e-01, 6.4159e-01, + 7.5739e-01, 5.0563e-01, 2.0469e-01, 5.6201e-01, + 1.6082e-01, 2.6184e-01, 9.9103e-01, 3.2170e-01, + 6.8832e-01, 8.7008e-01, 2.2665e-01, 7.3082e-01, + 6.2194e-01, 9.0876e-02, 3.0153e-01, 4.0718e-01, + 6.1137e-01, 6.7016e-01, 4.5055e-01, 2.4307e-01, + 8.2010e-01, 9.4870e-01, 5.4014e-01, 1.8658e-01, + 2.9253e-01, 5.5667e-01, 5.6304e-01, 5.0195e-01, + 7.6675e-01, 3.8278e-01, 3.9606e-01, 2.2406e-01, + 5.1845e-01, 3.4771e-01, 1.0772e-01, 8.8694e-01, + 4.5765e-01, 8.5899e-01, 5.2209e-01, 2.6814e-01, + 5.9179e-01, 4.5857e-01, 5.5010e-01, 1.5982e-01, + 3.6937e-01, 7.2005e-01, 9.3900e-01, 9.7016e-01, + 8.1019e-01, 4.1027e-01, 3.1753e-01, 5.0028e-01, + 8.1838e-01, 5.3940e-03, 3.0170e-01, 1.2265e-01, + 5.4341e-01, 7.3566e-01, 8.7193e-01, 3.7031e-03, + 8.0014e-01, 9.7195e-01, 8.1259e-01, 5.2355e-01, + 7.6219e-01, 5.2540e-01, 1.8142e-01, 3.3116e-01, + 6.0314e-01, 4.4442e-01, 1.1620e-01, 7.2375e-01, + 9.5370e-03, 5.4697e-01, 8.8240e-01, 6.6165e-01, + 7.6202e-02, 8.3667e-01, 2.1379e-01, 4.3083e-02, + 6.9313e-01, 4.5761e-01, 7.4008e-01, 1.8568e-01, + 6.9331e-01, 9.7012e-01, 6.0634e-01, 9.1290e-01, + 9.6677e-01, 6.0285e-01, 7.8798e-01, 4.4562e-01, + 9.8873e-01, 7.8753e-01, 8.4151e-01, 8.1693e-01, + 9.9477e-01, 3.4089e-01, 9.8351e-01, 1.7497e-01, + 1.9361e-01, 2.2489e-01, 5.4954e-02, 8.8049e-04, + 5.9184e-03, 2.1956e-01, 5.7859e-01, 5.6967e-02, + 8.3599e-01, 3.4445e-01, 8.6109e-01, 7.3992e-01, + 7.5953e-01, 5.6059e-01, 6.7471e-01, 6.6328e-02, + 1.5833e-01, 8.0087e-02, 3.7828e-01, 2.3249e-01, + 6.4356e-01, 8.9505e-01, 4.6458e-01, 2.4000e-01, + 2.6068e-01, 2.4811e-01, 2.0334e-01, 6.3954e-02, + 8.7523e-01, 3.8213e-01, 2.3114e-01, 9.2747e-01, + 5.2709e-01, 7.3354e-01, 6.9112e-02, 1.0962e-01, + 8.7768e-01, 3.2023e-01, 6.6020e-01, 8.1433e-01, + 6.3947e-02, 2.0035e-01, 6.9677e-01, 2.2128e-01, + 2.9268e-03, 8.2932e-01, 5.1282e-01, 3.5723e-01, + 8.8333e-01, 5.5722e-01, 5.3919e-01, 1.9816e-01, + 1.7851e-01, 7.3178e-01, 8.1068e-01, 1.8684e-01, + 7.6447e-01, 7.5820e-01, 4.8014e-01, 6.4445e-01, + 1.4520e-01, 3.2844e-01, 9.5413e-01, 3.8770e-01, + 6.9308e-01, 1.3905e-01, 7.6471e-01, 8.8390e-02, + 9.1643e-01, 3.2628e-01, 1.9768e-01, 3.9635e-01, + 7.9628e-02, 7.4905e-01, 7.8489e-01, 8.1331e-01, + 7.9842e-01, 2.5383e-01, 1.3706e-01, 9.4530e-01, + 9.0168e-01, 8.2331e-01, 9.3669e-01, 8.7520e-01, + 7.8717e-01, 7.1291e-02, 6.0640e-01, 7.5422e-01, + 8.9628e-01, 3.7460e-01, 1.4416e-01, 9.2438e-01, + 2.7479e-01, 3.2385e-01, 2.7961e-01, 7.5659e-02, + 5.7388e-01, 3.8352e-01, 2.7746e-01, 2.8999e-01, + 5.0480e-01, 9.5417e-01, 4.2093e-01, 7.8579e-02, + 8.2103e-02, 5.4792e-01, 9.2395e-01, 4.2211e-01, + 3.9568e-01, 7.4897e-01, 6.2380e-01, 4.3780e-01, + 5.1349e-01, 7.4234e-01, 5.1775e-01, 9.9153e-01, + 1.4757e-01, 9.3558e-01, 6.3949e-02, 9.7963e-01, + 5.1970e-01, 8.2542e-01, 3.3289e-01, 3.3816e-01, + 2.3966e-01, 9.0664e-01, 7.4839e-01, 2.4259e-01, + 3.2730e-01, 5.5331e-01, 6.0686e-01, 1.2405e-01, + 7.5585e-01, 5.2917e-02, 2.4485e-01, 4.4680e-01, + 8.6753e-01, 1.7906e-02, 9.9252e-01, 1.8042e-01, + 9.9853e-02, 1.3381e-01, 2.0378e-01, 3.5700e-01, + 3.9791e-01, 2.3120e-01, 4.6213e-01, 6.2256e-01, + 3.6533e-01, 9.9886e-01, 1.9408e-02, 8.2334e-01, + 1.5185e-01, 5.4053e-01, 7.5198e-01, 6.8683e-01, + 5.8939e-01, 6.5246e-01, 5.6503e-02, 1.3252e-01, + 2.3554e-01, 3.6623e-01, 1.8050e-01, 8.3236e-01, + 4.6166e-01, 1.2595e-02, 8.1989e-01, 5.7657e-01, + 6.5694e-01, 9.1911e-01, 7.3100e-01, 8.1813e-02, + 4.5850e-01, 4.8408e-01, 9.3086e-02, 1.2574e-01, + 2.8876e-02, 9.5164e-01, 1.4650e-01, 4.1090e-01, + 9.2514e-01, 6.1633e-01, 1.0809e-01, 5.0875e-01, + 1.3530e-02, 3.6496e-01, 6.6914e-01, 8.9151e-01, + 8.2377e-01, 5.2662e-01, 3.2652e-02, 2.7964e-01, + 4.7944e-01, 1.5140e-01, 8.4471e-01, 2.6876e-01, + 3.2371e-01, 6.9635e-01, 8.6435e-01, 4.4276e-01, + 8.9744e-01, 6.4418e-02, 7.8116e-01, 6.8714e-01, + 1.3143e-01, 1.5614e-01, 1.8519e-01, 2.6732e-01, + 6.0465e-01, 3.3625e-01, 4.9463e-01, 8.6001e-01, + 9.9209e-01, 5.3462e-01, 7.9512e-01, 6.5280e-02, + 6.7335e-01, 7.7646e-02, 4.3713e-01, 5.3228e-02, + 7.0476e-02, 3.6280e-01, 1.3298e-01, 4.7192e-01, + 4.1713e-01, 9.6744e-01, 7.2283e-01, 8.1171e-01, + 5.8368e-01, 2.1220e-01, 2.6946e-01, 6.8910e-01, + 3.9849e-01, 2.7316e-01, 4.4482e-01, 8.1241e-02, + 1.9653e-01, 9.6384e-01, 1.1372e-01, 1.9097e-01, + 7.6998e-01, 9.9375e-01, 1.4568e-02, 9.0302e-01, + 4.8512e-01, 9.9514e-01, 9.1484e-01, 9.2485e-02, + 9.0416e-01, 4.7279e-01, 4.9457e-01, 5.4557e-01, + 4.6614e-01, 7.4250e-01, 1.4241e-02, 8.0018e-02, + 7.8231e-01, 4.7850e-02, 3.7642e-01, 5.9940e-01, + 5.9926e-01, 2.0479e-01, 8.6681e-01, 4.4220e-02, + 1.0096e-01, 2.3569e-02, 1.8524e-01, 5.1257e-01, + 5.2509e-01, 8.0403e-01, 1.2724e-01, 7.1898e-02, + 8.3280e-01, 7.8982e-01, 9.2134e-01, 1.2335e-02, + 6.7136e-02, 8.5018e-01, 4.7597e-01, 7.4717e-01, + 6.2179e-02, 4.4811e-01, 8.3920e-01, 6.0345e-01, + 8.1684e-01, 6.9675e-01, 9.9445e-01, 2.7290e-01, + 1.2717e-01, 4.1549e-02, 9.2287e-01, 4.5480e-01, + 5.5821e-01, 9.2880e-01, 5.5301e-01, 5.4505e-01, + 3.7060e-01, 2.4044e-01, 7.1787e-01, 6.8616e-01, + 4.4501e-01, 6.3975e-02, 1.2135e-01, 3.1465e-01, + 7.8125e-01, 6.9943e-01, 9.7250e-01, 6.1706e-01, + 2.0429e-01, 4.2341e-02, 8.0929e-01, 9.7416e-01, + 6.1808e-01, 7.7504e-01, 6.7942e-01, 2.7196e-02, + 7.9603e-02, 3.2581e-01, 6.0908e-02, 1.5004e-02, + 5.8326e-01, 9.4906e-01, 2.3072e-01, 3.5085e-01, + 9.4853e-01, 7.2332e-01, 1.1940e-01, 4.9236e-01, + 7.7478e-01, 4.5736e-01, 6.2936e-01, 3.5934e-01, + 1.0097e-01, 8.1085e-01, 2.4341e-01, 3.2735e-01, + 3.3189e-01, 5.8497e-01, 1.7734e-01, 6.3375e-01, + 1.4097e-01, 1.5644e-01, 8.1609e-01, 7.2549e-01, + 5.9378e-02, 1.5413e-01, 5.3232e-02, 6.1339e-01, + 7.0552e-01, 7.7829e-01, 7.5404e-01, 7.7450e-01, + 8.7883e-01, 5.6085e-01, 4.0932e-01, 8.9438e-01, + 9.1787e-02, 8.4228e-01, 3.0927e-01, 1.6037e-01, + 2.2670e-01, 7.6787e-01, 1.4606e-01, 2.3816e-01, + 3.4066e-01, 2.0990e-01, 5.8881e-01, 8.9502e-01, + 4.3356e-01, 9.0184e-01, 6.5518e-01, 4.6940e-01, + 5.7142e-01, 9.6034e-01, 2.1592e-01, 7.5007e-01, + 3.7195e-01, 3.4826e-01, 1.3116e-01, 8.3464e-01, + 6.8307e-01, 9.5445e-01, 8.1954e-01, 7.2306e-01, + 2.5420e-01, 1.3167e-01, 6.4915e-01, 5.6853e-01, + 9.0585e-02, 1.3848e-01, 8.8329e-01, 8.4826e-01, + 2.1122e-01, 2.4577e-01, 6.3388e-01, 5.1270e-01, + 5.1034e-01, 5.0535e-01, 7.7389e-01, 7.8660e-01, + 8.3881e-01, 4.0781e-01, 7.3903e-01, 4.6446e-03, + 3.7737e-01, 5.3757e-01, 6.2755e-01, 2.1755e-01, + 6.0600e-01, 6.8931e-01, 7.2083e-01, 8.5321e-01, + 7.4348e-01, 4.7003e-01, 8.0017e-01, 2.0961e-01, + 3.9155e-01, 4.7019e-01, 8.2793e-01, 1.0848e-01, + 5.0885e-01, 4.4031e-01, 4.3596e-01, 6.5756e-01, + 6.3068e-01, 3.1965e-02, 6.1304e-01, 6.2773e-01, + 7.5422e-01, 2.1203e-01, 3.7413e-01, 8.1662e-01, + 2.6392e-01, 6.2770e-01, 3.1850e-01, 8.8449e-01, + 4.1231e-01, 7.3768e-01, 6.2162e-01, 6.3949e-02, + 8.6686e-01, 7.9535e-01, 1.7100e-01, 9.0592e-01, + 7.7475e-01, 2.2756e-02, 1.9513e-01, 2.3374e-01, + 5.8883e-01, 1.5431e-01, 3.2038e-01, 9.7862e-01, + 2.1914e-02, 1.1835e-02, 4.2111e-01, 8.9160e-01, + 4.6853e-01, 6.7863e-01, 8.5162e-01, 8.9675e-02, + 8.4382e-01, 8.6282e-01, 2.6677e-01, 1.6343e-01, + 4.8528e-02, 9.4412e-01, 6.3315e-01, 4.3330e-02, + 4.6024e-01, 4.2822e-02, 6.1742e-01, 9.5830e-01, + 9.5318e-01, 8.0255e-01, 3.3261e-01, 4.8987e-01, + 5.2325e-01, 4.5380e-01, 1.7553e-01, 3.8748e-01, + 3.4164e-02, 5.6323e-01, 6.9522e-01, 1.2731e-01, + 2.0882e-01, 2.9892e-01, 4.1201e-01, 1.0616e-02, + 8.2951e-01, 1.5012e-01, 2.5441e-01, 5.8813e-01, + 6.0251e-01, 3.5572e-01, 1.3375e-01, 7.4197e-01, + 7.6556e-01, 9.4426e-01, 1.6704e-01, 4.2013e-01, + 9.9049e-01, 5.8137e-01, 6.4977e-01, 8.2789e-01, + 2.1064e-01, 7.6906e-01, 6.0039e-01, 5.7468e-01, + 6.0443e-02, 5.0163e-01, 3.7936e-01, 1.3277e-01, + 6.4513e-01, 5.0021e-01, 9.3869e-01, 2.2699e-01, + 8.5101e-01, 9.1350e-01, 3.2096e-01, 6.4035e-01, + 2.1549e-01, 3.9428e-01, 2.3003e-01, 6.3791e-02, + 5.3362e-02, 2.8508e-01, 5.1790e-01, 2.7213e-01, + 8.4037e-01, 3.8949e-03, 2.2458e-02, 6.6033e-01, + 8.4001e-01, 8.8969e-01, 9.5652e-01, 4.0968e-01, + 5.6649e-01, 3.8455e-01, 7.7402e-01, 7.7569e-01, + 6.9995e-01, 5.3609e-01, 4.7322e-01, 2.5078e-01, + 3.1545e-01, 2.3820e-01, 2.6935e-01, 5.4291e-01, + 9.8952e-02, 4.1834e-01, 6.8148e-01, 3.4508e-01, + 5.6829e-01, 9.5116e-01, 7.0814e-01, 7.8640e-01, + 9.8928e-01, 9.4988e-01, 1.3932e-01, 8.0564e-01, + 5.7439e-01, 3.3367e-02, 6.8127e-01, 9.8039e-01, + 9.7767e-01, 8.0552e-02, 5.3572e-01, 5.2619e-01, + 3.8475e-01, 3.3846e-01, 8.3436e-01, 9.1328e-01, + 3.3929e-01, 5.4203e-01, 5.6960e-01, 2.7232e-01, + 1.3736e-01, 5.3665e-01, 4.1730e-01, 5.5670e-01, + 3.2961e-01, 7.4186e-01, 7.7502e-01, 1.9667e-01, + 1.7768e-01, 2.1674e-01, 5.9639e-02, 1.5805e-01, + 6.5950e-01, 7.7801e-01, 1.1876e-01, 2.8471e-02, + 8.1482e-02, 6.1569e-01, 7.2271e-01, 4.3063e-01, + 3.3714e-01, 5.9950e-01, 2.4036e-01, 9.4548e-01, + 6.8225e-02, 3.8594e-01, 5.5316e-01, 8.3555e-01, + 7.0504e-01, 6.3175e-02, 9.5028e-01, 5.9192e-01, + 8.3808e-01, 9.3302e-01, 4.6343e-01, 5.1120e-01, + 3.2675e-01, 8.7011e-01, 9.8451e-01, 3.3422e-01, + 9.2713e-01, 2.0238e-01, 9.1217e-01, 5.1309e-01, + 6.2678e-01, 1.1738e-01, 1.2722e-03, 4.9728e-01, + 9.3930e-01, 8.9876e-01, 3.3336e-01, 6.4927e-01, + 5.3282e-01, 1.7894e-01, 4.5240e-01, 6.4025e-01, + 5.8421e-01, 3.9615e-01, 3.3808e-01, 8.3123e-01, + 6.8721e-01, 7.6244e-01, 4.4166e-01, 1.7219e-01, + 5.6471e-01, 9.1698e-01, 3.6272e-01, 4.0208e-01, + 4.7886e-01, 6.1182e-01, 9.0649e-01, 7.3848e-01, + 1.7994e-01, 1.0582e-01, 7.1936e-01, 9.9727e-01, + 5.8436e-01, 8.9529e-01, 1.4226e-03, 5.5845e-01, + 1.2202e-01, 4.2654e-01, 7.4178e-02, 3.6640e-01, + 8.3884e-01, 1.1291e-01, 8.7969e-01, 1.4058e-01, + 8.6455e-02, 8.3188e-01, 1.8866e-01, 9.3291e-01, + 8.1895e-01, 7.6617e-01, 3.9340e-01, 5.2325e-01, + 8.5361e-01, 1.4133e-01, 1.4430e-01, 7.9132e-01]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.0633, 0.2712, 0.1613, ..., 0.7795, 0.8074, 0.9414]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 10.386851072311401 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 1, ..., 1000, 1000, 1000]), + col_indices=tensor([5090, 5520, 6854, 5240, 6540, 5414, 9539, 8466, 479, + 3119, 5272, 7854, 2035, 3254, 301, 9387, 5412, 9403, + 3029, 6749, 4880, 1485, 7157, 5629, 6151, 4478, 7699, + 7698, 6954, 7468, 2219, 5639, 6353, 506, 8308, 5821, + 2487, 7627, 3842, 7369, 6744, 2867, 7111, 7921, 1986, + 380, 9961, 4202, 9024, 661, 5897, 7449, 9845, 9461, + 9917, 234, 7756, 4104, 195, 2757, 4588, 1755, 600, + 3208, 9769, 495, 8241, 6634, 6218, 247, 649, 2255, + 6934, 5056, 3570, 5404, 4033, 4528, 6168, 3330, 5154, + 6668, 8969, 4990, 5914, 7294, 7798, 8937, 1984, 811, + 8267, 6000, 8441, 2901, 6504, 2951, 6191, 5592, 9657, + 5206, 4311, 4344, 6838, 4035, 8212, 9827, 8714, 8242, + 2597, 1268, 6941, 152, 4041, 7546, 5546, 9553, 8677, + 3838, 1475, 6605, 2849, 8979, 1585, 9524, 5732, 668, + 8770, 2014, 4555, 5432, 5784, 211, 829, 5623, 601, + 2334, 1210, 8619, 2536, 8949, 1829, 5741, 5371, 2300, + 3074, 3033, 4257, 6930, 5374, 2094, 8363, 8250, 6651, + 7561, 1388, 1839, 6107, 6362, 2380, 7307, 2838, 7221, + 3519, 6205, 3890, 3976, 4925, 3385, 1072, 9414, 2059, + 8855, 6070, 1702, 9893, 388, 4416, 3865, 1170, 3494, + 5538, 3081, 189, 2709, 2842, 6301, 7706, 8161, 9291, + 2769, 7658, 3415, 1110, 8398, 478, 2076, 5495, 5446, + 8782, 6300, 9602, 7484, 2093, 9250, 2777, 8249, 4928, + 2881, 9270, 1050, 2161, 2931, 2310, 1049, 8115, 3593, + 1809, 941, 3744, 1194, 3342, 9878, 6173, 5475, 9309, + 4801, 9295, 4078, 622, 4058, 6546, 2174, 1250, 3334, + 5694, 8789, 7302, 5052, 3464, 3176, 6460, 6096, 3332, + 213, 105, 7605, 1853, 506, 1606, 6777, 7316, 5398, + 8931, 5969, 4321, 5680, 7873, 95, 6160, 4933, 6865, + 5591, 7447, 4679, 921, 3881, 2291, 4538, 5253, 6704, + 1367, 7057, 4866, 205, 2657, 1962, 5628, 663, 5095, + 1120, 7753, 3664, 5253, 1416, 3161, 6425, 5128, 3164, + 6290, 5671, 1125, 3995, 1998, 5960, 1764, 146, 2947, + 5808, 9352, 6461, 4335, 459, 5492, 7868, 7568, 1136, + 6162, 4143, 8794, 7939, 2386, 5360, 1123, 3979, 4759, + 6589, 8868, 7581, 8042, 6445, 8358, 2368, 5279, 5299, + 9066, 2927, 6449, 5126, 9410, 2256, 9577, 6938, 3964, + 1164, 9207, 482, 8277, 7320, 5132, 4346, 7324, 8992, + 5310, 2655, 3277, 5668, 2397, 2897, 550, 727, 2417, + 433, 4420, 7753, 7792, 4331, 9413, 1735, 9320, 8721, + 6954, 4204, 4649, 5618, 2016, 8183, 5689, 9063, 3738, + 2959, 3961, 4009, 3606, 4760, 1230, 2217, 5835, 899, + 5586, 9110, 8053, 9627, 2842, 2192, 3166, 4583, 8158, + 4940, 1032, 4696, 2026, 6388, 2745, 2712, 7092, 1068, + 6904, 4938, 9153, 2849, 5497, 9818, 7411, 8049, 8663, + 7400, 8022, 8738, 7227, 1194, 3739, 8622, 8207, 2749, + 9175, 8238, 9065, 9556, 3203, 9575, 8134, 2289, 9054, + 2794, 6202, 2265, 6391, 98, 2630, 7976, 8036, 3067, + 1792, 5338, 363, 1223, 6083, 1229, 6539, 7336, 9634, + 7650, 4192, 95, 4556, 6967, 3917, 3894, 9298, 4210, + 1864, 9331, 8210, 6617, 3743, 6287, 2538, 238, 3971, + 4196, 5629, 9006, 3099, 383, 6739, 7853, 1507, 4211, + 5982, 5409, 9920, 7890, 591, 2525, 3725, 6493, 3034, + 3234, 6824, 9969, 7746, 6555, 420, 331, 3665, 6915, + 9255, 6959, 1855, 8868, 53, 4402, 8159, 4409, 437, + 335, 9024, 8990, 8821, 3866, 9075, 5859, 1760, 4060, + 6735, 9065, 4222, 4171, 2823, 8557, 3508, 8301, 8364, + 1888, 6711, 7704, 7616, 700, 6570, 9066, 4571, 8351, + 9210, 7549, 1287, 2369, 7405, 5372, 3041, 8555, 2099, + 8354, 1590, 5248, 7669, 3628, 5312, 8811, 9656, 91, + 6749, 2151, 1335, 1000, 3671, 9405, 6954, 7743, 8173, + 1053, 2058, 4192, 5319, 304, 2356, 1950, 9207, 92, + 6497, 2983, 9159, 7556, 3250, 1554, 5610, 7836, 3795, + 8012, 9512, 688, 5982, 7033, 541, 5439, 6622, 5227, + 1460, 8716, 7845, 2503, 4777, 2879, 4671, 1973, 3787, + 7162, 397, 4461, 6623, 4298, 2561, 3316, 7915, 5983, + 1463, 8647, 7375, 9336, 4967, 8147, 7114, 4177, 6572, + 589, 3945, 1105, 9035, 144, 8793, 5666, 4624, 5196, + 7941, 6950, 4479, 4119, 2123, 3611, 697, 3474, 3332, + 321, 4913, 8438, 6810, 8281, 7730, 135, 2273, 9671, + 9509, 3960, 9361, 3386, 8984, 5288, 6392, 4006, 7514, + 9570, 2995, 2185, 1986, 5814, 2642, 5245, 7837, 8338, + 9556, 4510, 7836, 9711, 5626, 4884, 1758, 7786, 8389, + 1547, 8704, 9162, 1234, 5544, 8023, 7139, 2852, 716, + 3911, 326, 7817, 8217, 3818, 4420, 8158, 4153, 4601, + 7754, 6866, 7422, 4481, 6488, 984, 8828, 1955, 379, + 1624, 1303, 6290, 8219, 6816, 2475, 9043, 4031, 8584, + 1795, 4011, 965, 6538, 341, 7259, 7483, 3110, 6233, + 5102, 1097, 4896, 3220, 5529, 7988, 1701, 3588, 10, + 2698, 9881, 1569, 6687, 453, 2430, 6957, 711, 9279, + 1596, 9071, 3667, 407, 7168, 5764, 9571, 5484, 6683, + 4948, 5349, 937, 8097, 6338, 3961, 9400, 3604, 7579, + 7706, 3756, 8824, 1022, 3037, 3053, 8543, 5584, 7875, + 2400, 4692, 543, 8436, 3410, 3578, 186, 2825, 4894, + 4326, 5710, 1051, 4806, 1754, 5220, 2270, 1501, 4413, + 674, 5529, 5007, 6644, 1894, 8344, 1904, 5600, 8997, + 7614, 6042, 5049, 7997, 4898, 5487, 4108, 3312, 9233, + 8389, 608, 4442, 5243, 5032, 8614, 5739, 5802, 4120, + 8899, 99, 2193, 8861, 5225, 9792, 1275, 9868, 5618, + 2605, 6218, 8444, 2643, 1279, 9216, 6571, 5281, 8680, + 2287, 8748, 8280, 4767, 9473, 1334, 6986, 3525, 3169, + 3974, 363, 6562, 574, 5621, 1586, 9124, 9590, 3765, + 1685, 734, 386, 1332, 1723, 1290, 9672, 3553, 9301, + 1364, 307, 2456, 1290, 4339, 5612, 9566, 1808, 3981, + 2608, 1116, 9731, 3516, 6888, 8925, 556, 5146, 1699, + 9152, 2113, 5887, 9273, 781, 5425, 3828, 8470, 84, + 4795, 3201, 5889, 8067, 9356, 9322, 9600, 2467, 238, + 3969, 4521, 2069, 7924, 1028, 6107, 7144, 727, 9093, + 1824, 3094, 3039, 5739, 8995, 1898, 8954, 2989, 1413, + 3277, 5865, 6456, 1730, 4656, 2233, 195, 5096, 2376, + 7691, 1029, 8697, 3625, 5246, 3695, 431, 2145, 9293, + 6188, 3268, 7555, 1926, 4810, 5639, 5945, 3037, 1338, + 1725, 4126, 2764, 3990, 1925, 4031, 1867, 4112, 2508, + 4960, 1189, 1309, 433, 7697, 1040, 4522, 2213, 5963, + 5735, 5373, 1987, 8913, 9575, 2432, 6960, 9607, 6164, + 404, 2986, 2433, 3250, 7219, 1524, 6099, 456, 8056, + 975, 4344, 3991, 3094, 9425, 8383, 1533, 6432, 3860, + 1956, 7982, 5506, 5690, 5861, 7053, 2115, 4411, 4091, + 6524, 4624, 2372, 7084, 4769, 3223, 9544, 2559, 9666, + 5145, 4409, 2858, 6595, 9077, 3107, 5138, 7219, 5582, + 386, 8287, 8166, 6451, 1770, 6684, 1635, 9826, 113, + 951]), + values=tensor([8.6107e-01, 6.9271e-01, 4.8368e-01, 9.8101e-01, + 9.6646e-01, 7.4405e-01, 9.3604e-01, 4.7222e-01, + 3.6113e-01, 7.3932e-02, 7.2732e-01, 5.3118e-02, + 7.3120e-01, 9.0814e-01, 8.9645e-01, 6.7127e-01, + 7.8345e-01, 4.4017e-02, 8.0039e-01, 4.4358e-01, + 2.7672e-01, 1.8812e-01, 1.5166e-01, 3.1698e-01, + 4.1803e-01, 2.4922e-01, 3.5443e-01, 5.8008e-01, + 5.2338e-01, 1.6648e-01, 7.3597e-01, 8.1915e-01, + 1.9507e-01, 5.2186e-01, 6.8481e-01, 3.0218e-01, + 3.0589e-01, 6.4079e-01, 5.7065e-01, 5.6508e-02, + 2.2168e-01, 9.3404e-01, 5.9158e-01, 2.2703e-01, + 6.3212e-01, 1.4065e-01, 3.4281e-01, 9.7137e-01, + 4.7761e-02, 5.1358e-01, 7.9179e-01, 2.7935e-01, + 1.5324e-01, 5.4348e-01, 2.7165e-01, 9.6685e-01, + 1.0560e-01, 3.3051e-01, 5.8331e-02, 1.6726e-01, + 6.8070e-01, 9.7579e-01, 1.7781e-01, 1.5625e-01, + 5.7095e-01, 2.6864e-01, 2.1547e-01, 5.5164e-01, + 8.3829e-01, 5.1841e-01, 7.4553e-01, 5.9540e-01, + 5.4239e-01, 3.0666e-01, 8.0495e-01, 4.9085e-01, + 5.0594e-01, 3.5705e-01, 8.9499e-01, 1.7606e-01, + 4.2988e-01, 7.8070e-01, 7.1563e-01, 8.7994e-01, + 8.0990e-01, 6.9514e-02, 9.3172e-01, 6.6499e-01, + 8.3186e-01, 3.9669e-01, 6.3901e-01, 3.7501e-01, + 2.7733e-01, 7.5182e-01, 9.9888e-01, 6.0397e-01, + 9.4930e-01, 1.5247e-02, 7.5542e-01, 8.3683e-01, + 8.1190e-01, 5.5766e-01, 3.1907e-03, 2.4997e-02, + 5.9621e-01, 6.8092e-01, 7.4604e-01, 3.6392e-01, + 7.3749e-01, 7.5782e-01, 9.0594e-01, 3.8310e-02, + 7.0973e-01, 2.0418e-03, 1.5030e-01, 6.4446e-01, + 2.9902e-01, 3.9235e-01, 4.6097e-01, 9.6647e-01, + 7.6297e-01, 6.5696e-01, 9.6598e-01, 2.9419e-01, + 7.4848e-01, 5.4178e-01, 8.6408e-01, 3.0556e-01, + 9.5660e-02, 9.8731e-01, 2.3206e-01, 3.0445e-01, + 2.6357e-01, 8.1990e-01, 4.5005e-01, 4.1712e-01, + 4.7212e-01, 9.0916e-01, 6.7266e-01, 8.1816e-01, + 5.4044e-01, 3.8804e-01, 3.8725e-01, 9.6701e-01, + 9.6611e-01, 5.3198e-01, 4.3312e-01, 3.1391e-01, + 7.3887e-01, 4.4383e-01, 1.0121e-01, 2.9852e-01, + 9.4549e-01, 2.7228e-02, 5.7431e-01, 2.2691e-01, + 6.5419e-01, 3.0407e-01, 1.7702e-01, 8.9772e-01, + 5.5873e-01, 2.6340e-01, 7.9858e-01, 8.4542e-01, + 5.6910e-01, 9.8542e-03, 9.3160e-01, 7.7917e-01, + 4.4325e-01, 4.6030e-01, 3.1062e-01, 5.2371e-01, + 3.6051e-01, 6.6182e-01, 7.9523e-01, 7.4930e-01, + 8.5091e-01, 1.0500e-01, 9.1884e-01, 6.4083e-01, + 6.1612e-01, 6.9416e-01, 3.3945e-01, 6.8962e-01, + 5.5544e-01, 7.6810e-01, 2.7725e-02, 2.1387e-01, + 6.7922e-01, 6.5621e-01, 5.8679e-01, 3.5568e-01, + 3.4572e-01, 6.7690e-01, 2.0641e-02, 5.9726e-01, + 9.7926e-01, 7.6343e-01, 6.6564e-01, 7.0179e-01, + 7.5190e-01, 1.6662e-01, 6.3861e-01, 8.6067e-01, + 4.9108e-01, 1.6626e-01, 2.8908e-01, 8.6825e-01, + 2.2293e-01, 6.4829e-01, 9.6432e-01, 3.1724e-01, + 6.7990e-01, 3.1823e-01, 6.4497e-01, 2.9139e-01, + 7.7949e-01, 8.9843e-01, 7.5448e-01, 8.9106e-01, + 2.3395e-02, 6.9438e-02, 5.5248e-01, 6.4159e-01, + 7.5739e-01, 5.0563e-01, 2.0469e-01, 5.6201e-01, + 1.6082e-01, 2.6184e-01, 9.9103e-01, 3.2170e-01, + 6.8832e-01, 8.7008e-01, 2.2665e-01, 7.3082e-01, + 6.2194e-01, 9.0876e-02, 3.0153e-01, 4.0718e-01, + 6.1137e-01, 6.7016e-01, 4.5055e-01, 2.4307e-01, + 8.2010e-01, 9.4870e-01, 5.4014e-01, 1.8658e-01, + 2.9253e-01, 5.5667e-01, 5.6304e-01, 5.0195e-01, + 7.6675e-01, 3.8278e-01, 3.9606e-01, 2.2406e-01, + 5.1845e-01, 3.4771e-01, 1.0772e-01, 8.8694e-01, + 4.5765e-01, 8.5899e-01, 5.2209e-01, 2.6814e-01, + 5.9179e-01, 4.5857e-01, 5.5010e-01, 1.5982e-01, + 3.6937e-01, 7.2005e-01, 9.3900e-01, 9.7016e-01, + 8.1019e-01, 4.1027e-01, 3.1753e-01, 5.0028e-01, + 8.1838e-01, 5.3940e-03, 3.0170e-01, 1.2265e-01, + 5.4341e-01, 7.3566e-01, 8.7193e-01, 3.7031e-03, + 8.0014e-01, 9.7195e-01, 8.1259e-01, 5.2355e-01, + 7.6219e-01, 5.2540e-01, 1.8142e-01, 3.3116e-01, + 6.0314e-01, 4.4442e-01, 1.1620e-01, 7.2375e-01, + 9.5370e-03, 5.4697e-01, 8.8240e-01, 6.6165e-01, + 7.6202e-02, 8.3667e-01, 2.1379e-01, 4.3083e-02, + 6.9313e-01, 4.5761e-01, 7.4008e-01, 1.8568e-01, + 6.9331e-01, 9.7012e-01, 6.0634e-01, 9.1290e-01, + 9.6677e-01, 6.0285e-01, 7.8798e-01, 4.4562e-01, + 9.8873e-01, 7.8753e-01, 8.4151e-01, 8.1693e-01, + 9.9477e-01, 3.4089e-01, 9.8351e-01, 1.7497e-01, + 1.9361e-01, 2.2489e-01, 5.4954e-02, 8.8049e-04, + 5.9184e-03, 2.1956e-01, 5.7859e-01, 5.6967e-02, + 8.3599e-01, 3.4445e-01, 8.6109e-01, 7.3992e-01, + 7.5953e-01, 5.6059e-01, 6.7471e-01, 6.6328e-02, + 1.5833e-01, 8.0087e-02, 3.7828e-01, 2.3249e-01, + 6.4356e-01, 8.9505e-01, 4.6458e-01, 2.4000e-01, + 2.6068e-01, 2.4811e-01, 2.0334e-01, 6.3954e-02, + 8.7523e-01, 3.8213e-01, 2.3114e-01, 9.2747e-01, + 5.2709e-01, 7.3354e-01, 6.9112e-02, 1.0962e-01, + 8.7768e-01, 3.2023e-01, 6.6020e-01, 8.1433e-01, + 6.3947e-02, 2.0035e-01, 6.9677e-01, 2.2128e-01, + 2.9268e-03, 8.2932e-01, 5.1282e-01, 3.5723e-01, + 8.8333e-01, 5.5722e-01, 5.3919e-01, 1.9816e-01, + 1.7851e-01, 7.3178e-01, 8.1068e-01, 1.8684e-01, + 7.6447e-01, 7.5820e-01, 4.8014e-01, 6.4445e-01, + 1.4520e-01, 3.2844e-01, 9.5413e-01, 3.8770e-01, + 6.9308e-01, 1.3905e-01, 7.6471e-01, 8.8390e-02, + 9.1643e-01, 3.2628e-01, 1.9768e-01, 3.9635e-01, + 7.9628e-02, 7.4905e-01, 7.8489e-01, 8.1331e-01, + 7.9842e-01, 2.5383e-01, 1.3706e-01, 9.4530e-01, + 9.0168e-01, 8.2331e-01, 9.3669e-01, 8.7520e-01, + 7.8717e-01, 7.1291e-02, 6.0640e-01, 7.5422e-01, + 8.9628e-01, 3.7460e-01, 1.4416e-01, 9.2438e-01, + 2.7479e-01, 3.2385e-01, 2.7961e-01, 7.5659e-02, + 5.7388e-01, 3.8352e-01, 2.7746e-01, 2.8999e-01, + 5.0480e-01, 9.5417e-01, 4.2093e-01, 7.8579e-02, + 8.2103e-02, 5.4792e-01, 9.2395e-01, 4.2211e-01, + 3.9568e-01, 7.4897e-01, 6.2380e-01, 4.3780e-01, + 5.1349e-01, 7.4234e-01, 5.1775e-01, 9.9153e-01, + 1.4757e-01, 9.3558e-01, 6.3949e-02, 9.7963e-01, + 5.1970e-01, 8.2542e-01, 3.3289e-01, 3.3816e-01, + 2.3966e-01, 9.0664e-01, 7.4839e-01, 2.4259e-01, + 3.2730e-01, 5.5331e-01, 6.0686e-01, 1.2405e-01, + 7.5585e-01, 5.2917e-02, 2.4485e-01, 4.4680e-01, + 8.6753e-01, 1.7906e-02, 9.9252e-01, 1.8042e-01, + 9.9853e-02, 1.3381e-01, 2.0378e-01, 3.5700e-01, + 3.9791e-01, 2.3120e-01, 4.6213e-01, 6.2256e-01, + 3.6533e-01, 9.9886e-01, 1.9408e-02, 8.2334e-01, + 1.5185e-01, 5.4053e-01, 7.5198e-01, 6.8683e-01, + 5.8939e-01, 6.5246e-01, 5.6503e-02, 1.3252e-01, + 2.3554e-01, 3.6623e-01, 1.8050e-01, 8.3236e-01, + 4.6166e-01, 1.2595e-02, 8.1989e-01, 5.7657e-01, + 6.5694e-01, 9.1911e-01, 7.3100e-01, 8.1813e-02, + 4.5850e-01, 4.8408e-01, 9.3086e-02, 1.2574e-01, + 2.8876e-02, 9.5164e-01, 1.4650e-01, 4.1090e-01, + 9.2514e-01, 6.1633e-01, 1.0809e-01, 5.0875e-01, + 1.3530e-02, 3.6496e-01, 6.6914e-01, 8.9151e-01, + 8.2377e-01, 5.2662e-01, 3.2652e-02, 2.7964e-01, + 4.7944e-01, 1.5140e-01, 8.4471e-01, 2.6876e-01, + 3.2371e-01, 6.9635e-01, 8.6435e-01, 4.4276e-01, + 8.9744e-01, 6.4418e-02, 7.8116e-01, 6.8714e-01, + 1.3143e-01, 1.5614e-01, 1.8519e-01, 2.6732e-01, + 6.0465e-01, 3.3625e-01, 4.9463e-01, 8.6001e-01, + 9.9209e-01, 5.3462e-01, 7.9512e-01, 6.5280e-02, + 6.7335e-01, 7.7646e-02, 4.3713e-01, 5.3228e-02, + 7.0476e-02, 3.6280e-01, 1.3298e-01, 4.7192e-01, + 4.1713e-01, 9.6744e-01, 7.2283e-01, 8.1171e-01, + 5.8368e-01, 2.1220e-01, 2.6946e-01, 6.8910e-01, + 3.9849e-01, 2.7316e-01, 4.4482e-01, 8.1241e-02, + 1.9653e-01, 9.6384e-01, 1.1372e-01, 1.9097e-01, + 7.6998e-01, 9.9375e-01, 1.4568e-02, 9.0302e-01, + 4.8512e-01, 9.9514e-01, 9.1484e-01, 9.2485e-02, + 9.0416e-01, 4.7279e-01, 4.9457e-01, 5.4557e-01, + 4.6614e-01, 7.4250e-01, 1.4241e-02, 8.0018e-02, + 7.8231e-01, 4.7850e-02, 3.7642e-01, 5.9940e-01, + 5.9926e-01, 2.0479e-01, 8.6681e-01, 4.4220e-02, + 1.0096e-01, 2.3569e-02, 1.8524e-01, 5.1257e-01, + 5.2509e-01, 8.0403e-01, 1.2724e-01, 7.1898e-02, + 8.3280e-01, 7.8982e-01, 9.2134e-01, 1.2335e-02, + 6.7136e-02, 8.5018e-01, 4.7597e-01, 7.4717e-01, + 6.2179e-02, 4.4811e-01, 8.3920e-01, 6.0345e-01, + 8.1684e-01, 6.9675e-01, 9.9445e-01, 2.7290e-01, + 1.2717e-01, 4.1549e-02, 9.2287e-01, 4.5480e-01, + 5.5821e-01, 9.2880e-01, 5.5301e-01, 5.4505e-01, + 3.7060e-01, 2.4044e-01, 7.1787e-01, 6.8616e-01, + 4.4501e-01, 6.3975e-02, 1.2135e-01, 3.1465e-01, + 7.8125e-01, 6.9943e-01, 9.7250e-01, 6.1706e-01, + 2.0429e-01, 4.2341e-02, 8.0929e-01, 9.7416e-01, + 6.1808e-01, 7.7504e-01, 6.7942e-01, 2.7196e-02, + 7.9603e-02, 3.2581e-01, 6.0908e-02, 1.5004e-02, + 5.8326e-01, 9.4906e-01, 2.3072e-01, 3.5085e-01, + 9.4853e-01, 7.2332e-01, 1.1940e-01, 4.9236e-01, + 7.7478e-01, 4.5736e-01, 6.2936e-01, 3.5934e-01, + 1.0097e-01, 8.1085e-01, 2.4341e-01, 3.2735e-01, + 3.3189e-01, 5.8497e-01, 1.7734e-01, 6.3375e-01, + 1.4097e-01, 1.5644e-01, 8.1609e-01, 7.2549e-01, + 5.9378e-02, 1.5413e-01, 5.3232e-02, 6.1339e-01, + 7.0552e-01, 7.7829e-01, 7.5404e-01, 7.7450e-01, + 8.7883e-01, 5.6085e-01, 4.0932e-01, 8.9438e-01, + 9.1787e-02, 8.4228e-01, 3.0927e-01, 1.6037e-01, + 2.2670e-01, 7.6787e-01, 1.4606e-01, 2.3816e-01, + 3.4066e-01, 2.0990e-01, 5.8881e-01, 8.9502e-01, + 4.3356e-01, 9.0184e-01, 6.5518e-01, 4.6940e-01, + 5.7142e-01, 9.6034e-01, 2.1592e-01, 7.5007e-01, + 3.7195e-01, 3.4826e-01, 1.3116e-01, 8.3464e-01, + 6.8307e-01, 9.5445e-01, 8.1954e-01, 7.2306e-01, + 2.5420e-01, 1.3167e-01, 6.4915e-01, 5.6853e-01, + 9.0585e-02, 1.3848e-01, 8.8329e-01, 8.4826e-01, + 2.1122e-01, 2.4577e-01, 6.3388e-01, 5.1270e-01, + 5.1034e-01, 5.0535e-01, 7.7389e-01, 7.8660e-01, + 8.3881e-01, 4.0781e-01, 7.3903e-01, 4.6446e-03, + 3.7737e-01, 5.3757e-01, 6.2755e-01, 2.1755e-01, + 6.0600e-01, 6.8931e-01, 7.2083e-01, 8.5321e-01, + 7.4348e-01, 4.7003e-01, 8.0017e-01, 2.0961e-01, + 3.9155e-01, 4.7019e-01, 8.2793e-01, 1.0848e-01, + 5.0885e-01, 4.4031e-01, 4.3596e-01, 6.5756e-01, + 6.3068e-01, 3.1965e-02, 6.1304e-01, 6.2773e-01, + 7.5422e-01, 2.1203e-01, 3.7413e-01, 8.1662e-01, + 2.6392e-01, 6.2770e-01, 3.1850e-01, 8.8449e-01, + 4.1231e-01, 7.3768e-01, 6.2162e-01, 6.3949e-02, + 8.6686e-01, 7.9535e-01, 1.7100e-01, 9.0592e-01, + 7.7475e-01, 2.2756e-02, 1.9513e-01, 2.3374e-01, + 5.8883e-01, 1.5431e-01, 3.2038e-01, 9.7862e-01, + 2.1914e-02, 1.1835e-02, 4.2111e-01, 8.9160e-01, + 4.6853e-01, 6.7863e-01, 8.5162e-01, 8.9675e-02, + 8.4382e-01, 8.6282e-01, 2.6677e-01, 1.6343e-01, + 4.8528e-02, 9.4412e-01, 6.3315e-01, 4.3330e-02, + 4.6024e-01, 4.2822e-02, 6.1742e-01, 9.5830e-01, + 9.5318e-01, 8.0255e-01, 3.3261e-01, 4.8987e-01, + 5.2325e-01, 4.5380e-01, 1.7553e-01, 3.8748e-01, + 3.4164e-02, 5.6323e-01, 6.9522e-01, 1.2731e-01, + 2.0882e-01, 2.9892e-01, 4.1201e-01, 1.0616e-02, + 8.2951e-01, 1.5012e-01, 2.5441e-01, 5.8813e-01, + 6.0251e-01, 3.5572e-01, 1.3375e-01, 7.4197e-01, + 7.6556e-01, 9.4426e-01, 1.6704e-01, 4.2013e-01, + 9.9049e-01, 5.8137e-01, 6.4977e-01, 8.2789e-01, + 2.1064e-01, 7.6906e-01, 6.0039e-01, 5.7468e-01, + 6.0443e-02, 5.0163e-01, 3.7936e-01, 1.3277e-01, + 6.4513e-01, 5.0021e-01, 9.3869e-01, 2.2699e-01, + 8.5101e-01, 9.1350e-01, 3.2096e-01, 6.4035e-01, + 2.1549e-01, 3.9428e-01, 2.3003e-01, 6.3791e-02, + 5.3362e-02, 2.8508e-01, 5.1790e-01, 2.7213e-01, + 8.4037e-01, 3.8949e-03, 2.2458e-02, 6.6033e-01, + 8.4001e-01, 8.8969e-01, 9.5652e-01, 4.0968e-01, + 5.6649e-01, 3.8455e-01, 7.7402e-01, 7.7569e-01, + 6.9995e-01, 5.3609e-01, 4.7322e-01, 2.5078e-01, + 3.1545e-01, 2.3820e-01, 2.6935e-01, 5.4291e-01, + 9.8952e-02, 4.1834e-01, 6.8148e-01, 3.4508e-01, + 5.6829e-01, 9.5116e-01, 7.0814e-01, 7.8640e-01, + 9.8928e-01, 9.4988e-01, 1.3932e-01, 8.0564e-01, + 5.7439e-01, 3.3367e-02, 6.8127e-01, 9.8039e-01, + 9.7767e-01, 8.0552e-02, 5.3572e-01, 5.2619e-01, + 3.8475e-01, 3.3846e-01, 8.3436e-01, 9.1328e-01, + 3.3929e-01, 5.4203e-01, 5.6960e-01, 2.7232e-01, + 1.3736e-01, 5.3665e-01, 4.1730e-01, 5.5670e-01, + 3.2961e-01, 7.4186e-01, 7.7502e-01, 1.9667e-01, + 1.7768e-01, 2.1674e-01, 5.9639e-02, 1.5805e-01, + 6.5950e-01, 7.7801e-01, 1.1876e-01, 2.8471e-02, + 8.1482e-02, 6.1569e-01, 7.2271e-01, 4.3063e-01, + 3.3714e-01, 5.9950e-01, 2.4036e-01, 9.4548e-01, + 6.8225e-02, 3.8594e-01, 5.5316e-01, 8.3555e-01, + 7.0504e-01, 6.3175e-02, 9.5028e-01, 5.9192e-01, + 8.3808e-01, 9.3302e-01, 4.6343e-01, 5.1120e-01, + 3.2675e-01, 8.7011e-01, 9.8451e-01, 3.3422e-01, + 9.2713e-01, 2.0238e-01, 9.1217e-01, 5.1309e-01, + 6.2678e-01, 1.1738e-01, 1.2722e-03, 4.9728e-01, + 9.3930e-01, 8.9876e-01, 3.3336e-01, 6.4927e-01, + 5.3282e-01, 1.7894e-01, 4.5240e-01, 6.4025e-01, + 5.8421e-01, 3.9615e-01, 3.3808e-01, 8.3123e-01, + 6.8721e-01, 7.6244e-01, 4.4166e-01, 1.7219e-01, + 5.6471e-01, 9.1698e-01, 3.6272e-01, 4.0208e-01, + 4.7886e-01, 6.1182e-01, 9.0649e-01, 7.3848e-01, + 1.7994e-01, 1.0582e-01, 7.1936e-01, 9.9727e-01, + 5.8436e-01, 8.9529e-01, 1.4226e-03, 5.5845e-01, + 1.2202e-01, 4.2654e-01, 7.4178e-02, 3.6640e-01, + 8.3884e-01, 1.1291e-01, 8.7969e-01, 1.4058e-01, + 8.6455e-02, 8.3188e-01, 1.8866e-01, 9.3291e-01, + 8.1895e-01, 7.6617e-01, 3.9340e-01, 5.2325e-01, + 8.5361e-01, 1.4133e-01, 1.4430e-01, 7.9132e-01]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.0633, 0.2712, 0.1613, ..., 0.7795, 0.8074, 0.9414]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 10.386851072311401 seconds + +[18.39, 17.96, 17.95, 18.06, 18.03, 17.74, 18.17, 18.27, 17.97, 17.88] +[46.24] +14.305678367614746 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 225343, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.386851072311401, 'TIME_S_1KI': 0.04609351553991649, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 661.4945677185059, 'W': 46.24} +[18.39, 17.96, 17.95, 18.06, 18.03, 17.74, 18.17, 18.27, 17.97, 17.88, 18.01, 17.95, 18.03, 17.68, 17.83, 17.84, 17.98, 17.81, 17.89, 18.12] +323.35999999999996 +16.168 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 225343, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.386851072311401, 'TIME_S_1KI': 0.04609351553991649, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 661.4945677185059, 'W': 46.24, 'J_1KI': 2.935500848566434, 'W_1KI': 0.20519829770616352, 'W_D': 30.072000000000003, 'J_D': 430.2003598709107, 'W_D_1KI': 0.1334498963801849, 'J_D_1KI': 0.0005922078625925141} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_500000_1e-05.json b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_500000_1e-05.json new file mode 100644 index 0000000..d7d5020 --- /dev/null +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_500000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 13.995913743972778, "TIME_S_1KI": 13.995913743972778, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 871.8022893977165, "W": 48.71, "J_1KI": 871.8022893977165, "W_1KI": 48.71, "W_D": 32.347, "J_D": 578.9404363610745, "W_D_1KI": 32.347, "J_D_1KI": 32.347} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_500000_1e-05.output b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_500000_1e-05.output new file mode 100644 index 0000000..530a6a0 --- /dev/null +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_500000_1e-05.output @@ -0,0 +1,47 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '500000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 13.995913743972778} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2, 10, ..., 2499992, + 2499997, 2500000]), + col_indices=tensor([ 17718, 235055, 35243, ..., 14166, 348855, + 416543]), + values=tensor([0.0021, 0.9166, 0.2725, ..., 0.7498, 0.6792, 0.5299]), + size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.0136, 0.8273, 0.9896, ..., 0.5941, 0.9828, 0.6210]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 2500000 +Density: 1e-05 +Time: 13.995913743972778 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2, 10, ..., 2499992, + 2499997, 2500000]), + col_indices=tensor([ 17718, 235055, 35243, ..., 14166, 348855, + 416543]), + values=tensor([0.0021, 0.9166, 0.2725, ..., 0.7498, 0.6792, 0.5299]), + size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.0136, 0.8273, 0.9896, ..., 0.5941, 0.9828, 0.6210]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 2500000 +Density: 1e-05 +Time: 13.995913743972778 seconds + +[18.5, 17.83, 21.98, 17.84, 18.21, 18.0, 17.97, 17.87, 17.99, 17.99] +[48.71] +17.897809267044067 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 13.995913743972778, 'TIME_S_1KI': 13.995913743972778, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 871.8022893977165, 'W': 48.71} +[18.5, 17.83, 21.98, 17.84, 18.21, 18.0, 17.97, 17.87, 17.99, 17.99, 18.27, 17.72, 18.53, 17.6, 18.07, 17.75, 17.78, 17.88, 17.93, 17.86] +327.26 +16.363 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 13.995913743972778, 'TIME_S_1KI': 13.995913743972778, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 871.8022893977165, 'W': 48.71, 'J_1KI': 871.8022893977165, 'W_1KI': 48.71, 'W_D': 32.347, 'J_D': 578.9404363610745, 'W_D_1KI': 32.347, 'J_D_1KI': 32.347} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_50000_0.0001.json b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_50000_0.0001.json new file mode 100644 index 0000000..d6c035a --- /dev/null +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_50000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 8984, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.250720024108887, "TIME_S_1KI": 1.1409973312676855, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 667.435348098278, "W": 47.13, "J_1KI": 74.29155700114404, "W_1KI": 5.245992876224399, "W_D": 30.525750000000002, "J_D": 432.29290424805885, "W_D_1KI": 3.3977905164737314, "J_D_1KI": 0.37820464341871457} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_50000_0.0001.output b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_50000_0.0001.output new file mode 100644 index 0000000..eb4a2d8 --- /dev/null +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_50000_0.0001.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 1.1686315536499023} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 9, 12, ..., 249984, 249988, + 250000]), + col_indices=tensor([ 9222, 11801, 17371, ..., 41613, 43396, 49641]), + values=tensor([0.5050, 0.7653, 0.0671, ..., 0.1421, 0.6855, 0.0275]), + size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) +tensor([0.2330, 0.0304, 0.5518, ..., 0.1557, 0.6263, 0.0730]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 250000 +Density: 0.0001 +Time: 1.1686315536499023 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '8984', '-ss', '50000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.250720024108887} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 6, 7, ..., 249994, 249997, + 250000]), + col_indices=tensor([ 1146, 2450, 11327, ..., 241, 2629, 25085]), + values=tensor([0.2696, 0.3732, 0.9366, ..., 0.5943, 0.0784, 0.3144]), + size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) +tensor([0.7229, 0.2746, 0.7643, ..., 0.7812, 0.8470, 0.7243]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 250000 +Density: 0.0001 +Time: 10.250720024108887 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 6, 7, ..., 249994, 249997, + 250000]), + col_indices=tensor([ 1146, 2450, 11327, ..., 241, 2629, 25085]), + values=tensor([0.2696, 0.3732, 0.9366, ..., 0.5943, 0.0784, 0.3144]), + size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) +tensor([0.7229, 0.2746, 0.7643, ..., 0.7812, 0.8470, 0.7243]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 250000 +Density: 0.0001 +Time: 10.250720024108887 seconds + +[18.69, 18.1, 18.11, 18.0, 21.83, 17.95, 18.22, 18.09, 18.15, 18.1] +[47.13] +14.161581754684448 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 8984, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.250720024108887, 'TIME_S_1KI': 1.1409973312676855, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 667.435348098278, 'W': 47.13} +[18.69, 18.1, 18.11, 18.0, 21.83, 17.95, 18.22, 18.09, 18.15, 18.1, 21.63, 17.85, 18.41, 18.24, 17.96, 18.09, 18.1, 17.94, 18.92, 17.83] +332.08500000000004 +16.60425 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 8984, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.250720024108887, 'TIME_S_1KI': 1.1409973312676855, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 667.435348098278, 'W': 47.13, 'J_1KI': 74.29155700114404, 'W_1KI': 5.245992876224399, 'W_D': 30.525750000000002, 'J_D': 432.29290424805885, 'W_D_1KI': 3.3977905164737314, 'J_D_1KI': 0.37820464341871457} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_50000_0.001.json b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_50000_0.001.json new file mode 100644 index 0000000..6747ace --- /dev/null +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_50000_0.001.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 1969, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.35115671157837, "TIME_S_1KI": 5.25706282964874, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 727.7024494171142, "W": 48.48, "J_1KI": 369.5797102169193, "W_1KI": 24.62163534789233, "W_D": 32.2385, "J_D": 483.9116216075421, "W_D_1KI": 16.373031995937023, "J_D_1KI": 8.315404771933482} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_50000_0.001.output b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_50000_0.001.output new file mode 100644 index 0000000..edef138 --- /dev/null +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_50000_0.001.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '0.001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 5.33142876625061} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 50, 102, ..., 2499894, + 2499942, 2500000]), + col_indices=tensor([ 362, 476, 734, ..., 42817, 42901, 48624]), + values=tensor([0.1861, 0.1141, 0.9529, ..., 0.0521, 0.7769, 0.3485]), + size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.6800, 0.1652, 0.7606, ..., 0.1973, 0.6571, 0.7552]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 2500000 +Density: 0.001 +Time: 5.33142876625061 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1969', '-ss', '50000', '-sd', '0.001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.35115671157837} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 59, 106, ..., 2499882, + 2499933, 2500000]), + col_indices=tensor([ 752, 1386, 1561, ..., 49182, 49404, 49846]), + values=tensor([0.0219, 0.4602, 0.8212, ..., 0.9720, 0.3228, 0.9373]), + size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.3378, 0.8054, 0.7422, ..., 0.6857, 0.1927, 0.4134]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 2500000 +Density: 0.001 +Time: 10.35115671157837 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 59, 106, ..., 2499882, + 2499933, 2500000]), + col_indices=tensor([ 752, 1386, 1561, ..., 49182, 49404, 49846]), + values=tensor([0.0219, 0.4602, 0.8212, ..., 0.9720, 0.3228, 0.9373]), + size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.3378, 0.8054, 0.7422, ..., 0.6857, 0.1927, 0.4134]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 2500000 +Density: 0.001 +Time: 10.35115671157837 seconds + +[18.43, 18.02, 18.06, 17.85, 18.04, 18.18, 18.02, 17.8, 18.02, 18.51] +[48.48] +15.010364055633545 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 1969, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.35115671157837, 'TIME_S_1KI': 5.25706282964874, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 727.7024494171142, 'W': 48.48} +[18.43, 18.02, 18.06, 17.85, 18.04, 18.18, 18.02, 17.8, 18.02, 18.51, 18.08, 17.97, 18.18, 18.15, 17.97, 18.08, 18.16, 17.86, 18.05, 17.82] +324.83 +16.2415 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 1969, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.35115671157837, 'TIME_S_1KI': 5.25706282964874, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 727.7024494171142, 'W': 48.48, 'J_1KI': 369.5797102169193, 'W_1KI': 24.62163534789233, 'W_D': 32.2385, 'J_D': 483.9116216075421, 'W_D_1KI': 16.373031995937023, 'J_D_1KI': 8.315404771933482} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_50000_1e-05.json b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_50000_1e-05.json new file mode 100644 index 0000000..91b7ae2 --- /dev/null +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_50000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 21352, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.102294206619263, "TIME_S_1KI": 0.47313105126542065, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 644.554582464695, "W": 46.45, "J_1KI": 30.187082355971103, "W_1KI": 2.1754402397901837, "W_D": 30.18325, "J_D": 418.83212273794413, "W_D_1KI": 1.4136029411764706, "J_D_1KI": 0.066204708747493} diff --git a/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_50000_1e-05.output b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_50000_1e-05.output new file mode 100644 index 0000000..c1ed6fd --- /dev/null +++ b/pytorch/output_synthetic_1core/xeon_4216_1_csr_10_10_10_synthetic_50000_1e-05.output @@ -0,0 +1,62 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.49173688888549805} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 1, ..., 25000, 25000, 25000]), + col_indices=tensor([ 851, 39596, 1204, ..., 6262, 34652, 46359]), + values=tensor([0.1009, 0.2308, 0.6894, ..., 0.4766, 0.7010, 0.2687]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.2088, 0.1405, 0.6063, ..., 0.1063, 0.3954, 0.8044]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 0.49173688888549805 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '21352', '-ss', '50000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.102294206619263} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 24998, 24998, 25000]), + col_indices=tensor([15528, 30130, 16433, ..., 30917, 35420, 44166]), + values=tensor([0.6196, 0.0183, 0.2015, ..., 0.9265, 0.2661, 0.3216]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.3139, 0.2113, 0.1225, ..., 0.3436, 0.4255, 0.1892]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 10.102294206619263 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 24998, 24998, 25000]), + col_indices=tensor([15528, 30130, 16433, ..., 30917, 35420, 44166]), + values=tensor([0.6196, 0.0183, 0.2015, ..., 0.9265, 0.2661, 0.3216]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.3139, 0.2113, 0.1225, ..., 0.3436, 0.4255, 0.1892]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 10.102294206619263 seconds + +[18.39, 18.05, 18.35, 17.95, 18.07, 17.91, 18.01, 17.84, 17.86, 18.12] +[46.45] +13.876309633255005 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 21352, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.102294206619263, 'TIME_S_1KI': 0.47313105126542065, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 644.554582464695, 'W': 46.45} +[18.39, 18.05, 18.35, 17.95, 18.07, 17.91, 18.01, 17.84, 17.86, 18.12, 18.35, 17.9, 17.93, 17.87, 17.99, 17.82, 18.04, 18.01, 19.31, 17.99] +325.33500000000004 +16.266750000000002 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 21352, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.102294206619263, 'TIME_S_1KI': 0.47313105126542065, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 644.554582464695, 'W': 46.45, 'J_1KI': 30.187082355971103, 'W_1KI': 2.1754402397901837, 'W_D': 30.18325, 'J_D': 418.83212273794413, 'W_D_1KI': 1.4136029411764706, 'J_D_1KI': 0.066204708747493} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_0.0001.json b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_0.0001.json new file mode 100644 index 0000000..024170e --- /dev/null +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 24.361413717269897, "TIME_S_1KI": 24.361413717269897, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 676.3945213317871, "W": 23.115576130225318, "J_1KI": 676.3945213317871, "W_1KI": 23.115576130225318, "W_D": 4.813576130225318, "J_D": 140.85206027984617, "W_D_1KI": 4.813576130225318, "J_D_1KI": 4.813576130225318} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_0.0001.output b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_0.0001.output new file mode 100644 index 0000000..f9e5f4b --- /dev/null +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_0.0001.output @@ -0,0 +1,45 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 100000 -sd 0.0001 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 24.361413717269897} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 11, 21, ..., 999974, + 999988, 1000000]), + col_indices=tensor([ 9500, 9994, 42112, ..., 68909, 84086, 93735]), + values=tensor([0.6307, 0.9197, 0.7409, ..., 0.9841, 0.2812, 0.5553]), + size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.0568, 0.5322, 0.2500, ..., 0.3574, 0.0150, 0.2325]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 1000000 +Density: 0.0001 +Time: 24.361413717269897 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 11, 21, ..., 999974, + 999988, 1000000]), + col_indices=tensor([ 9500, 9994, 42112, ..., 68909, 84086, 93735]), + values=tensor([0.6307, 0.9197, 0.7409, ..., 0.9841, 0.2812, 0.5553]), + size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.0568, 0.5322, 0.2500, ..., 0.3574, 0.0150, 0.2325]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 1000000 +Density: 0.0001 +Time: 24.361413717269897 seconds + +[20.76, 20.76, 20.72, 20.72, 20.52, 20.4, 20.8, 20.84, 20.72, 21.04] +[20.92, 20.48, 23.92, 23.92, 25.2, 26.52, 27.64, 28.16, 25.08, 24.44, 24.2, 24.28, 24.28, 24.36, 24.6, 24.64, 24.84, 24.92, 25.08, 24.84, 24.8, 25.16, 25.12, 25.12, 24.92, 25.2, 25.24, 24.92] +29.261417388916016 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 24.361413717269897, 'TIME_S_1KI': 24.361413717269897, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 676.3945213317871, 'W': 23.115576130225318} +[20.76, 20.76, 20.72, 20.72, 20.52, 20.4, 20.8, 20.84, 20.72, 21.04, 20.12, 20.08, 20.12, 20.04, 19.88, 19.88, 19.92, 19.88, 19.8, 20.0] +366.04 +18.302 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 24.361413717269897, 'TIME_S_1KI': 24.361413717269897, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 676.3945213317871, 'W': 23.115576130225318, 'J_1KI': 676.3945213317871, 'W_1KI': 23.115576130225318, 'W_D': 4.813576130225318, 'J_D': 140.85206027984617, 'W_D_1KI': 4.813576130225318, 'J_D_1KI': 4.813576130225318} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_0.0005.json b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_0.0005.json new file mode 100644 index 0000000..def7a28 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_0.0005.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.0005, "TIME_S": 117.5588891506195, "TIME_S_1KI": 117.5588891506195, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2923.375952148438, "W": 23.010596725488792, "J_1KI": 2923.375952148438, "W_1KI": 23.010596725488792, "W_D": 4.534596725488793, "J_D": 576.0967947998054, "W_D_1KI": 4.534596725488793, "J_D_1KI": 4.534596725488793} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_0.0005.output b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_0.0005.output new file mode 100644 index 0000000..1edb066 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_0.0005.output @@ -0,0 +1,45 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 100000 -sd 0.0005 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.0005, "TIME_S": 117.5588891506195} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 59, 119, ..., 4999916, + 4999957, 5000000]), + col_indices=tensor([ 1403, 2005, 2494, ..., 97036, 97364, 98409]), + values=tensor([0.0186, 0.2433, 0.9960, ..., 0.9635, 0.2941, 0.9283]), + size=(100000, 100000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.8104, 0.5597, 0.5404, ..., 0.7369, 0.5622, 0.9637]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 5000000 +Density: 0.0005 +Time: 117.5588891506195 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 59, 119, ..., 4999916, + 4999957, 5000000]), + col_indices=tensor([ 1403, 2005, 2494, ..., 97036, 97364, 98409]), + values=tensor([0.0186, 0.2433, 0.9960, ..., 0.9635, 0.2941, 0.9283]), + size=(100000, 100000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.8104, 0.5597, 0.5404, ..., 0.7369, 0.5622, 0.9637]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 5000000 +Density: 0.0005 +Time: 117.5588891506195 seconds + +[20.12, 20.28, 20.08, 20.04, 20.04, 20.04, 20.32, 20.4, 20.48, 20.6] +[20.4, 20.36, 21.2, 22.2, 24.2, 26.08, 27.2, 26.48, 26.32, 25.16, 24.32, 24.48, 24.48, 24.52, 24.56, 24.4, 24.36, 24.28, 24.48, 24.48, 24.48, 24.2, 24.2, 24.32, 24.2, 24.36, 24.48, 24.2, 24.24, 24.2, 24.24, 24.36, 24.36, 24.44, 24.44, 24.56, 24.56, 24.56, 24.64, 24.84, 24.68, 24.72, 24.52, 24.6, 24.64, 24.36, 24.4, 24.36, 24.28, 24.16, 24.2, 24.48, 24.64, 24.56, 24.44, 24.44, 24.44, 24.48, 24.4, 24.68, 24.44, 24.28, 24.2, 24.24, 24.28, 24.32, 24.2, 24.48, 24.32, 24.24, 24.36, 24.32, 24.16, 24.0, 23.92, 23.72, 23.64, 23.68, 23.68, 23.68, 23.76, 24.0, 24.04, 24.16, 24.4, 24.36, 24.48, 24.76, 24.76, 24.76, 24.64, 24.48, 24.28, 24.44, 24.48, 24.6, 24.52, 24.52, 24.44, 24.4, 24.4, 24.32, 24.36, 24.24, 24.2, 24.2, 24.48, 24.64, 24.48, 24.72, 24.52, 24.24, 24.36, 24.24, 24.24, 24.52, 24.6, 24.44, 24.68, 24.6, 24.48] +127.04476928710938 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.0005, 'TIME_S': 117.5588891506195, 'TIME_S_1KI': 117.5588891506195, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2923.375952148438, 'W': 23.010596725488792} +[20.12, 20.28, 20.08, 20.04, 20.04, 20.04, 20.32, 20.4, 20.48, 20.6, 21.08, 20.92, 20.92, 21.08, 20.84, 20.88, 20.8, 20.84, 20.44, 20.44] +369.52 +18.476 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.0005, 'TIME_S': 117.5588891506195, 'TIME_S_1KI': 117.5588891506195, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2923.375952148438, 'W': 23.010596725488792, 'J_1KI': 2923.375952148438, 'W_1KI': 23.010596725488792, 'W_D': 4.534596725488793, 'J_D': 576.0967947998054, 'W_D_1KI': 4.534596725488793, 'J_D_1KI': 4.534596725488793} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_0.001.json b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_0.001.json new file mode 100644 index 0000000..78b2e2b --- /dev/null +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_0.001.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 230.9039385318756, "TIME_S_1KI": 230.9039385318756, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 5761.600697250372, "W": 23.455047609770336, "J_1KI": 5761.600697250372, "W_1KI": 23.455047609770336, "W_D": 5.099047609770334, "J_D": 1252.5524037532862, "W_D_1KI": 5.099047609770334, "J_D_1KI": 5.099047609770334} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_0.001.output b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_0.001.output new file mode 100644 index 0000000..1a5d909 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_0.001.output @@ -0,0 +1,45 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 100000 -sd 0.001 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 230.9039385318756} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 89, 166, ..., 9999787, + 9999913, 10000000]), + col_indices=tensor([ 196, 231, 588, ..., 93210, 94069, 96596]), + values=tensor([0.2369, 0.0996, 0.5969, ..., 0.6003, 0.9136, 0.6152]), + size=(100000, 100000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.9669, 0.8246, 0.8261, ..., 0.7936, 0.5607, 0.9848]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 10000000 +Density: 0.001 +Time: 230.9039385318756 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 89, 166, ..., 9999787, + 9999913, 10000000]), + col_indices=tensor([ 196, 231, 588, ..., 93210, 94069, 96596]), + values=tensor([0.2369, 0.0996, 0.5969, ..., 0.6003, 0.9136, 0.6152]), + size=(100000, 100000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.9669, 0.8246, 0.8261, ..., 0.7936, 0.5607, 0.9848]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 10000000 +Density: 0.001 +Time: 230.9039385318756 seconds + +[20.44, 20.56, 20.52, 20.52, 20.52, 20.6, 20.56, 20.68, 20.84, 20.88] +[21.08, 20.84, 21.6, 22.44, 24.12, 25.68, 27.16, 27.72, 27.68, 27.68, 26.88, 25.92, 25.32, 24.84, 24.64, 24.56, 24.56, 24.6, 24.64, 24.64, 24.8, 24.64, 24.44, 24.44, 24.44, 24.28, 24.6, 24.8, 24.68, 24.56, 24.44, 24.44, 24.6, 24.52, 24.72, 24.48, 24.48, 24.36, 24.24, 24.24, 24.4, 24.32, 24.64, 24.68, 24.64, 24.84, 24.4, 24.44, 24.52, 24.32, 24.48, 24.52, 24.6, 24.6, 24.48, 24.72, 24.56, 24.56, 24.64, 24.76, 24.72, 24.84, 25.04, 24.84, 24.92, 24.72, 24.4, 24.4, 24.6, 24.52, 24.4, 24.6, 24.32, 24.4, 24.48, 24.48, 24.6, 24.76, 25.0, 25.04, 25.0, 24.68, 24.32, 24.44, 24.4, 24.4, 24.56, 24.52, 24.56, 24.52, 24.56, 24.6, 24.84, 24.8, 24.92, 24.8, 24.52, 24.52, 24.84, 24.8, 24.8, 24.6, 24.36, 24.36, 24.56, 24.44, 24.72, 24.76, 24.52, 24.56, 24.72, 24.76, 24.84, 24.96, 25.0, 24.76, 24.96, 25.08, 24.72, 24.72, 24.68, 24.6, 24.52, 24.6, 24.68, 24.88, 24.8, 24.84, 24.88, 24.8, 24.88, 24.92, 24.96, 24.96, 24.8, 24.72, 24.88, 24.96, 25.28, 25.12, 25.08, 25.08, 25.0, 24.52, 24.56, 24.48, 24.52, 24.56, 24.6, 24.6, 24.56, 24.56, 24.52, 24.6, 24.8, 24.88, 24.76, 24.64, 24.52, 24.68, 24.6, 24.6, 24.52, 24.52, 24.44, 24.44, 24.24, 24.28, 24.32, 24.28, 24.6, 24.6, 24.76, 24.88, 24.88, 24.72, 24.72, 24.52, 24.6, 24.6, 24.56, 24.68, 24.92, 24.8, 24.84, 24.84, 24.8, 24.8, 24.44, 24.48, 24.48, 24.48, 24.52, 24.64, 24.56, 24.6, 24.52, 24.56, 24.48, 24.56, 24.48, 24.56, 24.48, 24.56, 24.64, 24.84, 24.88, 24.88, 24.72, 24.36, 24.48, 24.56, 24.8, 24.88, 24.96, 24.8, 24.48, 24.32, 24.2, 24.24, 24.2, 24.44, 24.6, 24.56, 24.88, 24.92, 24.84, 24.76, 24.48, 24.48, 24.52, 24.48, 24.72, 24.8] +245.6443829536438 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 230.9039385318756, 'TIME_S_1KI': 230.9039385318756, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 5761.600697250372, 'W': 23.455047609770336} +[20.44, 20.56, 20.52, 20.52, 20.52, 20.6, 20.56, 20.68, 20.84, 20.88, 20.84, 20.68, 20.52, 20.24, 19.96, 20.0, 19.76, 19.84, 20.12, 20.24] +367.12 +18.356 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 230.9039385318756, 'TIME_S_1KI': 230.9039385318756, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 5761.600697250372, 'W': 23.455047609770336, 'J_1KI': 5761.600697250372, 'W_1KI': 23.455047609770336, 'W_D': 5.099047609770334, 'J_D': 1252.5524037532862, 'W_D_1KI': 5.099047609770334, 'J_D_1KI': 5.099047609770334} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_0.005.json b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_0.005.json new file mode 100644 index 0000000..19d74a9 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_0.005.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 50000000, "MATRIX_DENSITY": 0.005, "TIME_S": 1091.9541580677032, "TIME_S_1KI": 1091.9541580677032, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 27099.232660408, "W": 23.65811028389948, "J_1KI": 27099.232660408, "W_1KI": 23.65811028389948, "W_D": 5.30711028389948, "J_D": 6079.0407438294715, "W_D_1KI": 5.30711028389948, "J_D_1KI": 5.30711028389948} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_0.005.output b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_0.005.output new file mode 100644 index 0000000..a379597 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_0.005.output @@ -0,0 +1,45 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 100000 -sd 0.005 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 50000000, "MATRIX_DENSITY": 0.005, "TIME_S": 1091.9541580677032} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 520, 1009, ..., 49998961, + 49999487, 50000000]), + col_indices=tensor([ 172, 626, 631, ..., 99749, 99860, 99985]), + values=tensor([0.6669, 0.0843, 0.5498, ..., 0.0965, 0.4666, 0.0259]), + size=(100000, 100000), nnz=50000000, layout=torch.sparse_csr) +tensor([0.4596, 0.0337, 0.7880, ..., 0.9862, 0.8105, 0.6593]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 50000000 +Density: 0.005 +Time: 1091.9541580677032 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 520, 1009, ..., 49998961, + 49999487, 50000000]), + col_indices=tensor([ 172, 626, 631, ..., 99749, 99860, 99985]), + values=tensor([0.6669, 0.0843, 0.5498, ..., 0.0965, 0.4666, 0.0259]), + size=(100000, 100000), nnz=50000000, layout=torch.sparse_csr) +tensor([0.4596, 0.0337, 0.7880, ..., 0.9862, 0.8105, 0.6593]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 50000000 +Density: 0.005 +Time: 1091.9541580677032 seconds + +[20.56, 20.52, 20.4, 20.4, 20.44, 20.64, 20.52, 20.56, 20.56, 20.48] +[20.6, 20.68, 21.28, 23.72, 25.32, 26.16, 27.04, 28.16, 28.16, 27.72, 27.08, 27.72, 28.88, 28.92, 29.44, 29.92, 29.8, 28.28, 28.0, 27.84, 28.08, 28.48, 27.88, 27.44, 26.56, 25.84, 24.92, 24.92, 24.92, 24.72, 24.76, 24.76, 24.72, 24.72, 24.68, 24.56, 24.72, 24.72, 24.84, 25.0, 24.88, 24.96, 24.8, 24.6, 24.52, 24.4, 24.4, 24.28, 24.36, 24.48, 24.56, 24.72, 24.72, 24.96, 24.88, 24.92, 25.0, 24.92, 24.8, 24.76, 24.88, 24.92, 25.12, 25.12, 24.96, 24.96, 24.68, 24.68, 24.76, 24.56, 24.72, 25.08, 24.96, 24.88, 24.88, 24.72, 24.84, 24.6, 24.68, 24.68, 24.68, 24.24, 24.36, 24.44, 24.48, 24.84, 24.8, 24.68, 24.8, 24.88, 24.84, 24.76, 24.88, 24.88, 24.84, 25.16, 25.16, 25.16, 25.0, 24.96, 24.96, 24.92, 24.8, 25.08, 25.0, 24.88, 25.04, 24.84, 24.72, 24.68, 24.6, 24.72, 24.6, 24.8, 24.8, 24.68, 24.68, 24.64, 24.64, 24.56, 24.64, 24.56, 24.76, 24.84, 25.0, 24.96, 25.0, 24.84, 24.84, 25.08, 24.96, 25.04, 24.96, 24.92, 24.96, 24.8, 24.84, 24.72, 24.56, 24.68, 24.68, 24.88, 25.08, 25.2, 25.2, 25.04, 24.96, 24.68, 24.84, 24.88, 25.04, 25.12, 24.96, 24.84, 25.08, 24.72, 24.84, 24.92, 24.88, 24.72, 25.0, 24.92, 24.92, 25.0, 25.32, 25.36, 25.36, 25.32, 25.36, 24.96, 24.56, 24.72, 24.6, 24.64, 25.0, 24.84, 24.96, 24.76, 24.84, 24.92, 25.08, 24.96, 25.12, 25.04, 25.04, 24.96, 25.04, 24.84, 24.72, 24.52, 24.4, 24.44, 24.96, 25.04, 25.56, 25.76, 25.6, 25.6, 25.4, 24.96, 25.04, 24.96, 24.92, 25.0, 24.92, 24.88, 24.88, 24.92, 24.76, 24.96, 24.96, 24.92, 24.84, 24.92, 24.8, 24.8, 24.92, 24.96, 24.8, 24.76, 24.8, 24.76, 24.96, 25.04, 24.92, 24.8, 24.48, 24.32, 24.32, 24.36, 24.44, 24.44, 24.48, 24.36, 24.36, 24.36, 24.56, 24.68, 24.96, 24.96, 25.08, 24.96, 24.8, 24.68, 24.64, 24.76, 24.68, 24.76, 24.76, 24.48, 24.48, 24.56, 24.6, 24.48, 24.76, 24.8, 24.8, 24.96, 24.92, 24.88, 25.0, 24.96, 25.04, 25.08, 24.92, 24.72, 24.6, 24.48, 24.04, 23.92, 24.04, 24.08, 24.08, 24.28, 24.6, 24.88, 24.64, 24.72, 24.68, 24.52, 24.48, 24.68, 24.84, 24.76, 24.8, 24.92, 24.76, 24.48, 24.76, 24.72, 24.68, 24.92, 24.88, 24.8, 24.8, 25.04, 25.08, 25.04, 25.2, 25.12, 24.8, 24.68, 24.64, 24.52, 24.76, 24.72, 24.72, 24.84, 24.76, 24.64, 25.0, 25.12, 25.12, 25.28, 25.24, 25.0, 25.0, 24.84, 24.72, 24.48, 24.4, 24.6, 24.68, 24.88, 25.08, 25.16, 25.12, 24.88, 24.88, 24.96, 24.84, 24.92, 24.72, 24.68, 24.64, 24.48, 24.56, 24.68, 24.68, 24.72, 24.84, 24.96, 24.64, 24.48, 24.36, 24.6, 24.64, 24.8, 25.04, 24.84, 24.76, 24.76, 24.72, 24.68, 24.88, 24.84, 25.08, 25.08, 24.92, 24.96, 24.96, 24.96, 24.88, 24.76, 24.68, 24.8, 24.68, 24.76, 24.76, 25.12, 25.08, 25.16, 25.44, 25.32, 25.12, 25.12, 24.96, 25.16, 24.88, 24.8, 24.84, 24.8, 24.8, 24.68, 24.72, 24.56, 24.64, 24.56, 24.64, 24.92, 24.76, 24.8, 24.72, 24.72, 24.4, 24.48, 24.48, 24.36, 24.4, 24.48, 24.6, 24.68, 24.8, 24.72, 24.72, 24.64, 24.64, 24.48, 24.56, 24.92, 24.84, 24.88, 24.76, 24.48, 24.48, 24.56, 24.8, 24.84, 24.92, 25.0, 24.88, 24.76, 24.88, 25.12, 25.16, 25.16, 25.16, 24.8, 24.84, 24.72, 24.84, 24.96, 25.08, 24.84, 24.76, 24.52, 24.64, 24.44, 24.4, 24.48, 24.68, 24.64, 24.92, 24.96, 24.76, 24.68, 24.44, 24.44, 24.44, 24.52, 24.44, 24.52, 24.84, 24.68, 24.88, 25.16, 24.88, 24.68, 24.56, 24.48, 24.68, 24.8, 25.12, 24.96, 24.84, 24.92, 24.6, 24.56, 24.72, 24.8, 24.8, 25.2, 25.32, 25.28, 25.08, 25.12, 25.04, 24.76, 24.92, 24.72, 24.8, 24.8, 24.84, 24.56, 24.56, 24.44, 24.48, 24.76, 25.12, 25.16, 25.24, 25.16, 25.16, 24.96, 24.76, 24.92, 24.8, 24.72, 25.08, 24.96, 24.92, 24.84, 24.84, 24.84, 24.76, 24.92, 25.0, 25.12, 24.92, 24.68, 24.68, 24.72, 24.72, 24.6, 24.6, 24.56, 24.48, 24.28, 24.44, 24.6, 24.8, 24.92, 24.88, 24.88, 24.72, 24.56, 24.44, 24.6, 24.8, 24.72, 24.88, 24.92, 24.88, 24.84, 24.76, 24.84, 24.84, 24.88, 24.88, 24.88, 24.6, 24.84, 24.72, 24.92, 24.84, 24.64, 24.44, 24.28, 24.52, 24.72, 24.56, 24.36, 24.64, 24.48, 24.52, 24.52, 24.56, 24.48, 24.48, 24.68, 24.84, 24.84, 24.92, 25.04, 24.6, 24.52, 24.72, 24.72, 24.8, 25.08, 25.24, 25.0, 24.76, 24.76, 24.76, 25.08, 25.2, 25.24, 25.12, 24.68, 24.68, 24.56, 24.68, 24.4, 24.52, 24.72, 24.68, 24.92, 24.96, 24.88, 24.92, 24.88, 24.76, 24.76, 24.92, 24.8, 24.92, 25.0, 25.08, 24.96, 24.8, 24.64, 24.64, 24.64, 24.72, 24.84, 24.88, 24.88, 24.8, 24.72, 24.64, 24.88, 24.92, 24.8, 24.76, 24.6, 24.64, 24.72, 24.84, 25.0, 24.88, 25.0, 25.04, 24.76, 24.76, 24.68, 24.56, 24.68, 24.8, 24.88, 24.96, 24.88, 25.0, 24.88, 24.84, 24.76, 24.8, 24.64, 24.76, 24.72, 24.72, 24.68, 24.68, 24.84, 24.96, 24.92, 24.92, 25.08, 25.04, 24.96, 25.16, 25.08, 24.92, 24.88, 24.68, 24.56, 24.68, 24.72, 24.84, 24.96, 25.0, 25.04, 25.04, 24.84, 24.76, 24.44, 24.32, 24.44, 24.44, 24.4, 24.4, 24.56, 24.64, 24.64, 24.76, 24.8, 24.68, 24.68, 24.64, 24.56, 24.72, 25.04, 24.96, 24.92, 24.92, 24.88, 24.92, 24.96, 24.96, 24.84, 24.84, 24.56, 24.64, 24.6, 24.56, 24.84, 24.84, 24.56, 24.64, 24.72, 24.8, 25.0, 25.16, 25.04, 25.12, 25.04, 25.12, 25.0, 25.04, 25.16, 25.0, 25.16, 25.16, 25.04, 24.64, 24.44, 24.6, 24.56, 24.84, 24.8, 24.84, 24.72, 24.64, 24.64, 24.88, 25.12, 25.16, 25.12, 25.16, 24.88, 24.92, 24.72, 24.72, 24.84, 24.84, 24.84, 24.96, 25.36, 25.16, 25.16, 24.76, 24.68, 24.52, 24.44, 24.6, 24.68, 24.76, 24.88, 25.04, 25.16, 25.16, 25.08, 24.8, 24.52, 24.44, 24.4, 24.4, 24.76, 24.8, 25.08, 25.2, 25.08, 24.76, 24.68, 24.68, 24.8, 24.8, 25.0, 24.92, 24.8, 24.88, 24.84, 25.0, 25.04, 25.0, 24.84, 24.84, 25.0, 25.0, 24.96, 25.04, 25.16, 25.0, 24.92, 24.96, 24.92, 24.92, 24.84, 24.56, 24.48, 24.24, 24.24, 24.4, 24.36, 24.6, 24.48, 24.76, 24.96, 24.92, 25.16, 25.16, 25.2, 25.04, 24.84, 24.84, 24.72, 24.84, 25.0, 25.12, 25.12, 25.08, 25.08, 24.68, 24.72, 24.56, 24.32, 24.52, 24.64, 24.72, 24.76, 24.64, 24.48, 24.48, 24.6, 24.72, 25.0, 25.16, 24.92, 24.92, 25.0, 25.12, 25.16, 25.12, 25.0, 24.88, 24.88, 24.88, 24.84, 24.96, 24.76, 24.72, 24.68, 24.72, 24.64, 24.64, 24.84, 24.8, 25.08, 25.16, 25.28, 25.04, 25.0, 24.72, 24.76, 24.96, 25.04, 25.04, 25.36, 25.16, 24.92, 25.08, 25.12, 25.12, 25.08, 25.12, 25.08, 25.08, 25.0, 24.68, 24.96, 24.92, 24.96, 25.08, 25.04, 24.88, 24.88, 24.6, 24.48, 24.6, 24.56, 24.72, 24.8, 24.92, 24.92, 24.92, 24.84, 24.6, 24.6, 24.56, 24.6, 24.68, 24.8, 24.96, 24.96, 24.96, 24.88, 24.96, 24.88, 24.8, 24.88, 24.68, 24.68, 24.56, 24.64, 24.92, 24.92, 24.88, 25.0, 24.8, 24.8, 24.6, 24.72, 24.64, 24.52, 24.56, 24.64, 24.76, 24.84, 25.12, 25.08, 24.8, 24.8, 24.8, 24.8, 24.84, 24.8, 24.72, 24.68, 24.92, 25.0, 24.84, 24.84, 24.84, 24.8, 24.68, 24.56, 24.64, 24.32, 24.56, 24.64, 24.76, 24.92, 24.92, 25.0, 24.96, 25.2, 25.16, 25.0, 25.04, 24.92, 24.8, 24.6, 24.68, 24.68, 24.72, 24.96, 24.92, 25.08, 25.04, 24.88, 24.8, 24.92, 24.68, 24.56, 24.72, 24.68, 24.68, 24.8, 24.84, 24.76, 24.8, 24.84, 24.76, 24.8, 24.56, 24.56, 24.44, 24.76, 24.36, 24.32, 24.64, 24.8, 24.8, 25.12, 25.04, 24.88, 25.08, 24.88, 24.76, 24.96, 24.8, 24.8, 24.8, 24.76, 24.64, 24.6, 24.6, 24.6, 24.72, 24.8, 25.16, 25.32, 25.24, 25.16, 24.84, 24.68, 24.36, 24.48, 24.12, 24.2, 24.28, 24.36, 24.6, 24.92, 25.04, 24.88, 24.92, 24.84, 24.6, 24.6, 24.56, 24.72, 24.72, 24.72, 24.72, 24.72, 24.76, 24.88, 24.88, 25.0, 24.84, 24.88, 24.8, 24.44, 24.48, 24.4, 24.4, 24.44, 24.6, 24.68, 24.68, 24.68, 24.92, 24.84, 24.84, 24.92, 24.84, 24.64, 24.8, 24.48, 24.48, 24.68, 24.96, 24.96, 24.96, 24.8, 24.72, 24.68, 24.8, 24.48, 24.68, 24.76, 24.68, 24.68, 24.8, 24.6, 24.76, 24.52, 24.36, 24.24, 24.36, 24.4, 24.6, 24.84, 24.84, 24.84, 25.0, 24.92, 24.76, 24.76, 24.48, 24.36, 24.36, 24.32, 24.64, 24.64, 24.88, 24.92, 24.88, 24.88, 24.8] +1145.4521234035492 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 50000000, 'MATRIX_DENSITY': 0.005, 'TIME_S': 1091.9541580677032, 'TIME_S_1KI': 1091.9541580677032, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 27099.232660408, 'W': 23.65811028389948} +[20.56, 20.52, 20.4, 20.4, 20.44, 20.64, 20.52, 20.56, 20.56, 20.48, 20.32, 20.32, 20.52, 20.44, 20.32, 20.24, 20.12, 20.2, 20.04, 20.2] +367.02 +18.351 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 50000000, 'MATRIX_DENSITY': 0.005, 'TIME_S': 1091.9541580677032, 'TIME_S_1KI': 1091.9541580677032, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 27099.232660408, 'W': 23.65811028389948, 'J_1KI': 27099.232660408, 'W_1KI': 23.65811028389948, 'W_D': 5.30711028389948, 'J_D': 6079.0407438294715, 'W_D_1KI': 5.30711028389948, 'J_D_1KI': 5.30711028389948} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_1e-05.json b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_1e-05.json new file mode 100644 index 0000000..044dbd0 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 6242, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 21.78993320465088, "TIME_S_1KI": 3.490857610485562, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 587.0853565216064, "W": 23.400196384120708, "J_1KI": 94.05404622262198, "W_1KI": 3.748829923761728, "W_D": 4.996196384120708, "J_D": 125.34910764312737, "W_D_1KI": 0.8004159538802801, "J_D_1KI": 0.12823068790135855} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_1e-05.output b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_1e-05.output new file mode 100644 index 0000000..0c82a6f --- /dev/null +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_100000_1e-05.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 100000 -sd 1e-05 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 3.3640708923339844} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 1, ..., 99997, 99997, + 100000]), + col_indices=tensor([49077, 61829, 75773, ..., 9180, 24382, 73621]), + values=tensor([0.5511, 0.7896, 0.6815, ..., 0.2019, 0.1356, 0.1654]), + size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) +tensor([0.3810, 0.9981, 0.5438, ..., 0.4984, 0.5897, 0.5823]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 100000 +Density: 1e-05 +Time: 3.3640708923339844 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 6242 -ss 100000 -sd 1e-05 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 21.78993320465088} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 3, ..., 99999, 100000, + 100000]), + col_indices=tensor([26056, 65660, 94841, ..., 43126, 80704, 3094]), + values=tensor([0.6558, 0.9729, 0.1332, ..., 0.9607, 0.6686, 0.0556]), + size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) +tensor([0.0734, 0.1949, 0.9405, ..., 0.2088, 0.6775, 0.6290]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 100000 +Density: 1e-05 +Time: 21.78993320465088 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 3, ..., 99999, 100000, + 100000]), + col_indices=tensor([26056, 65660, 94841, ..., 43126, 80704, 3094]), + values=tensor([0.6558, 0.9729, 0.1332, ..., 0.9607, 0.6686, 0.0556]), + size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) +tensor([0.0734, 0.1949, 0.9405, ..., 0.2088, 0.6775, 0.6290]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 100000 +Density: 1e-05 +Time: 21.78993320465088 seconds + +[20.36, 20.36, 20.28, 20.28, 20.56, 20.72, 20.88, 20.96, 21.04, 20.96] +[20.88, 20.92, 24.04, 25.0, 26.56, 27.48, 28.4, 25.72, 25.72, 25.84, 25.12, 25.12, 25.52, 25.44, 25.72, 25.68, 25.6, 25.28, 25.68, 25.68, 25.72, 25.6, 25.8, 25.48] +25.08890724182129 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 6242, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 21.78993320465088, 'TIME_S_1KI': 3.490857610485562, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 587.0853565216064, 'W': 23.400196384120708} +[20.36, 20.36, 20.28, 20.28, 20.56, 20.72, 20.88, 20.96, 21.04, 20.96, 20.48, 20.2, 20.2, 20.12, 20.12, 20.24, 20.24, 20.32, 20.44, 20.44] +368.08 +18.404 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 6242, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 21.78993320465088, 'TIME_S_1KI': 3.490857610485562, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 587.0853565216064, 'W': 23.400196384120708, 'J_1KI': 94.05404622262198, 'W_1KI': 3.748829923761728, 'W_D': 4.996196384120708, 'J_D': 125.34910764312737, 'W_D_1KI': 0.8004159538802801, 'J_D_1KI': 0.12823068790135855} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_300000_1e-05.json b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_300000_1e-05.json new file mode 100644 index 0000000..e69de29 diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_300000_1e-05.output b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_300000_1e-05.output new file mode 100644 index 0000000..82012e6 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_300000_1e-05.output @@ -0,0 +1 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 300000 -sd 1e-05 -c 1'] diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.0001.json b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.0001.json new file mode 100644 index 0000000..849e147 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 9462, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 90000, "MATRIX_DENSITY": 0.0001, "TIME_S": 20.88818907737732, "TIME_S_1KI": 2.2075870933605284, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 574.1408400344848, "W": 22.884833840996915, "J_1KI": 60.678592267436564, "W_1KI": 2.418604295180397, "W_D": 4.553833840996916, "J_D": 114.24780293416971, "W_D_1KI": 0.48127603477033565, "J_D_1KI": 0.05086409160540432} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.0001.output b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.0001.output new file mode 100644 index 0000000..9831ac1 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.0001.output @@ -0,0 +1,62 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 30000 -sd 0.0001 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 90000, "MATRIX_DENSITY": 0.0001, "TIME_S": 2.21927547454834} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2, 6, ..., 89992, 89995, 90000]), + col_indices=tensor([ 4135, 5257, 7346, ..., 19970, 20460, 23828]), + values=tensor([0.3812, 0.3967, 0.4332, ..., 0.7451, 0.5477, 0.3750]), + size=(30000, 30000), nnz=90000, layout=torch.sparse_csr) +tensor([0.1252, 0.8924, 0.9038, ..., 0.5916, 0.3272, 0.4447]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 90000 +Density: 0.0001 +Time: 2.21927547454834 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 9462 -ss 30000 -sd 0.0001 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 90000, "MATRIX_DENSITY": 0.0001, "TIME_S": 20.88818907737732} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 3, ..., 89998, 89998, 90000]), + col_indices=tensor([ 9013, 9207, 23498, ..., 264, 8481, 27073]), + values=tensor([0.3265, 0.9217, 0.2088, ..., 0.3044, 0.7404, 0.1795]), + size=(30000, 30000), nnz=90000, layout=torch.sparse_csr) +tensor([0.1642, 0.6221, 0.4016, ..., 0.5731, 0.3090, 0.6430]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 90000 +Density: 0.0001 +Time: 20.88818907737732 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 3, ..., 89998, 89998, 90000]), + col_indices=tensor([ 9013, 9207, 23498, ..., 264, 8481, 27073]), + values=tensor([0.3265, 0.9217, 0.2088, ..., 0.3044, 0.7404, 0.1795]), + size=(30000, 30000), nnz=90000, layout=torch.sparse_csr) +tensor([0.1642, 0.6221, 0.4016, ..., 0.5731, 0.3090, 0.6430]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 90000 +Density: 0.0001 +Time: 20.88818907737732 seconds + +[20.4, 20.6, 20.6, 20.76, 20.56, 20.6, 20.32, 20.12, 20.12, 20.2] +[20.04, 20.0, 20.84, 22.2, 23.8, 25.04, 26.28, 26.28, 26.08, 25.8, 25.32, 25.2, 25.16, 25.28, 26.0, 26.2, 25.92, 26.12, 25.76, 25.28, 25.48, 25.32, 25.56, 25.84] +25.08826780319214 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 9462, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 90000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 20.88818907737732, 'TIME_S_1KI': 2.2075870933605284, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 574.1408400344848, 'W': 22.884833840996915} +[20.4, 20.6, 20.6, 20.76, 20.56, 20.6, 20.32, 20.12, 20.12, 20.2, 20.2, 20.16, 20.0, 19.92, 19.92, 20.12, 20.36, 20.6, 20.96, 21.0] +366.62 +18.331 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 9462, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 90000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 20.88818907737732, 'TIME_S_1KI': 2.2075870933605284, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 574.1408400344848, 'W': 22.884833840996915, 'J_1KI': 60.678592267436564, 'W_1KI': 2.418604295180397, 'W_D': 4.553833840996916, 'J_D': 114.24780293416971, 'W_D_1KI': 0.48127603477033565, 'J_D_1KI': 0.05086409160540432} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.0005.json b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.0005.json new file mode 100644 index 0000000..cc699f5 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.0005.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 1990, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 450000, "MATRIX_DENSITY": 0.0005, "TIME_S": 21.110622882843018, "TIME_S_1KI": 10.608353207458803, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 543.18098487854, "W": 22.61402761523156, "J_1KI": 272.95526878318594, "W_1KI": 11.363832972478171, "W_D": 4.532027615231559, "J_D": 108.8577083845138, "W_D_1KI": 2.27740081167415, "J_D_1KI": 1.1444225184292212} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.0005.output b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.0005.output new file mode 100644 index 0000000..e29b500 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.0005.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 30000 -sd 0.0005 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 450000, "MATRIX_DENSITY": 0.0005, "TIME_S": 10.55085802078247} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 14, 24, ..., 449973, 449985, + 450000]), + col_indices=tensor([ 46, 2006, 2283, ..., 27547, 29014, 29850]), + values=tensor([0.4834, 0.4450, 0.5507, ..., 0.7876, 0.9956, 0.8691]), + size=(30000, 30000), nnz=450000, layout=torch.sparse_csr) +tensor([0.6061, 0.2390, 0.3325, ..., 0.9801, 0.7580, 0.8339]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 450000 +Density: 0.0005 +Time: 10.55085802078247 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1990 -ss 30000 -sd 0.0005 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 450000, "MATRIX_DENSITY": 0.0005, "TIME_S": 21.110622882843018} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 20, 37, ..., 449971, 449989, + 450000]), + col_indices=tensor([ 278, 1146, 6158, ..., 22458, 26366, 27217]), + values=tensor([0.7620, 0.0882, 0.1659, ..., 0.8176, 0.5012, 0.2468]), + size=(30000, 30000), nnz=450000, layout=torch.sparse_csr) +tensor([0.2139, 0.3171, 0.2720, ..., 0.8919, 0.1670, 0.7588]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 450000 +Density: 0.0005 +Time: 21.110622882843018 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 20, 37, ..., 449971, 449989, + 450000]), + col_indices=tensor([ 278, 1146, 6158, ..., 22458, 26366, 27217]), + values=tensor([0.7620, 0.0882, 0.1659, ..., 0.8176, 0.5012, 0.2468]), + size=(30000, 30000), nnz=450000, layout=torch.sparse_csr) +tensor([0.2139, 0.3171, 0.2720, ..., 0.8919, 0.1670, 0.7588]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 450000 +Density: 0.0005 +Time: 21.110622882843018 seconds + +[20.0, 20.04, 20.08, 20.0, 20.0, 20.0, 20.0, 20.16, 20.16, 20.32] +[20.52, 20.72, 21.08, 25.24, 27.4, 28.2, 29.0, 26.36, 25.24, 24.04, 24.0, 24.0, 24.12, 24.4, 24.56, 24.72, 24.8, 24.84, 24.44, 24.4, 24.32, 24.32, 24.48] +24.01964807510376 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1990, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 450000, 'MATRIX_DENSITY': 0.0005, 'TIME_S': 21.110622882843018, 'TIME_S_1KI': 10.608353207458803, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 543.18098487854, 'W': 22.61402761523156} +[20.0, 20.04, 20.08, 20.0, 20.0, 20.0, 20.0, 20.16, 20.16, 20.32, 20.32, 20.2, 20.16, 19.96, 19.84, 20.04, 20.24, 20.24, 20.16, 20.08] +361.64 +18.082 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1990, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 450000, 'MATRIX_DENSITY': 0.0005, 'TIME_S': 21.110622882843018, 'TIME_S_1KI': 10.608353207458803, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 543.18098487854, 'W': 22.61402761523156, 'J_1KI': 272.95526878318594, 'W_1KI': 11.363832972478171, 'W_D': 4.532027615231559, 'J_D': 108.8577083845138, 'W_D_1KI': 2.27740081167415, 'J_D_1KI': 1.1444225184292212} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.001.json b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.001.json new file mode 100644 index 0000000..31f0e20 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.001.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 1067, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 900000, "MATRIX_DENSITY": 0.001, "TIME_S": 21.000109434127808, "TIME_S_1KI": 19.681452140700852, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 559.3280275917053, "W": 22.321542174679774, "J_1KI": 524.2062114261531, "W_1KI": 20.919908317413096, "W_D": 3.8025421746797754, "J_D": 95.2832200281621, "W_D_1KI": 3.5637696107589276, "J_D_1KI": 3.3399902631292666} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.001.output b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.001.output new file mode 100644 index 0000000..2362809 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.001.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 30000 -sd 0.001 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 900000, "MATRIX_DENSITY": 0.001, "TIME_S": 19.667322635650635} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 32, 62, ..., 899942, 899975, + 900000]), + col_indices=tensor([ 740, 1042, 1045, ..., 28033, 28173, 29596]), + values=tensor([0.2730, 0.0823, 0.1244, ..., 0.0611, 0.7750, 0.7520]), + size=(30000, 30000), nnz=900000, layout=torch.sparse_csr) +tensor([0.9441, 0.9003, 0.6345, ..., 0.2976, 0.9481, 0.5370]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 900000 +Density: 0.001 +Time: 19.667322635650635 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1067 -ss 30000 -sd 0.001 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 900000, "MATRIX_DENSITY": 0.001, "TIME_S": 21.000109434127808} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 31, 61, ..., 899954, 899977, + 900000]), + col_indices=tensor([ 498, 561, 1389, ..., 26094, 29069, 29804]), + values=tensor([0.7571, 0.4869, 0.1051, ..., 0.0359, 0.9032, 0.3458]), + size=(30000, 30000), nnz=900000, layout=torch.sparse_csr) +tensor([0.6710, 0.3662, 0.6537, ..., 0.7839, 0.4339, 0.5677]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 900000 +Density: 0.001 +Time: 21.000109434127808 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 31, 61, ..., 899954, 899977, + 900000]), + col_indices=tensor([ 498, 561, 1389, ..., 26094, 29069, 29804]), + values=tensor([0.7571, 0.4869, 0.1051, ..., 0.0359, 0.9032, 0.3458]), + size=(30000, 30000), nnz=900000, layout=torch.sparse_csr) +tensor([0.6710, 0.3662, 0.6537, ..., 0.7839, 0.4339, 0.5677]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 900000 +Density: 0.001 +Time: 21.000109434127808 seconds + +[20.36, 20.36, 20.6, 20.64, 20.68, 20.56, 20.56, 20.64, 20.44, 20.44] +[20.44, 20.36, 21.72, 22.8, 24.84, 24.84, 25.76, 26.48, 25.64, 24.72, 24.68, 24.32, 24.2, 24.4, 24.4, 24.28, 24.4, 24.36, 24.52, 24.6, 24.68, 24.64, 24.68, 24.72] +25.05776810646057 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1067, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 900000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 21.000109434127808, 'TIME_S_1KI': 19.681452140700852, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 559.3280275917053, 'W': 22.321542174679774} +[20.36, 20.36, 20.6, 20.64, 20.68, 20.56, 20.56, 20.64, 20.44, 20.44, 20.16, 20.36, 20.36, 20.72, 20.8, 20.96, 20.68, 20.84, 20.56, 20.28] +370.37999999999994 +18.519 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1067, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 900000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 21.000109434127808, 'TIME_S_1KI': 19.681452140700852, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 559.3280275917053, 'W': 22.321542174679774, 'J_1KI': 524.2062114261531, 'W_1KI': 20.919908317413096, 'W_D': 3.8025421746797754, 'J_D': 95.2832200281621, 'W_D_1KI': 3.5637696107589276, 'J_D_1KI': 3.3399902631292666} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.005.json b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.005.json new file mode 100644 index 0000000..883d2cb --- /dev/null +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.005.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 4500000, "MATRIX_DENSITY": 0.005, "TIME_S": 96.94969439506531, "TIME_S_1KI": 96.94969439506531, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2378.374522399904, "W": 23.364920168223726, "J_1KI": 2378.374522399904, "W_1KI": 23.364920168223726, "W_D": 5.238920168223725, "J_D": 533.2829799237265, "W_D_1KI": 5.238920168223725, "J_D_1KI": 5.238920168223725} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.005.output b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.005.output new file mode 100644 index 0000000..9061dbb --- /dev/null +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.005.output @@ -0,0 +1,45 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 30000 -sd 0.005 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 4500000, "MATRIX_DENSITY": 0.005, "TIME_S": 96.94969439506531} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 143, 286, ..., 4499692, + 4499854, 4500000]), + col_indices=tensor([ 245, 443, 986, ..., 29592, 29945, 29961]), + values=tensor([0.6844, 0.8171, 0.9701, ..., 0.0838, 0.2528, 0.1757]), + size=(30000, 30000), nnz=4500000, layout=torch.sparse_csr) +tensor([0.4329, 0.8636, 0.1677, ..., 0.1956, 0.5933, 0.9265]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 4500000 +Density: 0.005 +Time: 96.94969439506531 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 143, 286, ..., 4499692, + 4499854, 4500000]), + col_indices=tensor([ 245, 443, 986, ..., 29592, 29945, 29961]), + values=tensor([0.6844, 0.8171, 0.9701, ..., 0.0838, 0.2528, 0.1757]), + size=(30000, 30000), nnz=4500000, layout=torch.sparse_csr) +tensor([0.4329, 0.8636, 0.1677, ..., 0.1956, 0.5933, 0.9265]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 4500000 +Density: 0.005 +Time: 96.94969439506531 seconds + +[20.28, 20.48, 20.32, 20.24, 20.08, 20.28, 20.2, 20.08, 20.24, 20.04] +[20.04, 20.12, 20.0, 23.8, 25.0, 27.52, 28.72, 29.16, 26.24, 24.8, 24.4, 24.48, 24.72, 24.6, 24.44, 24.36, 24.28, 24.16, 24.24, 24.24, 24.24, 24.28, 24.4, 24.48, 24.6, 24.8, 24.6, 24.4, 24.48, 24.44, 24.44, 24.56, 24.36, 24.56, 24.84, 24.56, 24.6, 24.4, 24.36, 24.6, 24.8, 25.16, 25.16, 25.04, 24.76, 24.92, 24.68, 24.48, 24.44, 24.44, 24.44, 24.36, 24.48, 24.64, 24.56, 24.72, 24.72, 24.52, 24.64, 24.6, 24.32, 24.64, 24.56, 24.44, 24.44, 24.4, 24.36, 24.28, 24.52, 24.64, 24.68, 24.64, 24.6, 24.4, 24.2, 24.52, 24.64, 24.84, 25.12, 24.92, 24.76, 24.76, 24.68, 24.84, 24.76, 24.76, 24.76, 24.64, 24.52, 24.32, 24.44, 24.4, 24.28, 24.28, 24.48, 24.24, 24.32] +101.79253792762756 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 4500000, 'MATRIX_DENSITY': 0.005, 'TIME_S': 96.94969439506531, 'TIME_S_1KI': 96.94969439506531, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2378.374522399904, 'W': 23.364920168223726} +[20.28, 20.48, 20.32, 20.24, 20.08, 20.28, 20.2, 20.08, 20.24, 20.04, 20.36, 20.44, 20.08, 20.08, 20.0, 19.84, 19.84, 19.96, 19.96, 20.12] +362.52000000000004 +18.126 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 4500000, 'MATRIX_DENSITY': 0.005, 'TIME_S': 96.94969439506531, 'TIME_S_1KI': 96.94969439506531, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2378.374522399904, 'W': 23.364920168223726, 'J_1KI': 2378.374522399904, 'W_1KI': 23.364920168223726, 'W_D': 5.238920168223725, 'J_D': 533.2829799237265, 'W_D_1KI': 5.238920168223725, 'J_D_1KI': 5.238920168223725} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.01.json b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.01.json new file mode 100644 index 0000000..de9aa95 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.01.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 9000000, "MATRIX_DENSITY": 0.01, "TIME_S": 192.67980027198792, "TIME_S_1KI": 192.67980027198792, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 4713.865335979459, "W": 23.38761944190409, "J_1KI": 4713.865335979459, "W_1KI": 23.38761944190409, "W_D": 5.0876194419040885, "J_D": 1025.4294153118105, "W_D_1KI": 5.0876194419040885, "J_D_1KI": 5.0876194419040885} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.01.output b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.01.output new file mode 100644 index 0000000..111912f --- /dev/null +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.01.output @@ -0,0 +1,45 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 30000 -sd 0.01 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 9000000, "MATRIX_DENSITY": 0.01, "TIME_S": 192.67980027198792} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 280, 537, ..., 8999446, + 8999733, 9000000]), + col_indices=tensor([ 104, 197, 254, ..., 29816, 29922, 29974]), + values=tensor([0.4269, 0.5481, 0.4506, ..., 0.7600, 0.9930, 0.8353]), + size=(30000, 30000), nnz=9000000, layout=torch.sparse_csr) +tensor([0.6961, 0.8979, 0.5119, ..., 0.0794, 0.6244, 0.2452]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 9000000 +Density: 0.01 +Time: 192.67980027198792 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 280, 537, ..., 8999446, + 8999733, 9000000]), + col_indices=tensor([ 104, 197, 254, ..., 29816, 29922, 29974]), + values=tensor([0.4269, 0.5481, 0.4506, ..., 0.7600, 0.9930, 0.8353]), + size=(30000, 30000), nnz=9000000, layout=torch.sparse_csr) +tensor([0.6961, 0.8979, 0.5119, ..., 0.0794, 0.6244, 0.2452]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 9000000 +Density: 0.01 +Time: 192.67980027198792 seconds + +[20.36, 20.16, 20.08, 20.2, 20.36, 20.44, 20.48, 20.28, 20.28, 20.04] +[20.04, 20.4, 20.56, 25.0, 25.72, 28.12, 29.56, 28.28, 27.64, 26.76, 25.6, 24.84, 24.28, 24.32, 24.32, 24.32, 24.48, 24.52, 24.52, 24.48, 24.56, 24.88, 24.76, 24.8, 24.84, 24.76, 24.52, 24.68, 24.6, 24.56, 24.6, 24.56, 24.52, 24.52, 24.56, 24.72, 24.76, 24.76, 24.88, 24.84, 24.84, 24.56, 24.56, 24.72, 24.6, 24.52, 24.52, 24.48, 24.36, 24.4, 24.48, 24.6, 24.64, 24.64, 24.48, 24.56, 24.48, 24.56, 24.44, 24.28, 24.04, 23.96, 23.96, 23.92, 24.04, 24.24, 24.52, 24.76, 24.84, 24.72, 24.6, 24.72, 24.8, 24.76, 24.8, 24.64, 24.52, 24.52, 24.56, 24.56, 24.52, 24.56, 24.6, 24.72, 24.72, 24.6, 24.76, 24.88, 24.52, 24.68, 24.8, 24.72, 24.64, 24.72, 24.32, 24.16, 24.24, 24.2, 24.48, 24.68, 24.6, 24.72, 24.68, 24.56, 24.52, 24.8, 24.8, 24.68, 24.88, 24.88, 24.52, 24.56, 24.56, 24.56, 24.72, 24.72, 24.6, 24.56, 24.52, 24.76, 24.92, 24.96, 24.92, 24.88, 24.88, 24.8, 24.76, 24.48, 24.48, 24.68, 24.44, 24.64, 24.68, 24.72, 24.56, 24.6, 24.36, 24.32, 24.2, 24.24, 24.16, 24.24, 24.32, 24.52, 24.52, 24.44, 24.48, 24.12, 23.96, 23.92, 23.92, 24.08, 24.12, 24.44, 24.6, 24.48, 24.44, 24.64, 24.48, 24.4, 24.44, 24.28, 24.24, 24.52, 24.56, 24.6, 24.8, 24.68, 24.68, 24.84, 24.88, 24.84, 24.84, 24.72, 24.64, 24.68, 24.52, 24.16, 24.32, 24.32, 24.32, 24.28, 24.72, 24.84, 24.72, 24.8, 24.92, 24.6, 24.72, 24.68, 24.64, 24.6] +201.55387544631958 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 9000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 192.67980027198792, 'TIME_S_1KI': 192.67980027198792, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 4713.865335979459, 'W': 23.38761944190409} +[20.36, 20.16, 20.08, 20.2, 20.36, 20.44, 20.48, 20.28, 20.28, 20.04, 20.44, 20.44, 20.24, 20.24, 20.2, 20.24, 20.56, 20.56, 20.56, 20.52] +366.0 +18.3 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 9000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 192.67980027198792, 'TIME_S_1KI': 192.67980027198792, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 4713.865335979459, 'W': 23.38761944190409, 'J_1KI': 4713.865335979459, 'W_1KI': 23.38761944190409, 'W_D': 5.0876194419040885, 'J_D': 1025.4294153118105, 'W_D_1KI': 5.0876194419040885, 'J_D_1KI': 5.0876194419040885} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.05.json b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.05.json new file mode 100644 index 0000000..8e7a90d --- /dev/null +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.05.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 45000000, "MATRIX_DENSITY": 0.05, "TIME_S": 974.439944267273, "TIME_S_1KI": 974.439944267273, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 23454.716241874696, "W": 23.50814234111929, "J_1KI": 23454.716241874696, "W_1KI": 23.50814234111929, "W_D": 4.921142341119289, "J_D": 4909.958240083218, "W_D_1KI": 4.921142341119289, "J_D_1KI": 4.921142341119289} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.05.output b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.05.output new file mode 100644 index 0000000..129f379 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.05.output @@ -0,0 +1,45 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 30000 -sd 0.05 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 45000000, "MATRIX_DENSITY": 0.05, "TIME_S": 974.439944267273} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1561, 3045, ..., 44996950, + 44998508, 45000000]), + col_indices=tensor([ 5, 11, 69, ..., 29993, 29995, 29999]), + values=tensor([0.1916, 0.3634, 0.6366, ..., 0.4534, 0.7597, 0.1741]), + size=(30000, 30000), nnz=45000000, layout=torch.sparse_csr) +tensor([0.1350, 0.9680, 0.5489, ..., 0.5585, 0.8579, 0.6858]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 45000000 +Density: 0.05 +Time: 974.439944267273 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1561, 3045, ..., 44996950, + 44998508, 45000000]), + col_indices=tensor([ 5, 11, 69, ..., 29993, 29995, 29999]), + values=tensor([0.1916, 0.3634, 0.6366, ..., 0.4534, 0.7597, 0.1741]), + size=(30000, 30000), nnz=45000000, layout=torch.sparse_csr) +tensor([0.1350, 0.9680, 0.5489, ..., 0.5585, 0.8579, 0.6858]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 45000000 +Density: 0.05 +Time: 974.439944267273 seconds + +[20.36, 20.44, 20.52, 20.6, 20.8, 20.68, 20.76, 20.72, 21.08, 20.84] +[20.76, 20.32, 21.24, 21.24, 22.2, 25.24, 26.8, 27.64, 27.96, 29.52, 29.32, 29.6, 30.12, 29.4, 27.72, 27.76, 28.52, 28.68, 28.16, 27.28, 26.28, 25.36, 24.68, 24.64, 24.52, 24.52, 24.64, 24.64, 24.72, 24.6, 24.68, 24.8, 24.72, 24.72, 24.8, 24.76, 24.56, 24.4, 24.32, 24.16, 24.16, 24.12, 24.12, 24.28, 24.12, 24.52, 24.52, 24.52, 24.52, 24.56, 24.52, 24.48, 24.6, 24.8, 24.8, 24.8, 24.88, 24.72, 24.52, 24.76, 24.76, 24.84, 25.0, 24.96, 24.72, 24.52, 24.56, 24.4, 24.4, 24.4, 24.32, 24.28, 24.28, 24.28, 24.44, 24.36, 24.4, 24.24, 24.28, 24.24, 24.44, 24.4, 24.52, 24.52, 24.56, 24.32, 24.48, 24.36, 24.36, 24.24, 24.2, 24.16, 24.2, 24.32, 24.56, 24.68, 24.56, 24.56, 24.6, 24.52, 24.72, 24.8, 24.72, 24.56, 24.44, 24.48, 24.6, 24.68, 24.8, 24.8, 24.92, 24.84, 24.72, 24.68, 24.6, 24.52, 24.68, 24.6, 24.72, 24.84, 24.88, 24.76, 24.64, 24.64, 24.56, 24.6, 24.44, 24.44, 24.36, 24.36, 24.36, 24.52, 24.6, 24.52, 24.36, 24.32, 24.12, 24.2, 24.44, 24.56, 24.6, 24.68, 24.84, 24.72, 24.8, 24.88, 24.84, 24.6, 24.68, 24.52, 24.52, 24.76, 25.0, 25.16, 25.0, 24.88, 24.84, 24.48, 24.44, 24.44, 24.44, 24.68, 24.72, 24.48, 24.44, 24.6, 24.56, 24.36, 24.72, 24.72, 24.56, 24.56, 24.88, 24.64, 24.56, 24.56, 24.68, 24.72, 24.84, 24.68, 24.92, 24.72, 24.8, 24.72, 24.72, 24.64, 24.68, 24.64, 24.52, 24.32, 24.4, 24.52, 24.52, 24.72, 24.88, 24.76, 24.72, 24.64, 24.52, 24.44, 24.68, 24.64, 24.64, 24.76, 24.88, 24.72, 24.92, 25.0, 24.8, 24.48, 24.52, 24.36, 24.36, 24.44, 24.52, 24.76, 24.88, 24.88, 24.8, 24.68, 24.48, 24.36, 24.36, 24.52, 24.6, 24.84, 24.88, 24.84, 24.8, 24.6, 24.36, 24.4, 24.36, 24.36, 24.44, 24.48, 24.64, 24.6, 24.68, 24.76, 24.76, 24.72, 24.56, 24.32, 24.32, 24.12, 24.12, 24.2, 24.36, 24.24, 24.52, 24.48, 24.52, 24.6, 24.68, 24.68, 24.76, 24.64, 24.4, 24.32, 24.4, 24.32, 24.48, 24.76, 24.84, 24.68, 24.72, 24.52, 24.6, 24.72, 24.72, 24.8, 24.68, 24.64, 24.52, 24.52, 24.76, 24.8, 24.76, 24.56, 24.56, 24.36, 24.24, 24.4, 24.52, 24.6, 24.68, 24.8, 24.44, 24.52, 24.4, 24.48, 24.52, 24.4, 24.48, 24.48, 24.48, 24.44, 24.6, 24.56, 24.52, 24.52, 24.84, 24.88, 24.76, 24.68, 24.48, 24.24, 24.24, 24.24, 24.32, 24.52, 24.6, 24.72, 24.88, 24.92, 25.0, 24.92, 24.92, 24.68, 24.64, 24.64, 24.48, 24.44, 24.4, 24.36, 24.4, 24.48, 24.48, 24.4, 24.4, 24.36, 24.48, 24.36, 24.24, 24.6, 24.64, 24.36, 24.48, 24.52, 24.52, 24.36, 24.48, 24.56, 24.6, 24.6, 24.44, 24.44, 24.32, 24.24, 24.36, 24.64, 24.64, 24.76, 24.68, 24.8, 24.84, 24.76, 24.76, 24.6, 24.44, 24.52, 24.52, 24.56, 24.48, 24.52, 24.44, 24.56, 24.52, 24.56, 24.52, 24.56, 24.44, 24.4, 24.36, 24.48, 24.28, 24.28, 24.28, 24.2, 24.12, 24.12, 24.36, 24.24, 24.24, 24.32, 24.4, 24.48, 24.44, 24.72, 24.84, 24.76, 24.76, 24.68, 24.52, 24.48, 24.52, 24.48, 24.28, 24.28, 24.12, 23.92, 24.12, 24.48, 24.36, 24.52, 24.52, 24.68, 24.44, 24.52, 24.6, 24.68, 24.76, 24.92, 24.76, 24.76, 24.64, 24.64, 24.6, 24.56, 24.44, 24.2, 24.24, 24.24, 24.28, 24.2, 24.48, 24.32, 24.32, 24.32, 24.52, 24.36, 24.6, 24.52, 24.72, 24.64, 24.68, 24.4, 24.48, 24.52, 24.68, 24.6, 24.76, 24.6, 24.6, 24.6, 24.44, 24.36, 24.36, 24.4, 24.4, 24.52, 24.64, 24.76, 24.92, 24.88, 25.0, 25.08, 24.88, 24.76, 24.64, 24.72, 24.88, 25.16, 25.08, 25.0, 24.84, 24.48, 24.56, 24.84, 24.92, 25.04, 25.04, 25.2, 25.08, 24.84, 24.52, 24.72, 24.56, 24.44, 24.48, 24.48, 24.28, 24.44, 24.32, 24.28, 24.24, 24.56, 24.44, 24.76, 24.96, 24.92, 24.84, 24.76, 24.76, 24.36, 24.52, 24.36, 24.52, 24.64, 24.6, 24.76, 24.96, 25.12, 25.0, 24.92, 24.72, 24.56, 24.84, 24.84, 25.0, 24.92, 24.8, 25.0, 24.88, 24.92, 24.92, 24.64, 24.52, 24.44, 24.36, 24.36, 24.64, 24.56, 24.56, 24.52, 24.6, 24.52, 24.64, 24.56, 24.68, 24.76, 24.64, 24.92, 24.8, 24.64, 24.6, 24.8, 24.8, 24.76, 24.56, 24.52, 24.44, 24.36, 24.44, 24.52, 24.44, 24.72, 24.84, 24.6, 24.48, 24.68, 24.56, 24.32, 24.44, 24.68, 24.4, 24.36, 24.36, 24.52, 24.52, 24.52, 24.36, 24.52, 24.44, 24.36, 24.6, 24.48, 24.72, 24.96, 25.0, 25.2, 25.28, 25.0, 25.0, 24.8, 24.52, 24.48, 24.52, 24.32, 24.36, 24.48, 24.48, 24.52, 24.52, 24.6, 24.8, 24.68, 24.64, 24.52, 24.32, 24.24, 24.32, 24.56, 24.52, 24.52, 24.52, 24.4, 24.48, 24.72, 25.96, 26.72, 27.16, 27.4, 27.4, 27.04, 25.56, 25.36, 24.88, 24.44, 24.24, 24.24, 24.32, 24.44, 24.48, 24.48, 24.56, 24.52, 24.36, 24.6, 24.6, 24.8, 24.6, 24.64, 24.6, 24.56, 24.56, 24.52, 24.68, 24.6, 24.6, 24.44, 24.36, 24.12, 24.08, 24.0, 24.28, 24.4, 24.64, 24.72, 24.68, 24.88, 24.64, 24.6, 24.56, 24.68, 24.84, 25.0, 25.0, 25.12, 24.84, 24.84, 24.68, 24.64, 24.44, 24.52, 24.52, 24.6, 24.88, 24.76, 24.72, 24.76, 24.76, 24.56, 24.6, 24.48, 24.12, 24.16, 24.28, 24.52, 24.52, 24.6, 24.6, 24.44, 24.52, 24.36, 24.44, 24.56, 24.52, 24.4, 24.44, 24.44, 24.28, 24.36, 24.48, 24.8, 24.8, 24.68, 24.64, 24.48, 24.24, 24.36, 24.36, 24.44, 24.36, 24.56, 24.44, 24.44, 24.48, 24.48, 24.76, 24.64, 24.72, 24.76, 24.68, 24.64, 24.48, 24.4, 24.32, 24.16, 24.24, 24.32, 24.44, 24.28, 24.28, 24.6, 24.72, 24.72, 24.92, 24.84, 24.68, 24.64, 24.68, 24.68, 24.48, 24.4, 24.6, 24.4, 24.64, 24.52, 24.72, 24.76, 24.8, 24.84, 24.88, 24.88, 24.88, 24.72, 24.48, 24.84, 24.8, 24.6, 24.6, 24.48, 24.52, 24.52, 24.44, 24.56, 24.36, 24.24, 24.32, 24.56, 24.56, 24.8, 24.8, 24.72, 24.84, 24.84, 24.8, 24.72, 24.76, 24.84, 24.76, 24.76, 24.56, 24.68, 24.72, 24.64, 24.76, 24.64, 24.44, 24.48, 24.64, 24.4, 24.32, 24.32, 24.24, 24.04, 24.32, 24.32, 24.6, 24.68, 24.72, 24.68, 24.52, 24.36, 24.28, 24.28, 24.28, 24.44, 24.44, 24.6, 24.52, 24.6, 24.36, 24.52, 24.56, 24.72, 24.64, 24.52, 24.44, 24.44, 24.4, 24.56, 24.64, 24.6, 24.6, 24.56, 24.52, 24.56, 24.6, 24.8, 24.48, 24.6, 24.44, 24.48, 24.48, 24.6, 24.6, 24.4, 24.4, 24.44, 24.36, 24.36, 24.52, 24.72, 24.72, 24.88, 24.68, 24.68, 24.68, 24.6, 24.56, 24.72, 24.68, 24.72, 24.52, 24.44, 24.44, 24.44, 24.44, 24.76, 24.84, 24.68, 24.44, 24.44, 24.52, 24.28, 24.36, 24.48, 24.6, 24.68, 24.68, 24.72, 24.76, 24.56, 24.56, 24.4, 24.48, 24.52, 24.72, 24.68, 24.8, 24.8, 24.72, 24.56, 24.44, 24.44, 24.56, 24.64, 24.6, 24.72, 24.68, 24.36, 24.48, 24.56, 24.36, 24.52, 24.56, 24.72, 24.64, 24.52, 24.48, 24.44, 24.64, 24.8, 24.68, 24.84, 24.8, 24.8, 25.0, 25.0, 24.84, 24.84, 24.64, 24.64, 24.68, 24.76, 24.8, 24.68, 24.6, 24.56, 24.84, 24.72, 25.04, 25.08, 25.04, 25.12, 25.12, 24.92, 24.96, 24.96, 24.96, 24.72, 24.8, 24.76, 24.8, 24.76, 24.76, 25.0, 25.36, 25.32, 25.4, 25.36, 25.12, 25.24, 25.36, 25.44, 25.48, 25.12, 24.72, 24.24, 24.44, 24.44, 24.6, 24.64, 24.96, 25.28, 25.44, 25.4, 25.72, 25.4, 25.4, 25.16, 25.48, 25.64, 26.16, 26.32, 26.56, 26.72, 26.64] +997.7273364067078 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 45000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 974.439944267273, 'TIME_S_1KI': 974.439944267273, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 23454.716241874696, 'W': 23.50814234111929} +[20.36, 20.44, 20.52, 20.6, 20.8, 20.68, 20.76, 20.72, 21.08, 20.84, 22.08, 21.56, 21.0, 20.48, 20.48, 20.2, 20.24, 20.32, 20.12, 20.2] +371.74 +18.587 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 45000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 974.439944267273, 'TIME_S_1KI': 974.439944267273, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 23454.716241874696, 'W': 23.50814234111929, 'J_1KI': 23454.716241874696, 'W_1KI': 23.50814234111929, 'W_D': 4.921142341119289, 'J_D': 4909.958240083218, 'W_D_1KI': 4.921142341119289, 'J_D_1KI': 4.921142341119289} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.1.json b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.1.json new file mode 100644 index 0000000..32cac99 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.1.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 90000000, "MATRIX_DENSITY": 0.1, "TIME_S": 1889.6461987495422, "TIME_S_1KI": 1889.6461987495422, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 46014.76951049807, "W": 23.55154793120378, "J_1KI": 46014.76951049807, "W_1KI": 23.55154793120378, "W_D": 5.418547931203779, "J_D": 10586.702617774983, "W_D_1KI": 5.418547931203779, "J_D_1KI": 5.418547931203779} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.1.output b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.1.output new file mode 100644 index 0000000..3244029 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_0.1.output @@ -0,0 +1,45 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 30000 -sd 0.1 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 90000000, "MATRIX_DENSITY": 0.1, "TIME_S": 1889.6461987495422} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2919, 6033, ..., 89993985, + 89996951, 90000000]), + col_indices=tensor([ 15, 22, 25, ..., 29928, 29955, 29961]), + values=tensor([0.1237, 0.9766, 0.2142, ..., 0.5188, 0.0654, 0.8458]), + size=(30000, 30000), nnz=90000000, layout=torch.sparse_csr) +tensor([0.8545, 0.2049, 0.9446, ..., 0.6392, 0.0667, 0.5059]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 90000000 +Density: 0.1 +Time: 1889.6461987495422 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2919, 6033, ..., 89993985, + 89996951, 90000000]), + col_indices=tensor([ 15, 22, 25, ..., 29928, 29955, 29961]), + values=tensor([0.1237, 0.9766, 0.2142, ..., 0.5188, 0.0654, 0.8458]), + size=(30000, 30000), nnz=90000000, layout=torch.sparse_csr) +tensor([0.8545, 0.2049, 0.9446, ..., 0.6392, 0.0667, 0.5059]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 90000000 +Density: 0.1 +Time: 1889.6461987495422 seconds + +[20.2, 20.08, 20.12, 19.96, 20.0, 20.0, 20.04, 20.04, 19.92, 20.12] +[20.08, 20.4, 20.64, 22.0, 23.52, 26.84, 27.8, 27.76, 27.76, 25.24, 26.52, 28.12, 30.6, 30.6, 32.76, 32.88, 32.32, 30.76, 28.68, 27.32, 27.48, 26.68, 27.08, 27.28, 27.36, 28.12, 28.64, 28.76, 28.48, 28.24, 28.24, 27.28, 26.68, 25.68, 25.12, 25.12, 24.6, 24.56, 24.48, 24.36, 24.52, 24.48, 24.48, 24.64, 24.96, 25.0, 24.68, 24.68, 24.44, 24.36, 24.56, 24.68, 24.52, 24.64, 24.56, 24.6, 24.4, 24.4, 24.4, 24.6, 24.68, 24.76, 24.92, 24.64, 24.56, 24.6, 24.6, 24.56, 24.52, 24.52, 24.44, 24.56, 24.64, 24.6, 24.72, 24.56, 24.52, 24.48, 24.48, 24.48, 24.28, 24.4, 24.4, 24.4, 24.44, 24.44, 24.08, 24.08, 24.12, 24.28, 24.24, 24.2, 24.32, 24.4, 24.56, 24.76, 24.8, 24.76, 24.68, 24.52, 24.4, 24.4, 24.24, 24.52, 24.4, 24.28, 24.52, 24.56, 24.56, 24.68, 24.76, 24.52, 24.6, 24.32, 24.24, 24.16, 24.36, 24.28, 24.24, 24.32, 24.4, 24.44, 24.44, 24.56, 24.6, 24.4, 24.4, 24.4, 24.24, 24.48, 24.52, 24.4, 24.68, 24.44, 24.6, 24.6, 24.32, 24.4, 24.48, 24.48, 24.68, 24.8, 24.76, 24.72, 24.72, 24.64, 24.92, 24.84, 24.84, 24.88, 24.72, 24.36, 24.36, 24.2, 24.2, 24.52, 24.36, 24.44, 24.44, 24.36, 24.52, 24.48, 24.6, 24.8, 24.68, 24.64, 24.64, 24.76, 24.6, 24.68, 24.84, 25.0, 24.92, 25.0, 25.32, 24.96, 24.84, 24.76, 24.72, 24.6, 24.4, 24.56, 24.64, 24.6, 24.96, 24.92, 24.84, 24.72, 24.72, 24.68, 24.68, 24.56, 24.6, 24.88, 24.76, 24.64, 24.76, 24.64, 24.68, 24.84, 24.96, 24.76, 24.76, 24.72, 24.56, 24.36, 24.36, 24.28, 24.28, 24.36, 24.36, 24.64, 24.52, 24.68, 24.72, 24.72, 24.8, 24.92, 24.72, 24.6, 24.52, 24.24, 24.28, 24.36, 24.68, 24.8, 24.72, 24.68, 24.4, 24.36, 24.28, 24.28, 24.56, 24.56, 24.36, 24.4, 24.32, 24.24, 24.28, 24.28, 24.44, 24.48, 24.48, 24.56, 24.68, 24.68, 24.92, 24.96, 24.88, 24.76, 24.6, 24.52, 24.52, 24.52, 24.6, 24.56, 24.52, 24.32, 24.52, 24.64, 24.76, 24.68, 24.6, 24.48, 24.52, 24.6, 24.72, 24.72, 24.48, 24.72, 24.76, 24.88, 24.76, 24.76, 24.76, 24.76, 24.56, 24.44, 24.64, 24.64, 24.64, 24.56, 24.44, 24.4, 24.36, 24.52, 24.68, 24.6, 24.64, 24.64, 24.52, 24.4, 24.6, 24.72, 24.56, 24.56, 24.4, 24.4, 24.24, 24.36, 24.68, 24.84, 24.8, 24.88, 24.92, 25.04, 25.08, 25.08, 24.68, 24.6, 24.56, 24.56, 24.68, 24.96, 24.96, 24.84, 24.76, 24.72, 24.64, 24.64, 24.76, 25.04, 24.88, 25.04, 25.04, 24.92, 25.08, 25.12, 24.92, 25.08, 25.32, 25.04, 25.12, 25.16, 24.8, 24.68, 24.52, 24.36, 24.24, 24.4, 24.48, 24.48, 24.6, 24.72, 24.84, 24.56, 24.6, 24.64, 24.8, 24.72, 24.8, 24.84, 24.8, 24.6, 24.6, 24.36, 24.52, 24.6, 24.72, 25.0, 25.16, 25.04, 24.96, 24.96, 24.8, 24.64, 24.4, 24.48, 24.48, 24.72, 24.68, 24.48, 24.56, 24.52, 24.48, 24.56, 24.4, 24.4, 24.4, 24.52, 24.72, 24.92, 24.72, 24.76, 24.64, 24.64, 24.64, 25.0, 25.08, 25.04, 24.68, 24.36, 24.24, 24.32, 24.6, 24.8, 24.96, 25.04, 24.72, 24.56, 24.6, 24.6, 24.84, 24.72, 24.92, 24.92, 24.92, 24.8, 24.8, 24.84, 24.6, 24.48, 24.4, 24.28, 24.4, 24.68, 24.76, 24.76, 24.8, 24.72, 24.76, 24.64, 24.6, 24.68, 24.56, 24.76, 24.92, 24.76, 24.76, 24.72, 24.36, 24.32, 24.4, 24.6, 24.68, 24.72, 24.52, 24.64, 24.64, 24.68, 24.84, 24.96, 25.0, 24.72, 24.88, 24.36, 24.44, 24.52, 24.36, 24.56, 24.56, 24.64, 24.72, 24.72, 24.64, 24.8, 24.76, 24.88, 24.8, 24.76, 24.48, 24.64, 24.8, 24.6, 24.6, 24.64, 24.56, 24.4, 24.56, 24.48, 24.64, 24.4, 24.4, 24.36, 24.32, 24.2, 24.28, 24.52, 24.56, 24.68, 24.6, 24.4, 24.24, 24.36, 24.16, 24.4, 24.52, 24.48, 24.52, 24.64, 24.36, 24.2, 24.12, 24.0, 24.0, 24.16, 24.28, 24.28, 24.16, 24.12, 24.24, 24.44, 24.76, 24.84, 24.96, 24.96, 24.88, 24.6, 24.64, 24.72, 24.6, 24.64, 24.88, 24.96, 25.0, 24.88, 24.88, 24.76, 24.72, 24.88, 24.6, 24.6, 24.72, 24.84, 24.56, 24.84, 24.84, 24.8, 24.72, 24.72, 24.88, 24.68, 24.56, 24.56, 24.6, 24.6, 24.96, 24.8, 24.8, 24.64, 24.8, 24.76, 24.6, 24.76, 24.64, 24.8, 24.64, 24.68, 24.64, 24.72, 24.64, 24.64, 24.76, 24.76, 24.68, 24.64, 24.56, 24.6, 24.64, 24.6, 24.6, 24.6, 24.56, 24.52, 24.56, 24.44, 24.36, 24.48, 24.4, 24.4, 24.48, 24.76, 24.8, 25.2, 25.2, 24.96, 24.88, 24.72, 24.72, 24.92, 25.16, 25.0, 25.0, 24.72, 24.48, 24.36, 24.32, 24.36, 24.36, 24.6, 24.52, 24.28, 24.28, 24.44, 24.24, 24.36, 24.44, 24.6, 24.52, 24.64, 24.6, 24.6, 24.6, 24.56, 24.56, 24.68, 24.76, 24.72, 24.72, 24.64, 24.72, 24.76, 24.92, 24.76, 24.84, 24.72, 24.6, 24.56, 24.6, 24.56, 24.48, 24.6, 24.4, 24.4, 24.36, 24.4, 24.4, 24.44, 24.64, 24.52, 24.4, 24.44, 24.52, 24.64, 24.6, 24.6, 24.36, 24.4, 24.52, 24.64, 24.72, 24.68, 24.84, 24.6, 24.68, 24.72, 24.64, 24.6, 24.6, 24.84, 24.8, 24.6, 24.56, 24.28, 24.24, 24.08, 24.36, 24.56, 24.76, 25.08, 25.0, 24.92, 25.08, 24.68, 24.64, 24.88, 24.76, 24.64, 24.68, 24.76, 24.76, 24.68, 24.8, 25.04, 24.96, 24.96, 25.08, 24.84, 24.88, 25.08, 24.96, 24.76, 25.04, 25.0, 24.84, 24.76, 24.6, 24.64, 24.84, 24.8, 24.96, 25.12, 25.12, 25.04, 24.88, 24.92, 24.52, 24.44, 24.24, 24.32, 24.08, 24.32, 24.32, 24.44, 24.68, 24.8, 24.76, 24.92, 24.64, 24.64, 24.44, 24.48, 24.44, 24.48, 24.48, 24.48, 24.48, 24.64, 24.64, 24.8, 25.0, 25.0, 25.0, 24.88, 24.76, 24.48, 24.6, 24.68, 24.76, 25.04, 24.96, 24.76, 24.6, 24.48, 24.28, 24.36, 24.36, 24.2, 24.48, 24.64, 24.64, 24.68, 24.76, 24.8, 24.52, 24.56, 24.72, 24.68, 24.68, 24.92, 24.84, 24.96, 25.12, 25.16, 24.84, 24.56, 24.52, 24.44, 24.44, 24.48, 24.64, 24.64, 24.56, 24.44, 24.4, 24.6, 24.64, 24.84, 24.76, 24.84, 24.56, 24.68, 24.76, 24.64, 24.64, 24.68, 24.44, 24.36, 24.28, 24.28, 24.28, 24.36, 24.44, 24.6, 24.76, 25.0, 24.88, 25.28, 25.12, 25.04, 24.96, 25.0, 24.96, 25.12, 25.12, 24.84, 24.64, 24.52, 24.52, 24.64, 24.52, 24.6, 24.6, 24.44, 24.24, 24.36, 24.48, 24.36, 24.4, 24.52, 24.52, 24.36, 24.28, 24.24, 24.44, 24.52, 24.84, 25.28, 25.24, 25.08, 24.96, 24.68, 24.8, 24.6, 24.6, 24.6, 24.56, 24.56, 24.4, 24.52, 24.44, 24.4, 24.24, 24.12, 24.2, 24.2, 24.2, 24.4, 24.44, 24.64, 24.44, 24.36, 24.28, 24.44, 24.36, 24.56, 24.56, 24.72, 24.76, 24.56, 24.28, 24.28, 24.12, 24.24, 24.24, 24.4, 24.6, 24.72, 24.52, 24.56, 24.64, 24.44, 24.44, 24.44, 24.36, 24.36, 24.4, 24.44, 24.44, 24.48, 24.48, 24.48, 24.48, 24.48, 24.72, 24.8, 24.88, 24.92, 24.96, 24.88, 24.8, 24.64, 24.68, 24.8, 24.84, 25.08, 24.76, 24.88, 24.96, 24.96, 24.96, 24.68, 24.52, 24.4, 24.12, 24.12, 24.4, 24.28, 24.32, 24.28, 24.44, 24.36, 24.6, 24.64, 24.56, 24.48, 24.44, 24.56, 24.4, 24.56, 24.16, 24.16, 24.16, 24.04, 24.08, 24.08, 24.12, 24.08, 24.08, 24.08, 24.16, 24.48, 24.6, 24.6, 24.92, 24.88, 24.76, 24.6, 24.68, 24.52, 24.64, 24.72, 24.76, 24.72, 24.72, 24.68, 24.6, 24.44, 24.6, 24.72, 24.76, 24.84, 24.92, 24.72, 24.52, 24.48, 24.44, 24.52, 24.64, 24.68, 24.68, 24.64, 24.48, 24.52, 24.56, 24.52, 24.52, 24.72, 24.84, 24.92, 24.64, 24.64, 24.64, 24.44, 24.6, 24.68, 24.76, 24.84, 24.84, 24.64, 24.6, 24.84, 24.84, 24.96, 24.96, 25.0, 25.0, 24.92, 24.92, 24.92, 24.92, 24.8, 24.8, 24.64, 24.68, 24.84, 24.84, 24.88, 25.08, 25.04, 25.08, 25.0, 25.08, 25.08, 25.36, 25.24, 25.24, 25.04, 24.88, 24.76, 24.76, 24.8, 24.72, 24.72, 24.76, 24.88, 24.84, 24.72, 24.56, 24.52, 24.32, 24.24, 24.48, 24.64, 24.88, 25.12, 25.2, 25.12, 25.2, 24.96, 24.96, 24.76, 24.76, 24.8, 24.64, 24.96, 24.88, 24.88, 25.16, 25.0, 24.92, 24.76, 24.48, 24.36, 24.36, 24.4, 24.48, 24.52, 24.76, 24.76, 24.72, 24.84, 24.88, 24.88, 24.88, 24.72, 24.84, 24.8, 24.96, 24.84, 24.88, 24.6, 24.44, 24.52, 24.56, 24.52, 24.64, 24.72, 24.64, 24.48, 24.44, 24.4, 24.36, 24.32, 24.36, 24.44, 24.44, 24.44, 24.4, 24.24, 24.28, 24.28, 24.72, 25.16, 25.44, 25.48, 25.6, 25.32, 25.2, 25.12, 24.88, 24.84, 24.88, 24.8, 24.76, 24.84, 24.8, 24.68, 24.68, 24.52, 24.6, 24.52, 24.76, 24.52, 24.56, 24.64, 24.24, 24.32, 24.68, 24.6, 24.72, 24.76, 25.04, 25.24, 25.24, 25.04, 24.72, 24.64, 24.72, 24.88, 24.88, 24.76, 24.68, 24.44, 24.44, 24.44, 24.52, 24.6, 24.6, 24.52, 24.44, 24.44, 24.48, 24.56, 24.56, 24.56, 24.52, 24.64, 24.56, 24.84, 24.84, 24.64, 24.64, 24.48, 24.52, 24.56, 24.56, 24.8, 24.88, 24.72, 24.76, 24.44, 24.44, 24.48, 24.64, 24.72, 24.76, 24.72, 24.6, 24.52, 24.64, 24.48, 24.56, 24.56, 24.56, 24.44, 24.32, 24.36, 24.8, 24.76, 24.96, 24.92, 24.8, 24.68, 24.72, 24.56, 24.52, 24.28, 24.56, 24.68, 24.84, 24.76, 24.76, 24.8, 24.72, 24.68, 24.68, 24.64, 24.56, 24.52, 24.72, 24.68, 24.72, 24.6, 24.64, 24.52, 24.44, 24.52, 24.48, 24.56, 24.72, 24.6, 24.8, 24.72, 24.68, 24.84, 25.0, 25.0, 25.0, 25.16, 25.08, 24.92, 24.88, 24.76, 24.68, 24.76, 24.68, 24.8, 24.6, 24.6, 24.56, 24.6, 24.48, 24.6, 24.52, 24.68, 24.68, 24.48, 24.68, 24.76, 24.76, 24.68, 24.8, 24.8, 24.64, 24.8, 24.68, 24.72, 24.72, 24.72, 24.84, 24.8, 24.72, 24.6, 24.68, 24.36, 24.6, 24.6, 24.56, 24.52, 24.52, 24.72, 24.72, 24.96, 24.96, 24.88, 24.6, 24.64, 24.36, 24.48, 24.48, 24.64, 24.68, 24.92, 24.8, 24.72, 24.64, 24.48, 24.48, 24.4, 24.6, 24.68, 24.64, 24.64, 24.64, 24.84, 24.96, 24.8, 24.72, 24.8, 24.44, 24.32, 24.6, 24.56, 24.44, 24.56, 24.32, 24.24, 24.2, 24.2, 24.16, 24.24, 24.48, 24.64, 24.6, 24.68, 24.68, 24.72, 24.72, 24.52, 24.52, 24.64, 24.68, 24.92, 24.92, 24.92, 24.96, 24.84, 24.52, 24.68, 24.44, 24.48, 24.44, 24.48, 24.52, 24.44, 24.6, 24.8, 24.8, 24.68, 24.92, 24.8, 24.68, 24.88, 24.76, 24.4, 24.52, 24.4, 24.48, 24.76, 24.88, 25.04, 24.92, 24.64, 24.6, 24.6, 24.76, 24.88, 24.92, 24.92, 24.92, 24.72, 24.52, 24.4, 24.48, 24.48, 24.52, 24.68, 24.68, 24.72, 24.8, 24.84, 25.0, 24.96, 25.04, 24.92, 24.68, 24.44, 24.56, 24.48, 24.68, 24.68, 24.64, 24.76, 24.72, 24.76, 24.56, 24.56, 24.48, 24.44, 24.56, 24.56, 24.44, 24.48, 24.64, 24.4, 24.44, 24.48, 24.36, 24.48, 24.76, 24.88, 24.6, 24.6, 24.6, 24.4, 24.4, 24.56, 24.6, 24.64, 24.88, 24.76, 24.64, 24.64, 24.48, 24.48, 24.6, 24.76, 24.84, 24.96, 24.76, 24.68, 24.56, 24.64, 24.36, 24.36, 24.52, 24.8, 24.84, 25.0, 25.12, 24.88, 24.8, 24.6, 24.52, 24.32, 24.44, 24.52, 24.68, 24.72, 24.48, 24.44, 24.28, 24.2, 24.2, 24.4, 24.44, 24.44, 24.6, 24.76, 24.64, 24.88, 25.04, 24.96, 24.92, 24.72, 24.44, 24.28, 24.32, 24.6, 24.68, 24.8, 24.96, 24.88, 25.0, 24.92, 24.68, 24.56, 24.4, 24.4, 24.12, 24.12, 24.24, 24.16, 24.36, 24.48, 24.52, 24.48, 24.52, 24.48, 24.4, 24.4, 24.48, 24.68, 24.8, 25.0, 24.8, 24.96, 24.8, 24.64, 24.68, 24.68, 24.4, 24.4, 24.44, 24.28, 24.24, 24.36, 24.52, 24.52, 24.44, 24.52, 24.44, 24.52, 24.64, 24.52, 24.36, 24.4, 24.2, 24.12, 24.32, 24.4, 24.56, 24.56, 24.72, 24.52, 24.48, 24.64, 24.64, 24.64, 24.76, 24.72, 24.76, 24.84, 25.04, 25.08, 25.04, 24.76, 24.52, 24.56, 24.4, 24.52, 24.48, 24.64, 24.56, 24.56, 24.48, 24.4, 24.44, 24.4, 24.4, 24.84, 24.8, 24.64, 24.76, 24.56, 24.56, 24.6, 24.56, 24.56, 24.56, 24.52, 24.4, 24.28, 24.64, 24.64, 24.92, 24.92, 24.88, 25.12, 25.4, 25.72, 26.56, 26.92, 27.24, 27.44, 27.76, 27.88, 27.52, 27.28, 27.32, 26.76, 26.24, 26.32, 25.08, 25.2, 25.56, 25.84, 26.44, 26.44, 26.88, 26.72, 26.16, 25.84, 25.36, 25.08, 25.4, 25.4, 25.56, 25.56, 25.6, 25.92, 26.32, 26.64, 27.2, 27.44, 27.4, 27.4, 27.12, 26.52, 26.84, 26.84, 26.6, 26.72, 26.96, 26.12, 25.72, 25.4, 25.16, 24.92, 24.96, 24.84, 24.52, 24.2, 24.04, 24.04, 24.4, 24.52, 24.72, 24.8, 24.64, 24.56, 24.48, 24.48, 24.36, 24.44, 24.32, 24.32, 24.28, 24.32, 24.48, 24.52, 24.6, 24.44, 24.48, 24.52, 24.6, 24.52, 24.68, 24.56, 24.6, 24.8, 24.96, 24.84, 24.76, 24.76, 24.76, 24.72, 24.68, 24.8, 24.68, 24.6, 24.6, 24.48, 24.36, 24.36, 24.44, 24.44, 24.48, 24.8, 24.56, 24.56, 24.4, 24.36, 24.2, 24.44, 24.56, 24.56, 24.8, 24.76, 24.96, 25.0, 24.72, 24.64, 24.4, 24.4, 24.44, 24.44, 24.52, 24.52, 24.44, 24.6, 24.84, 24.92, 24.96, 24.84, 24.6, 24.8, 24.64, 24.64, 24.64, 24.48, 24.64, 24.56, 24.56, 24.68, 24.68, 24.68, 24.96, 24.8, 24.76, 24.76, 24.68, 24.76, 24.72, 24.72, 24.68, 24.56, 24.6, 24.56, 24.72, 24.72, 25.0, 25.2, 25.04, 25.12, 25.04, 24.96, 24.68, 24.72, 24.64, 24.56, 24.76, 24.72, 24.6, 24.52, 24.76, 24.8, 24.8, 24.84, 24.76, 24.6, 24.68, 24.68, 24.72, 24.8, 24.64, 24.6, 24.36, 24.4, 24.36, 24.52, 24.6, 24.72, 24.56, 24.4, 24.52, 24.44, 24.48, 24.52, 24.52, 24.56, 24.76, 24.72, 24.96, 24.96, 25.0, 24.92, 25.0, 24.76, 24.64, 24.64, 24.76, 24.52, 24.64, 24.6, 24.76, 24.6, 24.8, 24.84, 24.8, 24.76, 24.68, 24.24, 23.96, 23.92, 23.84, 23.84, 23.8, 24.36, 24.32, 24.56, 24.56, 24.64, 24.56, 24.6, 24.68, 24.76, 24.92, 24.88, 25.04, 24.96, 24.8, 24.44, 24.24, 24.16, 24.16, 24.36, 24.6, 24.6, 24.52, 24.76, 24.64, 24.36, 24.44, 24.36, 24.44, 24.64, 24.76, 24.76, 24.64, 24.64, 24.6, 24.48, 24.52, 24.48, 24.4, 24.36, 24.48, 24.36, 24.6, 24.6, 24.92, 25.04, 25.0, 24.96, 24.6, 24.68, 24.6, 24.76, 24.88, 24.96, 24.92, 24.68, 24.64, 24.52, 24.48, 24.44, 24.68, 24.68, 24.68, 24.72, 24.84, 24.84, 24.88, 24.88, 24.8, 24.6, 24.36, 24.52, 24.6, 24.52, 24.64, 24.76, 24.72, 24.64, 24.52, 24.36, 24.36, 24.08, 24.08, 24.24, 24.6, 24.84, 25.0, 25.0, 24.88, 24.88, 24.88, 24.72, 24.64, 24.64, 24.76, 24.8, 24.96, 24.92, 24.76, 24.72, 24.52, 24.48, 24.64, 24.8, 24.68, 24.84, 24.76, 24.64, 24.68, 24.68, 24.52, 24.44, 24.48] +1953.7896041870117 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 90000000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 1889.6461987495422, 'TIME_S_1KI': 1889.6461987495422, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 46014.76951049807, 'W': 23.55154793120378} +[20.2, 20.08, 20.12, 19.96, 20.0, 20.0, 20.04, 20.04, 19.92, 20.12, 20.08, 20.04, 20.24, 20.4, 20.4, 20.44, 20.44, 20.12, 20.12, 20.2] +362.65999999999997 +18.133 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 90000000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 1889.6461987495422, 'TIME_S_1KI': 1889.6461987495422, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 46014.76951049807, 'W': 23.55154793120378, 'J_1KI': 46014.76951049807, 'W_1KI': 23.55154793120378, 'W_D': 5.418547931203779, 'J_D': 10586.702617774983, 'W_D_1KI': 5.418547931203779, 'J_D_1KI': 5.418547931203779} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_1e-05.json b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_1e-05.json new file mode 100644 index 0000000..e115dec --- /dev/null +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 53329, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 9000, "MATRIX_DENSITY": 1e-05, "TIME_S": 21.33877921104431, "TIME_S_1KI": 0.4001346211450489, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 541.4117899322509, "W": 22.47116935228423, "J_1KI": 10.152295935274447, "W_1KI": 0.42136866155908104, "W_D": 4.265169352284232, "J_D": 102.76336478900909, "W_D_1KI": 0.07997842360224704, "J_D_1KI": 0.0014997172945723158} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_1e-05.output b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_1e-05.output new file mode 100644 index 0000000..e2a45bb --- /dev/null +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_30000_1e-05.output @@ -0,0 +1,62 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 30000 -sd 1e-05 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 9000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.39377737045288086} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 8999, 9000, 9000]), + col_indices=tensor([10394, 25541, 5557, ..., 25175, 23986, 28004]), + values=tensor([0.8334, 0.8462, 0.9277, ..., 0.8850, 0.0932, 0.4483]), + size=(30000, 30000), nnz=9000, layout=torch.sparse_csr) +tensor([0.3238, 0.7549, 0.3676, ..., 0.0953, 0.4629, 0.1375]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 9000 +Density: 1e-05 +Time: 0.39377737045288086 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 53329 -ss 30000 -sd 1e-05 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 9000, "MATRIX_DENSITY": 1e-05, "TIME_S": 21.33877921104431} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 8999, 9000, 9000]), + col_indices=tensor([19970, 26420, 19050, ..., 11684, 15529, 21908]), + values=tensor([0.5268, 0.0229, 0.8842, ..., 0.2264, 0.1987, 0.6579]), + size=(30000, 30000), nnz=9000, layout=torch.sparse_csr) +tensor([0.3153, 0.9988, 0.0667, ..., 0.8874, 0.8455, 0.6438]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 9000 +Density: 1e-05 +Time: 21.33877921104431 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 8999, 9000, 9000]), + col_indices=tensor([19970, 26420, 19050, ..., 11684, 15529, 21908]), + values=tensor([0.5268, 0.0229, 0.8842, ..., 0.2264, 0.1987, 0.6579]), + size=(30000, 30000), nnz=9000, layout=torch.sparse_csr) +tensor([0.3153, 0.9988, 0.0667, ..., 0.8874, 0.8455, 0.6438]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 9000 +Density: 1e-05 +Time: 21.33877921104431 seconds + +[20.04, 20.04, 20.12, 20.16, 20.4, 20.32, 20.4, 20.36, 20.2, 20.16] +[19.76, 19.88, 23.52, 24.72, 26.8, 26.8, 27.72, 28.52, 25.4, 24.2, 24.0, 24.12, 23.96, 24.08, 24.08, 23.92, 24.0, 24.0, 24.16, 24.28, 24.4, 24.44, 24.48] +24.093618869781494 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 53329, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 9000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 21.33877921104431, 'TIME_S_1KI': 0.4001346211450489, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 541.4117899322509, 'W': 22.47116935228423} +[20.04, 20.04, 20.12, 20.16, 20.4, 20.32, 20.4, 20.36, 20.2, 20.16, 19.84, 19.92, 20.0, 20.12, 20.12, 20.44, 20.48, 20.48, 20.48, 20.12] +364.12 +18.206 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 53329, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 9000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 21.33877921104431, 'TIME_S_1KI': 0.4001346211450489, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 541.4117899322509, 'W': 22.47116935228423, 'J_1KI': 10.152295935274447, 'W_1KI': 0.42136866155908104, 'W_D': 4.265169352284232, 'J_D': 102.76336478900909, 'W_D_1KI': 0.07997842360224704, 'J_D_1KI': 0.0014997172945723158} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.0001.json b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.0001.json new file mode 100644 index 0000000..ddc6fac --- /dev/null +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 3411, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 20.881499767303467, "TIME_S_1KI": 6.121811717180729, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 532.9655063343048, "W": 22.190313426181827, "J_1KI": 156.24904905725734, "W_1KI": 6.505515516324194, "W_D": 3.8713134261818247, "J_D": 92.98095438027374, "W_D_1KI": 1.134949699848087, "J_D_1KI": 0.3327322485629103} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.0001.output b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.0001.output new file mode 100644 index 0000000..19d6f4f --- /dev/null +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.0001.output @@ -0,0 +1,66 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 50000 -sd 0.0001 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 6.156386375427246} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 6, 12, ..., 249983, 249990, + 250000]), + col_indices=tensor([ 2925, 8906, 11132, ..., 41372, 46211, 46407]), + values=tensor([4.7685e-01, 8.2631e-01, 1.3241e-01, ..., + 9.9306e-01, 3.1562e-01, 2.9121e-04]), + size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) +tensor([0.6560, 0.4823, 0.8578, ..., 0.1247, 0.5626, 0.6108]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 250000 +Density: 0.0001 +Time: 6.156386375427246 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 3411 -ss 50000 -sd 0.0001 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 20.881499767303467} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 8, 11, ..., 249987, 249992, + 250000]), + col_indices=tensor([ 5492, 16093, 20671, ..., 32727, 38238, 43452]), + values=tensor([0.3185, 0.0470, 0.4206, ..., 0.2062, 0.5185, 0.9595]), + size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) +tensor([0.4169, 0.1713, 0.4477, ..., 0.1220, 0.0527, 0.5400]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 250000 +Density: 0.0001 +Time: 20.881499767303467 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 8, 11, ..., 249987, 249992, + 250000]), + col_indices=tensor([ 5492, 16093, 20671, ..., 32727, 38238, 43452]), + values=tensor([0.3185, 0.0470, 0.4206, ..., 0.2062, 0.5185, 0.9595]), + size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) +tensor([0.4169, 0.1713, 0.4477, ..., 0.1220, 0.0527, 0.5400]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 250000 +Density: 0.0001 +Time: 20.881499767303467 seconds + +[20.32, 20.28, 20.4, 20.4, 20.32, 20.4, 20.72, 20.56, 20.56, 20.56] +[20.52, 20.56, 20.8, 22.24, 23.32, 25.08, 26.04, 25.96, 25.92, 24.88, 25.0, 24.72, 24.6, 24.56, 24.12, 24.24, 24.24, 24.44, 24.56, 24.76, 24.96, 24.84, 24.84] +24.017935037612915 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 3411, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 20.881499767303467, 'TIME_S_1KI': 6.121811717180729, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 532.9655063343048, 'W': 22.190313426181827} +[20.32, 20.28, 20.4, 20.4, 20.32, 20.4, 20.72, 20.56, 20.56, 20.56, 20.52, 20.32, 20.2, 20.28, 20.36, 20.32, 20.28, 20.28, 20.08, 19.84] +366.38000000000005 +18.319000000000003 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 3411, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 20.881499767303467, 'TIME_S_1KI': 6.121811717180729, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 532.9655063343048, 'W': 22.190313426181827, 'J_1KI': 156.24904905725734, 'W_1KI': 6.505515516324194, 'W_D': 3.8713134261818247, 'J_D': 92.98095438027374, 'W_D_1KI': 1.134949699848087, 'J_D_1KI': 0.3327322485629103} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.0005.json b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.0005.json new file mode 100644 index 0000000..e80940c --- /dev/null +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.0005.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.0005, "TIME_S": 27.37552046775818, "TIME_S_1KI": 27.37552046775818, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 709.9588974285126, "W": 22.617473628428268, "J_1KI": 709.9588974285126, "W_1KI": 22.617473628428268, "W_D": 4.155473628428268, "J_D": 130.43965581655505, "W_D_1KI": 4.155473628428268, "J_D_1KI": 4.155473628428268} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.0005.output b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.0005.output new file mode 100644 index 0000000..5ee77f1 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.0005.output @@ -0,0 +1,45 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 50000 -sd 0.0005 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.0005, "TIME_S": 27.37552046775818} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 27, 46, ..., 1249943, + 1249977, 1250000]), + col_indices=tensor([ 1915, 6358, 8298, ..., 42036, 43103, 48835]), + values=tensor([0.4919, 0.4887, 0.0616, ..., 0.3370, 0.2927, 0.3892]), + size=(50000, 50000), nnz=1250000, layout=torch.sparse_csr) +tensor([0.0947, 0.0414, 0.5709, ..., 0.1435, 0.2486, 0.5038]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 1250000 +Density: 0.0005 +Time: 27.37552046775818 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 27, 46, ..., 1249943, + 1249977, 1250000]), + col_indices=tensor([ 1915, 6358, 8298, ..., 42036, 43103, 48835]), + values=tensor([0.4919, 0.4887, 0.0616, ..., 0.3370, 0.2927, 0.3892]), + size=(50000, 50000), nnz=1250000, layout=torch.sparse_csr) +tensor([0.0947, 0.0414, 0.5709, ..., 0.1435, 0.2486, 0.5038]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 1250000 +Density: 0.0005 +Time: 27.37552046775818 seconds + +[20.24, 20.24, 20.44, 20.44, 20.52, 20.84, 20.8, 20.8, 20.52, 20.48] +[20.44, 20.44, 21.24, 22.44, 23.88, 24.76, 25.84, 25.32, 25.32, 25.04, 24.24, 24.36, 24.44, 24.64, 24.84, 24.72, 24.52, 24.56, 24.28, 24.44, 24.4, 24.4, 24.44, 24.2, 24.08, 24.16, 24.08, 24.32, 24.52, 24.52] +31.389840841293335 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 1250000, 'MATRIX_DENSITY': 0.0005, 'TIME_S': 27.37552046775818, 'TIME_S_1KI': 27.37552046775818, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 709.9588974285126, 'W': 22.617473628428268} +[20.24, 20.24, 20.44, 20.44, 20.52, 20.84, 20.8, 20.8, 20.52, 20.48, 20.56, 20.56, 20.64, 20.6, 20.32, 20.36, 20.2, 20.32, 20.72, 20.56] +369.24 +18.462 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 1250000, 'MATRIX_DENSITY': 0.0005, 'TIME_S': 27.37552046775818, 'TIME_S_1KI': 27.37552046775818, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 709.9588974285126, 'W': 22.617473628428268, 'J_1KI': 709.9588974285126, 'W_1KI': 22.617473628428268, 'W_D': 4.155473628428268, 'J_D': 130.43965581655505, 'W_D_1KI': 4.155473628428268, 'J_D_1KI': 4.155473628428268} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.001.json b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.001.json new file mode 100644 index 0000000..8992275 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.001.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 54.24125528335571, "TIME_S_1KI": 54.24125528335571, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1372.0545160293577, "W": 23.357171683962374, "J_1KI": 1372.0545160293577, "W_1KI": 23.357171683962374, "W_D": 5.006171683962375, "J_D": 294.0741524674891, "W_D_1KI": 5.006171683962375, "J_D_1KI": 5.006171683962375} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.001.output b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.001.output new file mode 100644 index 0000000..1dd53bb --- /dev/null +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.001.output @@ -0,0 +1,45 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 50000 -sd 0.001 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 54.24125528335571} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 50, 100, ..., 2499893, + 2499949, 2500000]), + col_indices=tensor([ 3726, 3738, 3891, ..., 47883, 48507, 49636]), + values=tensor([0.9449, 0.1440, 0.2391, ..., 0.6142, 0.1134, 0.3366]), + size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.1491, 0.4739, 0.9733, ..., 0.7895, 0.7265, 0.6840]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 2500000 +Density: 0.001 +Time: 54.24125528335571 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 50, 100, ..., 2499893, + 2499949, 2500000]), + col_indices=tensor([ 3726, 3738, 3891, ..., 47883, 48507, 49636]), + values=tensor([0.9449, 0.1440, 0.2391, ..., 0.6142, 0.1134, 0.3366]), + size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.1491, 0.4739, 0.9733, ..., 0.7895, 0.7265, 0.6840]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 2500000 +Density: 0.001 +Time: 54.24125528335571 seconds + +[20.52, 20.48, 20.52, 20.52, 20.48, 20.28, 20.36, 20.08, 20.2, 20.2] +[20.4, 20.56, 21.16, 25.2, 26.96, 28.36, 29.16, 26.04, 26.0, 26.0, 24.56, 24.48, 24.68, 24.64, 24.76, 24.8, 24.44, 24.48, 24.56, 24.36, 24.44, 24.6, 24.44, 24.44, 24.32, 24.2, 24.16, 24.24, 24.36, 24.44, 24.52, 24.52, 24.52, 24.52, 24.48, 24.44, 24.56, 24.56, 24.68, 24.76, 24.64, 24.64, 24.48, 24.36, 24.28, 24.16, 24.36, 24.48, 24.4, 24.6, 24.68, 24.6, 24.6, 24.6, 24.56, 24.16] +58.74232268333435 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 54.24125528335571, 'TIME_S_1KI': 54.24125528335571, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1372.0545160293577, 'W': 23.357171683962374} +[20.52, 20.48, 20.52, 20.52, 20.48, 20.28, 20.36, 20.08, 20.2, 20.2, 20.4, 20.52, 20.32, 20.48, 20.6, 20.4, 20.44, 20.4, 20.24, 20.28] +367.02 +18.351 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 54.24125528335571, 'TIME_S_1KI': 54.24125528335571, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1372.0545160293577, 'W': 23.357171683962374, 'J_1KI': 1372.0545160293577, 'W_1KI': 23.357171683962374, 'W_D': 5.006171683962375, 'J_D': 294.0741524674891, 'W_D_1KI': 5.006171683962375, 'J_D_1KI': 5.006171683962375} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.005.json b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.005.json new file mode 100644 index 0000000..5b8cd5a --- /dev/null +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.005.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 0.005, "TIME_S": 267.4636125564575, "TIME_S_1KI": 267.4636125564575, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 6714.934566097259, "W": 23.431218104999314, "J_1KI": 6714.934566097259, "W_1KI": 23.431218104999314, "W_D": 5.143218104999313, "J_D": 1473.9469744796756, "W_D_1KI": 5.143218104999313, "J_D_1KI": 5.143218104999313} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.005.output b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.005.output new file mode 100644 index 0000000..d7cdb54 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.005.output @@ -0,0 +1,45 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 50000 -sd 0.005 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 0.005, "TIME_S": 267.4636125564575} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 245, 505, ..., 12499495, + 12499738, 12500000]), + col_indices=tensor([ 233, 421, 423, ..., 49587, 49831, 49917]), + values=tensor([0.0085, 0.6781, 0.7487, ..., 0.0311, 0.6051, 0.4921]), + size=(50000, 50000), nnz=12500000, layout=torch.sparse_csr) +tensor([0.9687, 0.6648, 0.3251, ..., 0.0954, 0.1242, 0.9203]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 12500000 +Density: 0.005 +Time: 267.4636125564575 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 245, 505, ..., 12499495, + 12499738, 12500000]), + col_indices=tensor([ 233, 421, 423, ..., 49587, 49831, 49917]), + values=tensor([0.0085, 0.6781, 0.7487, ..., 0.0311, 0.6051, 0.4921]), + size=(50000, 50000), nnz=12500000, layout=torch.sparse_csr) +tensor([0.9687, 0.6648, 0.3251, ..., 0.0954, 0.1242, 0.9203]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 12500000 +Density: 0.005 +Time: 267.4636125564575 seconds + +[20.32, 20.36, 20.44, 20.44, 20.44, 20.6, 20.6, 20.64, 20.64, 20.8] +[20.68, 20.84, 21.36, 22.52, 24.16, 25.64, 27.64, 28.36, 28.44, 28.44, 27.88, 26.96, 25.68, 25.0, 24.68, 24.68, 24.88, 25.0, 25.08, 25.0, 24.72, 24.6, 24.68, 24.44, 24.32, 24.4, 24.32, 24.12, 24.36, 24.6, 24.6, 24.6, 24.48, 24.72, 24.76, 24.72, 24.84, 24.92, 24.72, 24.72, 24.6, 24.44, 24.56, 24.6, 24.36, 24.48, 24.56, 24.36, 24.36, 24.32, 24.4, 24.32, 24.44, 24.44, 24.6, 24.6, 24.56, 24.52, 24.28, 24.28, 24.32, 24.28, 24.52, 24.4, 24.44, 24.24, 24.12, 24.12, 24.32, 24.52, 24.8, 25.0, 25.04, 24.72, 24.72, 24.72, 24.56, 24.24, 24.24, 24.16, 24.12, 24.0, 24.16, 24.4, 24.4, 24.56, 24.68, 24.76, 24.68, 24.72, 24.56, 24.6, 24.68, 24.8, 24.84, 24.88, 24.84, 24.84, 24.72, 24.52, 24.48, 24.44, 24.36, 24.4, 24.56, 24.32, 24.28, 24.4, 24.52, 24.36, 24.76, 24.88, 24.8, 24.72, 24.84, 24.88, 24.84, 24.92, 24.88, 24.88, 24.8, 24.76, 24.68, 24.48, 24.52, 24.44, 24.44, 24.56, 24.56, 24.64, 24.52, 24.4, 24.6, 24.64, 24.72, 24.52, 24.36, 24.48, 24.48, 24.68, 24.56, 24.56, 24.88, 24.92, 24.96, 25.12, 25.12, 24.88, 24.6, 24.6, 24.4, 24.6, 24.88, 24.8, 24.6, 24.56, 24.48, 24.52, 24.68, 24.92, 24.96, 24.72, 24.76, 24.76, 24.6, 24.6, 24.64, 24.52, 24.48, 24.48, 24.6, 24.64, 24.6, 24.56, 24.56, 24.28, 24.44, 24.32, 24.24, 24.2, 24.12, 24.2, 24.44, 24.56, 24.48, 24.48, 24.44, 24.48, 24.64, 24.84, 24.84, 24.96, 24.68, 24.72, 24.44, 24.76, 24.72, 24.6, 24.72, 24.76, 24.6, 24.72, 25.08, 24.72, 24.88, 24.92, 25.0, 25.0, 25.04, 25.2, 25.08, 24.92, 24.56, 24.44, 24.48, 24.36, 24.64, 24.64, 24.68, 24.6, 24.44, 24.48, 24.28, 24.24, 24.4, 24.52, 24.4, 24.24, 24.4, 24.4, 24.36, 24.36, 24.56, 24.76, 24.76, 24.72, 24.8, 24.72, 24.64, 24.56, 24.44, 24.24, 24.32, 24.32, 24.6, 24.64, 24.6, 24.64, 24.68, 24.52, 24.8, 24.8, 24.8, 24.88, 24.76, 24.68, 24.64, 24.56, 24.6, 24.72, 24.64, 24.48, 24.56, 24.48, 24.48, 24.36, 24.44, 24.44, 24.56, 24.76, 24.68, 24.68, 24.72] +286.5806863307953 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 12500000, 'MATRIX_DENSITY': 0.005, 'TIME_S': 267.4636125564575, 'TIME_S_1KI': 267.4636125564575, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 6714.934566097259, 'W': 23.431218104999314} +[20.32, 20.36, 20.44, 20.44, 20.44, 20.6, 20.6, 20.64, 20.64, 20.8, 20.04, 20.04, 20.04, 19.92, 20.12, 20.08, 20.12, 20.16, 20.32, 20.44] +365.76 +18.288 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 12500000, 'MATRIX_DENSITY': 0.005, 'TIME_S': 267.4636125564575, 'TIME_S_1KI': 267.4636125564575, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 6714.934566097259, 'W': 23.431218104999314, 'J_1KI': 6714.934566097259, 'W_1KI': 23.431218104999314, 'W_D': 5.143218104999313, 'J_D': 1473.9469744796756, 'W_D_1KI': 5.143218104999313, 'J_D_1KI': 5.143218104999313} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.01.json b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.01.json new file mode 100644 index 0000000..789132f --- /dev/null +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.01.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.01, "TIME_S": 535.8486552238464, "TIME_S_1KI": 535.8486552238464, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 13280.309822225587, "W": 23.46860300867941, "J_1KI": 13280.309822225587, "W_1KI": 23.46860300867941, "W_D": 4.95160300867941, "J_D": 2801.991326352374, "W_D_1KI": 4.95160300867941, "J_D_1KI": 4.95160300867941} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.01.output b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.01.output new file mode 100644 index 0000000..209aa36 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_0.01.output @@ -0,0 +1,45 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 50000 -sd 0.01 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.01, "TIME_S": 535.8486552238464} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 524, 1011, ..., 24999011, + 24999504, 25000000]), + col_indices=tensor([ 192, 200, 454, ..., 49935, 49965, 49995]), + values=tensor([0.7895, 0.2997, 0.5746, ..., 0.4223, 0.3918, 0.3456]), + size=(50000, 50000), nnz=25000000, layout=torch.sparse_csr) +tensor([0.4665, 0.6238, 0.5276, ..., 0.6350, 0.6391, 0.4023]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000000 +Density: 0.01 +Time: 535.8486552238464 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 524, 1011, ..., 24999011, + 24999504, 25000000]), + col_indices=tensor([ 192, 200, 454, ..., 49935, 49965, 49995]), + values=tensor([0.7895, 0.2997, 0.5746, ..., 0.4223, 0.3918, 0.3456]), + size=(50000, 50000), nnz=25000000, layout=torch.sparse_csr) +tensor([0.4665, 0.6238, 0.5276, ..., 0.6350, 0.6391, 0.4023]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000000 +Density: 0.01 +Time: 535.8486552238464 seconds + +[19.88, 20.2, 20.24, 20.52, 20.64, 20.6, 20.68, 20.56, 20.56, 20.64] +[20.64, 20.68, 20.44, 22.0, 22.56, 24.6, 26.28, 27.32, 28.6, 28.84, 29.2, 28.92, 29.32, 28.08, 27.28, 26.68, 26.0, 26.0, 24.96, 24.8, 24.88, 24.96, 24.84, 24.72, 24.48, 24.56, 24.6, 24.64, 24.56, 24.48, 24.48, 24.36, 24.48, 24.64, 24.52, 24.64, 24.44, 24.52, 24.36, 24.36, 24.44, 24.44, 24.56, 24.88, 24.92, 24.96, 24.96, 24.8, 24.64, 24.56, 24.48, 24.64, 24.56, 24.52, 24.64, 24.72, 24.84, 24.92, 24.88, 24.72, 24.68, 24.68, 24.8, 24.72, 24.56, 24.36, 24.16, 23.96, 24.08, 24.4, 24.52, 24.6, 24.76, 24.8, 24.92, 24.96, 24.84, 24.84, 24.6, 24.44, 24.52, 24.48, 24.64, 24.64, 25.0, 24.8, 24.88, 24.56, 24.52, 24.44, 24.56, 24.52, 24.72, 24.76, 24.44, 24.44, 24.56, 24.36, 24.4, 24.48, 24.44, 24.4, 24.64, 24.84, 24.72, 24.72, 24.6, 24.52, 24.28, 24.28, 24.52, 24.64, 24.72, 24.68, 24.56, 24.36, 24.48, 24.4, 24.28, 24.48, 24.52, 24.32, 24.56, 24.52, 24.4, 24.32, 24.36, 24.36, 24.32, 24.4, 24.44, 24.24, 24.4, 24.36, 24.28, 24.44, 24.4, 24.44, 24.4, 24.8, 24.68, 24.64, 24.72, 24.32, 24.08, 24.2, 24.48, 24.44, 24.6, 24.6, 24.44, 24.4, 24.48, 24.6, 24.52, 24.68, 24.52, 24.64, 24.76, 24.72, 24.64, 24.56, 24.48, 24.52, 24.76, 24.52, 24.76, 24.76, 24.88, 24.92, 24.96, 24.96, 24.68, 24.72, 24.64, 24.56, 24.52, 24.52, 24.52, 24.48, 24.36, 24.44, 24.56, 24.48, 24.84, 24.88, 24.76, 24.64, 24.44, 24.52, 24.52, 24.56, 24.48, 24.48, 24.52, 24.52, 24.56, 24.64, 24.6, 24.68, 24.52, 24.32, 24.24, 24.2, 24.44, 24.8, 25.12, 25.0, 25.04, 24.88, 24.76, 24.84, 24.84, 24.84, 24.68, 24.68, 24.64, 24.68, 24.6, 24.72, 24.72, 24.64, 24.48, 24.36, 24.44, 24.36, 24.56, 24.56, 24.52, 24.56, 24.64, 24.36, 24.52, 24.6, 24.44, 24.6, 24.68, 24.68, 24.48, 24.48, 24.32, 24.2, 24.28, 24.52, 24.6, 24.6, 24.72, 24.64, 24.64, 24.44, 24.48, 24.36, 24.6, 24.68, 24.76, 24.68, 24.68, 24.6, 24.56, 24.56, 24.56, 24.48, 24.4, 24.44, 24.56, 24.52, 24.64, 24.56, 24.52, 24.44, 24.36, 24.32, 24.2, 24.24, 24.2, 24.24, 24.52, 24.64, 24.52, 24.64, 24.72, 24.72, 24.6, 24.52, 24.84, 25.0, 24.88, 25.04, 24.96, 24.6, 24.36, 24.44, 24.28, 24.32, 24.36, 24.56, 24.6, 24.48, 24.64, 24.84, 24.76, 24.92, 25.0, 25.0, 24.8, 24.72, 24.84, 24.76, 24.68, 24.52, 24.4, 24.44, 24.44, 24.6, 24.84, 24.76, 24.64, 24.64, 24.56, 24.64, 24.64, 24.52, 24.72, 24.48, 24.48, 24.48, 24.64, 24.64, 24.76, 24.52, 24.56, 24.6, 24.4, 24.4, 24.84, 24.76, 24.72, 25.0, 24.72, 24.64, 24.48, 24.36, 24.32, 24.32, 24.28, 24.48, 24.6, 24.6, 24.64, 24.72, 24.84, 24.92, 24.88, 24.8, 24.72, 24.68, 24.88, 24.88, 24.6, 24.52, 24.36, 24.2, 24.48, 24.64, 24.72, 24.72, 24.92, 24.72, 24.6, 24.6, 24.64, 24.36, 24.32, 24.52, 24.6, 24.68, 24.72, 24.92, 24.76, 24.76, 24.72, 24.72, 24.64, 24.72, 24.76, 24.84, 24.76, 24.92, 25.04, 24.92, 24.72, 24.72, 24.68, 24.64, 24.72, 24.84, 24.72, 24.68, 24.6, 24.32, 24.28, 24.4, 24.36, 24.48, 24.6, 24.64, 24.8, 24.88, 25.0, 25.08, 24.92, 24.96, 24.8, 24.8, 24.68, 24.56, 24.56, 24.44, 24.48, 24.52, 24.52, 24.72, 24.8, 24.8, 24.92, 24.8, 24.52, 24.68, 24.8, 25.08, 25.12, 24.96, 24.92, 24.72, 24.8, 24.8, 24.92, 25.08, 24.84, 24.8, 24.64, 24.36, 24.32, 24.52, 24.6, 24.6, 24.84, 24.64, 24.52, 24.56, 24.56, 24.64, 24.88, 25.04, 24.92, 24.72, 24.68, 24.68, 24.6, 24.64, 24.8, 24.8, 24.72, 24.44, 24.44, 24.28, 24.32, 24.4, 24.56, 24.32, 24.44, 24.44, 24.52, 24.6, 24.56, 24.52, 24.52, 24.44, 24.6, 24.6, 24.44, 24.48, 24.68, 24.72, 24.84, 25.0, 24.96, 24.92, 24.96, 25.0, 24.8, 24.72, 24.56, 24.56, 24.2, 24.32, 24.36, 24.24, 24.24, 24.36, 24.28, 24.28, 24.52, 24.32, 24.36, 24.64, 24.72, 24.92, 24.92, 24.72, 24.72, 24.56, 24.56, 24.52, 24.6, 24.48, 24.76, 24.48, 24.6, 24.6, 24.6, 24.44, 24.44, 24.44, 24.6, 24.44, 24.6, 24.52, 24.8, 24.6, 24.52, 24.48, 24.24, 24.04, 24.28, 24.2, 24.32, 24.56, 24.68] +565.8756005764008 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 535.8486552238464, 'TIME_S_1KI': 535.8486552238464, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 13280.309822225587, 'W': 23.46860300867941} +[19.88, 20.2, 20.24, 20.52, 20.64, 20.6, 20.68, 20.56, 20.56, 20.64, 20.6, 20.6, 20.48, 20.52, 20.32, 20.32, 20.6, 20.96, 21.36, 21.24] +370.34 +18.517 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 535.8486552238464, 'TIME_S_1KI': 535.8486552238464, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 13280.309822225587, 'W': 23.46860300867941, 'J_1KI': 13280.309822225587, 'W_1KI': 23.46860300867941, 'W_D': 4.95160300867941, 'J_D': 2801.991326352374, 'W_D_1KI': 4.95160300867941, 'J_D_1KI': 4.95160300867941} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_1e-05.json b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_1e-05.json new file mode 100644 index 0000000..918a20d --- /dev/null +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 1, "ITERATIONS": 21239, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 20.893531799316406, "TIME_S_1KI": 0.9837342529929096, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 567.132219734192, "W": 22.611941270368835, "J_1KI": 26.7023974638256, "W_1KI": 1.0646424629393492, "W_D": 4.100941270368832, "J_D": 102.85609262180327, "W_D_1KI": 0.19308542164738604, "J_D_1KI": 0.009091078753584728} diff --git a/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_1e-05.output b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_1e-05.output new file mode 100644 index 0000000..bf1327e --- /dev/null +++ b/pytorch/output_synthetic_1core_old/altra_1_csr_20_10_10_synthetic_50000_1e-05.output @@ -0,0 +1,62 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 50000 -sd 1e-05 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.9887256622314453} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 24999, 25000, 25000]), + col_indices=tensor([37749, 5687, 46660, ..., 48444, 47762, 13606]), + values=tensor([0.6973, 0.6140, 0.4905, ..., 0.2540, 0.0834, 0.5554]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.8263, 0.0637, 0.7656, ..., 0.0179, 0.5334, 0.7448]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 0.9887256622314453 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 21239 -ss 50000 -sd 1e-05 -c 1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 20.893531799316406} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 1, ..., 25000, 25000, 25000]), + col_indices=tensor([17445, 34363, 49525, ..., 23738, 42338, 13045]), + values=tensor([0.8308, 0.1110, 0.1320, ..., 0.5346, 0.9645, 0.6427]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.4506, 0.3540, 0.2946, ..., 0.2277, 0.1153, 0.5755]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 20.893531799316406 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 1, ..., 25000, 25000, 25000]), + col_indices=tensor([17445, 34363, 49525, ..., 23738, 42338, 13045]), + values=tensor([0.8308, 0.1110, 0.1320, ..., 0.5346, 0.9645, 0.6427]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.4506, 0.3540, 0.2946, ..., 0.2277, 0.1153, 0.5755]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 20.893531799316406 seconds + +[20.28, 20.2, 20.12, 20.32, 20.4, 20.4, 20.52, 20.44, 20.28, 20.28] +[20.36, 20.36, 20.32, 21.48, 22.48, 24.48, 25.64, 26.08, 25.96, 25.2, 25.16, 25.16, 25.12, 25.12, 25.16, 25.36, 25.32, 25.24, 25.64, 25.64, 25.56, 25.72, 25.76, 25.8] +25.081093788146973 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 21239, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 20.893531799316406, 'TIME_S_1KI': 0.9837342529929096, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 567.132219734192, 'W': 22.611941270368835} +[20.28, 20.2, 20.12, 20.32, 20.4, 20.4, 20.52, 20.44, 20.28, 20.28, 20.6, 20.72, 20.84, 20.84, 20.72, 20.8, 20.8, 20.8, 20.96, 20.96] +370.22 +18.511000000000003 +{'CPU': 'Altra', 'CORES': 1, 'ITERATIONS': 21239, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 20.893531799316406, 'TIME_S_1KI': 0.9837342529929096, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 567.132219734192, 'W': 22.611941270368835, 'J_1KI': 26.7023974638256, 'W_1KI': 1.0646424629393492, 'W_D': 4.100941270368832, 'J_D': 102.85609262180327, 'W_D_1KI': 0.19308542164738604, 'J_D_1KI': 0.009091078753584728} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_1000000_1e-05.json b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_1000000_1e-05.json new file mode 100644 index 0000000..0c0f3d2 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_1000000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [1000000, 1000000], "MATRIX_ROWS": 1000000, "MATRIX_SIZE": 1000000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 1e-05, "TIME_S": 28.845969438552856, "TIME_S_1KI": 28.845969438552856, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2585.6487583732605, "W": 78.16, "J_1KI": 2585.6487583732605, "W_1KI": 78.16, "W_D": 43.0085, "J_D": 1422.784987519145, "W_D_1KI": 43.0085, "J_D_1KI": 43.0085} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_1000000_1e-05.output b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_1000000_1e-05.output new file mode 100644 index 0000000..89364a9 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_1000000_1e-05.output @@ -0,0 +1,47 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '1000000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [1000000, 1000000], "MATRIX_ROWS": 1000000, "MATRIX_SIZE": 1000000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 1e-05, "TIME_S": 28.845969438552856} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 6, 13, ..., 9999985, + 9999990, 10000000]), + col_indices=tensor([129131, 466272, 498291, ..., 666802, 863606, + 946629]), + values=tensor([0.5704, 0.0489, 0.8998, ..., 0.0930, 0.7201, 0.2084]), + size=(1000000, 1000000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.9798, 0.4611, 0.5869, ..., 0.0442, 0.2383, 0.1498]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([1000000, 1000000]) +Rows: 1000000 +Size: 1000000000000 +NNZ: 10000000 +Density: 1e-05 +Time: 28.845969438552856 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 6, 13, ..., 9999985, + 9999990, 10000000]), + col_indices=tensor([129131, 466272, 498291, ..., 666802, 863606, + 946629]), + values=tensor([0.5704, 0.0489, 0.8998, ..., 0.0930, 0.7201, 0.2084]), + size=(1000000, 1000000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.9798, 0.4611, 0.5869, ..., 0.0442, 0.2383, 0.1498]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([1000000, 1000000]) +Rows: 1000000 +Size: 1000000000000 +NNZ: 10000000 +Density: 1e-05 +Time: 28.845969438552856 seconds + +[40.14, 38.78, 39.11, 39.29, 39.32, 38.69, 39.29, 38.91, 39.05, 39.11] +[78.16] +33.081483602523804 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [1000000, 1000000], 'MATRIX_ROWS': 1000000, 'MATRIX_SIZE': 1000000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 28.845969438552856, 'TIME_S_1KI': 28.845969438552856, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2585.6487583732605, 'W': 78.16} +[40.14, 38.78, 39.11, 39.29, 39.32, 38.69, 39.29, 38.91, 39.05, 39.11, 40.65, 38.68, 39.17, 39.0, 39.16, 39.21, 38.7, 38.72, 38.68, 38.64] +703.03 +35.1515 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [1000000, 1000000], 'MATRIX_ROWS': 1000000, 'MATRIX_SIZE': 1000000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 28.845969438552856, 'TIME_S_1KI': 28.845969438552856, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2585.6487583732605, 'W': 78.16, 'J_1KI': 2585.6487583732605, 'W_1KI': 78.16, 'W_D': 43.0085, 'J_D': 1422.784987519145, 'W_D_1KI': 43.0085, 'J_D_1KI': 43.0085} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_0.0001.json b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_0.0001.json new file mode 100644 index 0000000..11555aa --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 12281, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 21.43535876274109, "TIME_S_1KI": 1.7454082536227578, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1544.854190015793, "W": 65.9, "J_1KI": 125.79221480464072, "W_1KI": 5.366012539695466, "W_D": 30.747500000000002, "J_D": 720.7952080047131, "W_D_1KI": 2.503664196726651, "J_D_1KI": 0.20386484787286466} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_0.0001.output b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_0.0001.output new file mode 100644 index 0000000..a35639b --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_0.0001.output @@ -0,0 +1,66 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '100000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 1.7099568843841553} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 10, 20, ..., 999975, + 999991, 1000000]), + col_indices=tensor([ 4154, 20798, 21409, ..., 65320, 83277, 90457]), + values=tensor([0.0206, 0.0188, 0.3875, ..., 0.2566, 0.8734, 0.4713]), + size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) +tensor([2.2552e-01, 8.2165e-04, 8.9899e-01, ..., 7.1003e-01, 6.8443e-02, + 6.7507e-01]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 1000000 +Density: 0.0001 +Time: 1.7099568843841553 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '12281', '-ss', '100000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 21.43535876274109} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 12, 20, ..., 999985, + 999994, 1000000]), + col_indices=tensor([ 2661, 16984, 17010, ..., 72407, 79760, 99948]), + values=tensor([0.6261, 0.1903, 0.4758, ..., 0.9266, 0.4335, 0.5751]), + size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.1330, 0.4019, 0.6390, ..., 0.8808, 0.7758, 0.9416]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 1000000 +Density: 0.0001 +Time: 21.43535876274109 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 12, 20, ..., 999985, + 999994, 1000000]), + col_indices=tensor([ 2661, 16984, 17010, ..., 72407, 79760, 99948]), + values=tensor([0.6261, 0.1903, 0.4758, ..., 0.9266, 0.4335, 0.5751]), + size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.1330, 0.4019, 0.6390, ..., 0.8808, 0.7758, 0.9416]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 1000000 +Density: 0.0001 +Time: 21.43535876274109 seconds + +[39.05, 39.08, 38.77, 38.37, 38.41, 38.56, 38.82, 38.92, 43.8, 38.57] +[65.9] +23.442400455474854 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 12281, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 21.43535876274109, 'TIME_S_1KI': 1.7454082536227578, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1544.854190015793, 'W': 65.9} +[39.05, 39.08, 38.77, 38.37, 38.41, 38.56, 38.82, 38.92, 43.8, 38.57, 39.12, 38.73, 38.52, 39.3, 38.76, 38.93, 38.86, 38.9, 38.78, 38.34] +703.0500000000001 +35.1525 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 12281, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 21.43535876274109, 'TIME_S_1KI': 1.7454082536227578, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1544.854190015793, 'W': 65.9, 'J_1KI': 125.79221480464072, 'W_1KI': 5.366012539695466, 'W_D': 30.747500000000002, 'J_D': 720.7952080047131, 'W_D_1KI': 2.503664196726651, 'J_D_1KI': 0.20386484787286466} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_0.0005.json b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_0.0005.json new file mode 100644 index 0000000..0a9c6a6 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_0.0005.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 2942, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.0005, "TIME_S": 20.68795394897461, "TIME_S_1KI": 7.03193540073916, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1874.2356022763252, "W": 76.49, "J_1KI": 637.0617274902532, "W_1KI": 25.9993201903467, "W_D": 40.7645, "J_D": 998.8531469341516, "W_D_1KI": 13.856050305914344, "J_D_1KI": 4.709738377265243} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_0.0005.output b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_0.0005.output new file mode 100644 index 0000000..5c997f3 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_0.0005.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '100000', '-sd', '0.0005', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.0005, "TIME_S": 7.137338638305664} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 52, 98, ..., 4999908, + 4999951, 5000000]), + col_indices=tensor([ 774, 4471, 4915, ..., 92493, 94807, 99005]), + values=tensor([0.1957, 0.1752, 0.4711, ..., 0.3350, 0.8302, 0.4161]), + size=(100000, 100000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.5056, 0.9806, 0.9907, ..., 0.9600, 0.9702, 0.1169]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 5000000 +Density: 0.0005 +Time: 7.137338638305664 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '2942', '-ss', '100000', '-sd', '0.0005', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.0005, "TIME_S": 20.68795394897461} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 45, 79, ..., 4999902, + 4999950, 5000000]), + col_indices=tensor([11504, 12222, 12883, ..., 96456, 97352, 97598]), + values=tensor([0.3754, 0.5479, 0.7533, ..., 0.2937, 0.0115, 0.1659]), + size=(100000, 100000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.4390, 0.1553, 0.7240, ..., 0.6581, 0.8843, 0.0193]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 5000000 +Density: 0.0005 +Time: 20.68795394897461 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 45, 79, ..., 4999902, + 4999950, 5000000]), + col_indices=tensor([11504, 12222, 12883, ..., 96456, 97352, 97598]), + values=tensor([0.3754, 0.5479, 0.7533, ..., 0.2937, 0.0115, 0.1659]), + size=(100000, 100000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.4390, 0.1553, 0.7240, ..., 0.6581, 0.8843, 0.0193]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 5000000 +Density: 0.0005 +Time: 20.68795394897461 seconds + +[40.56, 38.51, 39.43, 38.93, 54.59, 38.38, 38.52, 38.39, 39.6, 38.42] +[76.49] +24.50301480293274 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 2942, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.0005, 'TIME_S': 20.68795394897461, 'TIME_S_1KI': 7.03193540073916, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1874.2356022763252, 'W': 76.49} +[40.56, 38.51, 39.43, 38.93, 54.59, 38.38, 38.52, 38.39, 39.6, 38.42, 39.81, 38.45, 38.58, 38.39, 38.5, 38.48, 38.64, 39.27, 39.03, 38.85] +714.51 +35.7255 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 2942, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.0005, 'TIME_S': 20.68795394897461, 'TIME_S_1KI': 7.03193540073916, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1874.2356022763252, 'W': 76.49, 'J_1KI': 637.0617274902532, 'W_1KI': 25.9993201903467, 'W_D': 40.7645, 'J_D': 998.8531469341516, 'W_D_1KI': 13.856050305914344, 'J_D_1KI': 4.709738377265243} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_0.001.json b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_0.001.json new file mode 100644 index 0000000..7cc2d82 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_0.001.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 1260, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 21.127803564071655, "TIME_S_1KI": 16.768098066723535, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2030.2760949325561, "W": 77.88, "J_1KI": 1611.3302340734572, "W_1KI": 61.80952380952381, "W_D": 42.534, "J_D": 1108.8310660228728, "W_D_1KI": 33.75714285714285, "J_D_1KI": 26.791383219954643} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_0.001.output b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_0.001.output new file mode 100644 index 0000000..56baef1 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_0.001.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '100000', '-sd', '0.001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 16.660033226013184} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 108, 211, ..., 9999825, + 9999911, 10000000]), + col_indices=tensor([ 2064, 2545, 2770, ..., 96472, 96974, 97481]), + values=tensor([0.9939, 0.7295, 0.6290, ..., 0.4583, 0.7573, 0.7957]), + size=(100000, 100000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.0307, 0.5740, 0.3084, ..., 0.9686, 0.7857, 0.7900]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 10000000 +Density: 0.001 +Time: 16.660033226013184 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1260', '-ss', '100000', '-sd', '0.001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 21.127803564071655} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 87, 189, ..., 9999804, + 9999908, 10000000]), + col_indices=tensor([ 1134, 1351, 3464, ..., 96987, 97572, 98330]), + values=tensor([0.8017, 0.9469, 0.5440, ..., 0.1663, 0.6077, 0.2624]), + size=(100000, 100000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.9534, 0.2929, 0.7145, ..., 0.1886, 0.7155, 0.7573]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 10000000 +Density: 0.001 +Time: 21.127803564071655 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 87, 189, ..., 9999804, + 9999908, 10000000]), + col_indices=tensor([ 1134, 1351, 3464, ..., 96987, 97572, 98330]), + values=tensor([0.8017, 0.9469, 0.5440, ..., 0.1663, 0.6077, 0.2624]), + size=(100000, 100000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.9534, 0.2929, 0.7145, ..., 0.1886, 0.7155, 0.7573]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 10000000 +Density: 0.001 +Time: 21.127803564071655 seconds + +[41.52, 38.75, 38.56, 39.98, 39.02, 38.4, 39.41, 44.36, 39.07, 39.11] +[77.88] +26.069287300109863 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1260, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 21.127803564071655, 'TIME_S_1KI': 16.768098066723535, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2030.2760949325561, 'W': 77.88} +[41.52, 38.75, 38.56, 39.98, 39.02, 38.4, 39.41, 44.36, 39.07, 39.11, 39.9, 38.94, 38.5, 38.44, 38.69, 38.62, 38.87, 38.86, 38.81, 38.75] +706.92 +35.346 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1260, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 21.127803564071655, 'TIME_S_1KI': 16.768098066723535, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2030.2760949325561, 'W': 77.88, 'J_1KI': 1611.3302340734572, 'W_1KI': 61.80952380952381, 'W_D': 42.534, 'J_D': 1108.8310660228728, 'W_D_1KI': 33.75714285714285, 'J_D_1KI': 26.791383219954643} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_0.005.json b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_0.005.json new file mode 100644 index 0000000..378f4a9 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_0.005.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 50000000, "MATRIX_DENSITY": 0.005, "TIME_S": 80.02073836326599, "TIME_S_1KI": 80.02073836326599, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 7205.058165025711, "W": 78.13, "J_1KI": 7205.058165025711, "W_1KI": 78.13, "W_D": 42.671499999999995, "J_D": 3935.116338012218, "W_D_1KI": 42.671499999999995, "J_D_1KI": 42.671499999999995} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_0.005.output b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_0.005.output new file mode 100644 index 0000000..bd8189d --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_0.005.output @@ -0,0 +1,45 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '100000', '-sd', '0.005', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 50000000, "MATRIX_DENSITY": 0.005, "TIME_S": 80.02073836326599} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 526, 1009, ..., 49999039, + 49999525, 50000000]), + col_indices=tensor([ 783, 789, 851, ..., 99387, 99562, 99965]), + values=tensor([0.0435, 0.6996, 0.0280, ..., 0.1403, 0.1144, 0.7500]), + size=(100000, 100000), nnz=50000000, layout=torch.sparse_csr) +tensor([0.9356, 0.8803, 0.8700, ..., 0.3387, 0.6442, 0.0455]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 50000000 +Density: 0.005 +Time: 80.02073836326599 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 526, 1009, ..., 49999039, + 49999525, 50000000]), + col_indices=tensor([ 783, 789, 851, ..., 99387, 99562, 99965]), + values=tensor([0.0435, 0.6996, 0.0280, ..., 0.1403, 0.1144, 0.7500]), + size=(100000, 100000), nnz=50000000, layout=torch.sparse_csr) +tensor([0.9356, 0.8803, 0.8700, ..., 0.3387, 0.6442, 0.0455]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 50000000 +Density: 0.005 +Time: 80.02073836326599 seconds + +[39.78, 38.73, 38.83, 38.73, 40.16, 38.51, 39.25, 38.91, 39.2, 38.87] +[78.13] +92.21884250640869 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 50000000, 'MATRIX_DENSITY': 0.005, 'TIME_S': 80.02073836326599, 'TIME_S_1KI': 80.02073836326599, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 7205.058165025711, 'W': 78.13} +[39.78, 38.73, 38.83, 38.73, 40.16, 38.51, 39.25, 38.91, 39.2, 38.87, 39.46, 38.64, 39.23, 44.76, 39.46, 39.36, 38.92, 38.68, 39.19, 39.11] +709.17 +35.4585 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 50000000, 'MATRIX_DENSITY': 0.005, 'TIME_S': 80.02073836326599, 'TIME_S_1KI': 80.02073836326599, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 7205.058165025711, 'W': 78.13, 'J_1KI': 7205.058165025711, 'W_1KI': 78.13, 'W_D': 42.671499999999995, 'J_D': 3935.116338012218, 'W_D_1KI': 42.671499999999995, 'J_D_1KI': 42.671499999999995} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_1e-05.json b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_1e-05.json new file mode 100644 index 0000000..8e3d7eb --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 24272, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 20.77256941795349, "TIME_S_1KI": 0.8558243827436343, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1485.908479528427, "W": 63.94, "J_1KI": 61.21903755473084, "W_1KI": 2.6343111404087014, "W_D": 28.96575, "J_D": 673.1381535955668, "W_D_1KI": 1.193381262359921, "J_D_1KI": 0.049166993340471365} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_1e-05.output b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_1e-05.output new file mode 100644 index 0000000..1f19b8b --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_100000_1e-05.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '100000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.8651721477508545} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 3, ..., 99999, 100000, + 100000]), + col_indices=tensor([90599, 28958, 57214, ..., 84272, 90301, 79327]), + values=tensor([0.9831, 0.6502, 0.8427, ..., 0.3005, 0.4197, 0.6469]), + size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) +tensor([0.7674, 0.7013, 0.3294, ..., 0.7372, 0.8879, 0.9691]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 100000 +Density: 1e-05 +Time: 0.8651721477508545 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '24272', '-ss', '100000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 20.77256941795349} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 3, ..., 99999, 100000, + 100000]), + col_indices=tensor([13062, 27623, 58180, ..., 66636, 6102, 47055]), + values=tensor([0.6006, 0.9692, 0.3277, ..., 0.8424, 0.3843, 0.6842]), + size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) +tensor([0.8442, 0.5820, 0.8888, ..., 0.9824, 0.3648, 0.8783]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 100000 +Density: 1e-05 +Time: 20.77256941795349 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 3, ..., 99999, 100000, + 100000]), + col_indices=tensor([13062, 27623, 58180, ..., 66636, 6102, 47055]), + values=tensor([0.6006, 0.9692, 0.3277, ..., 0.8424, 0.3843, 0.6842]), + size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) +tensor([0.8442, 0.5820, 0.8888, ..., 0.9824, 0.3648, 0.8783]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 100000 +Density: 1e-05 +Time: 20.77256941795349 seconds + +[39.23, 38.93, 39.06, 38.59, 38.47, 39.34, 39.72, 38.43, 38.47, 38.55] +[63.94] +23.23910665512085 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 24272, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 20.77256941795349, 'TIME_S_1KI': 0.8558243827436343, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1485.908479528427, 'W': 63.94} +[39.23, 38.93, 39.06, 38.59, 38.47, 39.34, 39.72, 38.43, 38.47, 38.55, 40.18, 38.38, 38.82, 38.77, 39.08, 39.46, 38.9, 38.51, 38.41, 38.33] +699.4849999999999 +34.97425 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 24272, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 20.77256941795349, 'TIME_S_1KI': 0.8558243827436343, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1485.908479528427, 'W': 63.94, 'J_1KI': 61.21903755473084, 'W_1KI': 2.6343111404087014, 'W_D': 28.96575, 'J_D': 673.1381535955668, 'W_D_1KI': 1.193381262359921, 'J_D_1KI': 0.049166993340471365} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_3000000_1e-05.json b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_3000000_1e-05.json new file mode 100644 index 0000000..39218a0 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_3000000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [3000000, 3000000], "MATRIX_ROWS": 3000000, "MATRIX_SIZE": 9000000000000, "MATRIX_NNZ": 90000000, "MATRIX_DENSITY": 1e-05, "TIME_S": 191.72871232032776, "TIME_S_1KI": 191.72871232032776, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 16829.73738718033, "W": 76.6, "J_1KI": 16829.73738718033, "W_1KI": 76.6, "W_D": 41.25525, "J_D": 9064.164795593619, "W_D_1KI": 41.25525, "J_D_1KI": 41.25525} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_3000000_1e-05.output b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_3000000_1e-05.output new file mode 100644 index 0000000..100fb4b --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_3000000_1e-05.output @@ -0,0 +1,51 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '3000000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [3000000, 3000000], "MATRIX_ROWS": 3000000, "MATRIX_SIZE": 9000000000000, "MATRIX_NNZ": 90000000, "MATRIX_DENSITY": 1e-05, "TIME_S": 191.72871232032776} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 23, 45, ..., 89999934, + 89999968, 90000000]), + col_indices=tensor([ 247582, 664315, 879297, ..., 2581992, 2759433, + 2830895]), + values=tensor([2.7185e-04, 1.6444e-01, 5.9424e-01, ..., + 8.6814e-02, 3.3148e-01, 4.3454e-01]), + size=(3000000, 3000000), nnz=90000000, layout=torch.sparse_csr) +tensor([2.7160e-02, 3.7741e-01, 2.6824e-01, ..., 9.4002e-01, 3.9211e-01, + 5.3889e-04]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([3000000, 3000000]) +Rows: 3000000 +Size: 9000000000000 +NNZ: 90000000 +Density: 1e-05 +Time: 191.72871232032776 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 23, 45, ..., 89999934, + 89999968, 90000000]), + col_indices=tensor([ 247582, 664315, 879297, ..., 2581992, 2759433, + 2830895]), + values=tensor([2.7185e-04, 1.6444e-01, 5.9424e-01, ..., + 8.6814e-02, 3.3148e-01, 4.3454e-01]), + size=(3000000, 3000000), nnz=90000000, layout=torch.sparse_csr) +tensor([2.7160e-02, 3.7741e-01, 2.6824e-01, ..., 9.4002e-01, 3.9211e-01, + 5.3889e-04]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([3000000, 3000000]) +Rows: 3000000 +Size: 9000000000000 +NNZ: 90000000 +Density: 1e-05 +Time: 191.72871232032776 seconds + +[40.3, 39.61, 39.02, 39.13, 38.86, 39.07, 38.9, 39.42, 39.4, 39.23] +[76.6] +219.7093653678894 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [3000000, 3000000], 'MATRIX_ROWS': 3000000, 'MATRIX_SIZE': 9000000000000, 'MATRIX_NNZ': 90000000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 191.72871232032776, 'TIME_S_1KI': 191.72871232032776, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 16829.73738718033, 'W': 76.6} +[40.3, 39.61, 39.02, 39.13, 38.86, 39.07, 38.9, 39.42, 39.4, 39.23, 40.08, 39.53, 39.61, 39.13, 38.92, 38.85, 39.16, 39.29, 39.5, 39.38] +706.895 +35.34475 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [3000000, 3000000], 'MATRIX_ROWS': 3000000, 'MATRIX_SIZE': 9000000000000, 'MATRIX_NNZ': 90000000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 191.72871232032776, 'TIME_S_1KI': 191.72871232032776, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 16829.73738718033, 'W': 76.6, 'J_1KI': 16829.73738718033, 'W_1KI': 76.6, 'W_D': 41.25525, 'J_D': 9064.164795593619, 'W_D_1KI': 41.25525, 'J_D_1KI': 41.25525} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_300000_0.0001.json b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_300000_0.0001.json new file mode 100644 index 0000000..4b4dea9 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_300000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 1063, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [300000, 300000], "MATRIX_ROWS": 300000, "MATRIX_SIZE": 90000000000, "MATRIX_NNZ": 9000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 20.793079614639282, "TIME_S_1KI": 19.560752224496035, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1982.0967997741698, "W": 77.38, "J_1KI": 1864.625399599407, "W_1KI": 72.793979303857, "W_D": 42.05524999999999, "J_D": 1077.2496308956142, "W_D_1KI": 39.56279397930385, "J_D_1KI": 37.21805642455677} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_300000_0.0001.output b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_300000_0.0001.output new file mode 100644 index 0000000..b2c76a2 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_300000_0.0001.output @@ -0,0 +1,68 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '300000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [300000, 300000], "MATRIX_ROWS": 300000, "MATRIX_SIZE": 90000000000, "MATRIX_NNZ": 9000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 19.742191314697266} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 21, 53, ..., 8999946, + 8999970, 9000000]), + col_indices=tensor([ 7507, 16267, 30874, ..., 240828, 243309, + 292990]), + values=tensor([0.1523, 0.7416, 0.9394, ..., 0.2210, 0.2823, 0.7452]), + size=(300000, 300000), nnz=9000000, layout=torch.sparse_csr) +tensor([0.6931, 0.4096, 0.6953, ..., 0.1410, 0.7837, 0.2675]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([300000, 300000]) +Rows: 300000 +Size: 90000000000 +NNZ: 9000000 +Density: 0.0001 +Time: 19.742191314697266 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1063', '-ss', '300000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [300000, 300000], "MATRIX_ROWS": 300000, "MATRIX_SIZE": 90000000000, "MATRIX_NNZ": 9000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 20.793079614639282} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 31, 54, ..., 8999928, + 8999960, 9000000]), + col_indices=tensor([ 1108, 2325, 17171, ..., 276191, 279985, + 288044]), + values=tensor([0.7163, 0.0556, 0.2109, ..., 0.2836, 0.9162, 0.9781]), + size=(300000, 300000), nnz=9000000, layout=torch.sparse_csr) +tensor([0.4023, 0.6004, 0.3990, ..., 0.2499, 0.0207, 0.8980]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([300000, 300000]) +Rows: 300000 +Size: 90000000000 +NNZ: 9000000 +Density: 0.0001 +Time: 20.793079614639282 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 31, 54, ..., 8999928, + 8999960, 9000000]), + col_indices=tensor([ 1108, 2325, 17171, ..., 276191, 279985, + 288044]), + values=tensor([0.7163, 0.0556, 0.2109, ..., 0.2836, 0.9162, 0.9781]), + size=(300000, 300000), nnz=9000000, layout=torch.sparse_csr) +tensor([0.4023, 0.6004, 0.3990, ..., 0.2499, 0.0207, 0.8980]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([300000, 300000]) +Rows: 300000 +Size: 90000000000 +NNZ: 9000000 +Density: 0.0001 +Time: 20.793079614639282 seconds + +[39.41, 38.59, 38.99, 39.22, 38.71, 38.78, 38.62, 38.49, 38.71, 38.61] +[77.38] +25.61510467529297 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1063, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [300000, 300000], 'MATRIX_ROWS': 300000, 'MATRIX_SIZE': 90000000000, 'MATRIX_NNZ': 9000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 20.793079614639282, 'TIME_S_1KI': 19.560752224496035, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1982.0967997741698, 'W': 77.38} +[39.41, 38.59, 38.99, 39.22, 38.71, 38.78, 38.62, 38.49, 38.71, 38.61, 40.8, 38.54, 38.59, 45.03, 39.84, 38.78, 38.85, 38.74, 39.11, 38.99] +706.4950000000001 +35.32475000000001 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1063, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [300000, 300000], 'MATRIX_ROWS': 300000, 'MATRIX_SIZE': 90000000000, 'MATRIX_NNZ': 9000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 20.793079614639282, 'TIME_S_1KI': 19.560752224496035, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1982.0967997741698, 'W': 77.38, 'J_1KI': 1864.625399599407, 'W_1KI': 72.793979303857, 'W_D': 42.05524999999999, 'J_D': 1077.2496308956142, 'W_D_1KI': 39.56279397930385, 'J_D_1KI': 37.21805642455677} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_300000_0.0005.json b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_300000_0.0005.json new file mode 100644 index 0000000..9826631 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_300000_0.0005.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [300000, 300000], "MATRIX_ROWS": 300000, "MATRIX_SIZE": 90000000000, "MATRIX_NNZ": 45000000, "MATRIX_DENSITY": 0.0005, "TIME_S": 82.70979857444763, "TIME_S_1KI": 82.70979857444763, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 7617.53978612423, "W": 78.7, "J_1KI": 7617.53978612423, "W_1KI": 78.7, "W_D": 43.10925, "J_D": 4172.635667407572, "W_D_1KI": 43.10925, "J_D_1KI": 43.10925} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_300000_0.0005.output b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_300000_0.0005.output new file mode 100644 index 0000000..1d00751 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_300000_0.0005.output @@ -0,0 +1,47 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '300000', '-sd', '0.0005', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [300000, 300000], "MATRIX_ROWS": 300000, "MATRIX_SIZE": 90000000000, "MATRIX_NNZ": 45000000, "MATRIX_DENSITY": 0.0005, "TIME_S": 82.70979857444763} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 152, 293, ..., 44999682, + 44999844, 45000000]), + col_indices=tensor([ 3223, 3275, 5832, ..., 294123, 295027, + 295416]), + values=tensor([0.3881, 0.9495, 0.6878, ..., 0.4195, 0.0754, 0.7743]), + size=(300000, 300000), nnz=45000000, layout=torch.sparse_csr) +tensor([0.1554, 0.9886, 0.7175, ..., 0.9350, 0.8453, 0.9634]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([300000, 300000]) +Rows: 300000 +Size: 90000000000 +NNZ: 45000000 +Density: 0.0005 +Time: 82.70979857444763 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 152, 293, ..., 44999682, + 44999844, 45000000]), + col_indices=tensor([ 3223, 3275, 5832, ..., 294123, 295027, + 295416]), + values=tensor([0.3881, 0.9495, 0.6878, ..., 0.4195, 0.0754, 0.7743]), + size=(300000, 300000), nnz=45000000, layout=torch.sparse_csr) +tensor([0.1554, 0.9886, 0.7175, ..., 0.9350, 0.8453, 0.9634]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([300000, 300000]) +Rows: 300000 +Size: 90000000000 +NNZ: 45000000 +Density: 0.0005 +Time: 82.70979857444763 seconds + +[40.11, 39.46, 38.73, 39.77, 38.75, 39.19, 44.18, 39.79, 38.69, 39.03] +[78.7] +96.79211926460266 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [300000, 300000], 'MATRIX_ROWS': 300000, 'MATRIX_SIZE': 90000000000, 'MATRIX_NNZ': 45000000, 'MATRIX_DENSITY': 0.0005, 'TIME_S': 82.70979857444763, 'TIME_S_1KI': 82.70979857444763, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 7617.53978612423, 'W': 78.7} +[40.11, 39.46, 38.73, 39.77, 38.75, 39.19, 44.18, 39.79, 38.69, 39.03, 40.06, 38.93, 39.06, 39.1, 39.39, 38.81, 40.25, 39.15, 38.9, 40.13] +711.8149999999999 +35.59075 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [300000, 300000], 'MATRIX_ROWS': 300000, 'MATRIX_SIZE': 90000000000, 'MATRIX_NNZ': 45000000, 'MATRIX_DENSITY': 0.0005, 'TIME_S': 82.70979857444763, 'TIME_S_1KI': 82.70979857444763, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 7617.53978612423, 'W': 78.7, 'J_1KI': 7617.53978612423, 'W_1KI': 78.7, 'W_D': 43.10925, 'J_D': 4172.635667407572, 'W_D_1KI': 43.10925, 'J_D_1KI': 43.10925} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_300000_0.001.json b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_300000_0.001.json new file mode 100644 index 0000000..b74a472 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_300000_0.001.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [300000, 300000], "MATRIX_ROWS": 300000, "MATRIX_SIZE": 90000000000, "MATRIX_NNZ": 90000000, "MATRIX_DENSITY": 0.001, "TIME_S": 156.8496162891388, "TIME_S_1KI": 156.8496162891388, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 14006.660120918752, "W": 78.01, "J_1KI": 14006.660120918752, "W_1KI": 78.01, "W_D": 42.747000000000014, "J_D": 7675.204463388207, "W_D_1KI": 42.747000000000014, "J_D_1KI": 42.747000000000014} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_300000_0.001.output b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_300000_0.001.output new file mode 100644 index 0000000..798bebb --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_300000_0.001.output @@ -0,0 +1,47 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '300000', '-sd', '0.001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [300000, 300000], "MATRIX_ROWS": 300000, "MATRIX_SIZE": 90000000000, "MATRIX_NNZ": 90000000, "MATRIX_DENSITY": 0.001, "TIME_S": 156.8496162891388} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 283, 569, ..., 89999415, + 89999689, 90000000]), + col_indices=tensor([ 2602, 2894, 4432, ..., 298607, 298963, + 299275]), + values=tensor([0.8641, 0.5339, 0.9185, ..., 0.5269, 0.1925, 0.1221]), + size=(300000, 300000), nnz=90000000, layout=torch.sparse_csr) +tensor([0.4486, 0.1676, 0.4646, ..., 0.7992, 0.4354, 0.7205]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([300000, 300000]) +Rows: 300000 +Size: 90000000000 +NNZ: 90000000 +Density: 0.001 +Time: 156.8496162891388 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 283, 569, ..., 89999415, + 89999689, 90000000]), + col_indices=tensor([ 2602, 2894, 4432, ..., 298607, 298963, + 299275]), + values=tensor([0.8641, 0.5339, 0.9185, ..., 0.5269, 0.1925, 0.1221]), + size=(300000, 300000), nnz=90000000, layout=torch.sparse_csr) +tensor([0.4486, 0.1676, 0.4646, ..., 0.7992, 0.4354, 0.7205]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([300000, 300000]) +Rows: 300000 +Size: 90000000000 +NNZ: 90000000 +Density: 0.001 +Time: 156.8496162891388 seconds + +[41.21, 38.89, 39.08, 39.22, 38.89, 38.77, 38.88, 39.4, 38.92, 38.72] +[78.01] +179.54954648017883 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [300000, 300000], 'MATRIX_ROWS': 300000, 'MATRIX_SIZE': 90000000000, 'MATRIX_NNZ': 90000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 156.8496162891388, 'TIME_S_1KI': 156.8496162891388, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 14006.660120918752, 'W': 78.01} +[41.21, 38.89, 39.08, 39.22, 38.89, 38.77, 38.88, 39.4, 38.92, 38.72, 39.91, 38.95, 39.72, 39.54, 39.0, 39.29, 39.46, 38.83, 39.09, 38.82] +705.2599999999999 +35.26299999999999 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [300000, 300000], 'MATRIX_ROWS': 300000, 'MATRIX_SIZE': 90000000000, 'MATRIX_NNZ': 90000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 156.8496162891388, 'TIME_S_1KI': 156.8496162891388, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 14006.660120918752, 'W': 78.01, 'J_1KI': 14006.660120918752, 'W_1KI': 78.01, 'W_D': 42.747000000000014, 'J_D': 7675.204463388207, 'W_D_1KI': 42.747000000000014, 'J_D_1KI': 42.747000000000014} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_300000_1e-05.json b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_300000_1e-05.json new file mode 100644 index 0000000..e1aa60a --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_300000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 5359, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [300000, 300000], "MATRIX_ROWS": 300000, "MATRIX_SIZE": 90000000000, "MATRIX_NNZ": 900000, "MATRIX_DENSITY": 1e-05, "TIME_S": 20.92583179473877, "TIME_S_1KI": 3.9048016037952546, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1549.9649752044677, "W": 65.36, "J_1KI": 289.2265301743735, "W_1KI": 12.196305280835977, "W_D": 30.458, "J_D": 722.2893698711395, "W_D_1KI": 5.68352304534428, "J_D_1KI": 1.0605566421616497} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_300000_1e-05.output b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_300000_1e-05.output new file mode 100644 index 0000000..219c53d --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_300000_1e-05.output @@ -0,0 +1,68 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '300000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [300000, 300000], "MATRIX_ROWS": 300000, "MATRIX_SIZE": 90000000000, "MATRIX_NNZ": 900000, "MATRIX_DENSITY": 1e-05, "TIME_S": 3.918142080307007} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 4, 8, ..., 899997, 899998, + 900000]), + col_indices=tensor([ 53227, 167745, 185678, ..., 77368, 81779, + 166650]), + values=tensor([0.4014, 0.7044, 0.9681, ..., 0.8398, 0.4850, 0.3713]), + size=(300000, 300000), nnz=900000, layout=torch.sparse_csr) +tensor([0.1108, 0.9813, 0.9578, ..., 0.9978, 0.7777, 0.0486]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([300000, 300000]) +Rows: 300000 +Size: 90000000000 +NNZ: 900000 +Density: 1e-05 +Time: 3.918142080307007 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '5359', '-ss', '300000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [300000, 300000], "MATRIX_ROWS": 300000, "MATRIX_SIZE": 90000000000, "MATRIX_NNZ": 900000, "MATRIX_DENSITY": 1e-05, "TIME_S": 20.92583179473877} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 5, ..., 899994, 899995, + 900000]), + col_indices=tensor([ 27767, 11526, 53261, ..., 95027, 105010, + 203459]), + values=tensor([0.0853, 0.1452, 0.4972, ..., 0.6342, 0.0274, 0.2283]), + size=(300000, 300000), nnz=900000, layout=torch.sparse_csr) +tensor([0.6261, 0.3964, 0.4952, ..., 0.8021, 0.8822, 0.0136]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([300000, 300000]) +Rows: 300000 +Size: 90000000000 +NNZ: 900000 +Density: 1e-05 +Time: 20.92583179473877 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 5, ..., 899994, 899995, + 900000]), + col_indices=tensor([ 27767, 11526, 53261, ..., 95027, 105010, + 203459]), + values=tensor([0.0853, 0.1452, 0.4972, ..., 0.6342, 0.0274, 0.2283]), + size=(300000, 300000), nnz=900000, layout=torch.sparse_csr) +tensor([0.6261, 0.3964, 0.4952, ..., 0.8021, 0.8822, 0.0136]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([300000, 300000]) +Rows: 300000 +Size: 90000000000 +NNZ: 900000 +Density: 1e-05 +Time: 20.92583179473877 seconds + +[39.87, 38.56, 38.69, 39.11, 38.77, 38.59, 38.92, 38.89, 38.6, 38.62] +[65.36] +23.714274406433105 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 5359, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [300000, 300000], 'MATRIX_ROWS': 300000, 'MATRIX_SIZE': 90000000000, 'MATRIX_NNZ': 900000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 20.92583179473877, 'TIME_S_1KI': 3.9048016037952546, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1549.9649752044677, 'W': 65.36} +[39.87, 38.56, 38.69, 39.11, 38.77, 38.59, 38.92, 38.89, 38.6, 38.62, 39.84, 38.63, 38.77, 38.47, 38.56, 38.46, 38.55, 38.86, 39.14, 38.61] +698.04 +34.902 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 5359, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [300000, 300000], 'MATRIX_ROWS': 300000, 'MATRIX_SIZE': 90000000000, 'MATRIX_NNZ': 900000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 20.92583179473877, 'TIME_S_1KI': 3.9048016037952546, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1549.9649752044677, 'W': 65.36, 'J_1KI': 289.2265301743735, 'W_1KI': 12.196305280835977, 'W_D': 30.458, 'J_D': 722.2893698711395, 'W_D_1KI': 5.68352304534428, 'J_D_1KI': 1.0605566421616497} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.0001.json b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.0001.json new file mode 100644 index 0000000..9bbde60 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 55249, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 90000, "MATRIX_DENSITY": 0.0001, "TIME_S": 20.486661672592163, "TIME_S_1KI": 0.37080601771239596, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1479.9529262781143, "W": 64.5, "J_1KI": 26.78696313558823, "W_1KI": 1.167441944650582, "W_D": 29.78750000000001, "J_D": 683.4743843644859, "W_D_1KI": 0.5391500298647941, "J_D_1KI": 0.009758548206570147} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.0001.output b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.0001.output new file mode 100644 index 0000000..616b7ef --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.0001.output @@ -0,0 +1,62 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '30000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 90000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.3800966739654541} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 3, 4, ..., 89996, 89999, 90000]), + col_indices=tensor([ 1221, 15892, 17835, ..., 22172, 27458, 10275]), + values=tensor([0.6309, 0.5140, 0.9291, ..., 0.9679, 0.2956, 0.6723]), + size=(30000, 30000), nnz=90000, layout=torch.sparse_csr) +tensor([0.8758, 0.8303, 0.8564, ..., 0.1623, 0.2512, 0.5347]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 90000 +Density: 0.0001 +Time: 0.3800966739654541 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '55249', '-ss', '30000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 90000, "MATRIX_DENSITY": 0.0001, "TIME_S": 20.486661672592163} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 4, 7, ..., 89993, 89996, 90000]), + col_indices=tensor([ 3466, 7549, 9181, ..., 12705, 16674, 29218]), + values=tensor([0.0628, 0.6253, 0.0638, ..., 0.6445, 0.5421, 0.6895]), + size=(30000, 30000), nnz=90000, layout=torch.sparse_csr) +tensor([0.0380, 0.3127, 0.8894, ..., 0.0355, 0.5164, 0.5166]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 90000 +Density: 0.0001 +Time: 20.486661672592163 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 4, 7, ..., 89993, 89996, 90000]), + col_indices=tensor([ 3466, 7549, 9181, ..., 12705, 16674, 29218]), + values=tensor([0.0628, 0.6253, 0.0638, ..., 0.6445, 0.5421, 0.6895]), + size=(30000, 30000), nnz=90000, layout=torch.sparse_csr) +tensor([0.0380, 0.3127, 0.8894, ..., 0.0355, 0.5164, 0.5166]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 90000 +Density: 0.0001 +Time: 20.486661672592163 seconds + +[39.55, 38.61, 38.56, 38.2, 38.29, 38.62, 38.69, 39.07, 38.21, 38.58] +[64.5] +22.945006608963013 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 55249, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 90000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 20.486661672592163, 'TIME_S_1KI': 0.37080601771239596, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1479.9529262781143, 'W': 64.5} +[39.55, 38.61, 38.56, 38.2, 38.29, 38.62, 38.69, 39.07, 38.21, 38.58, 39.63, 38.76, 38.33, 38.68, 38.62, 38.18, 38.6, 38.43, 38.25, 38.54] +694.2499999999999 +34.71249999999999 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 55249, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 90000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 20.486661672592163, 'TIME_S_1KI': 0.37080601771239596, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1479.9529262781143, 'W': 64.5, 'J_1KI': 26.78696313558823, 'W_1KI': 1.167441944650582, 'W_D': 29.78750000000001, 'J_D': 683.4743843644859, 'W_D_1KI': 0.5391500298647941, 'J_D_1KI': 0.009758548206570147} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.0005.json b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.0005.json new file mode 100644 index 0000000..80e5199 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.0005.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 34887, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 450000, "MATRIX_DENSITY": 0.0005, "TIME_S": 20.488590478897095, "TIME_S_1KI": 0.5872843889958177, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1541.8012697553634, "W": 66.46, "J_1KI": 44.194148816331676, "W_1KI": 1.905007595952647, "W_D": 31.609249999999996, "J_D": 733.3009597654938, "W_D_1KI": 0.9060466649468283, "J_D_1KI": 0.025970896464208106} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.0005.output b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.0005.output new file mode 100644 index 0000000..ccdbe37 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.0005.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '30000', '-sd', '0.0005', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 450000, "MATRIX_DENSITY": 0.0005, "TIME_S": 0.6019301414489746} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 16, 37, ..., 449975, 449988, + 450000]), + col_indices=tensor([ 264, 1229, 1878, ..., 24507, 28043, 28225]), + values=tensor([0.5098, 0.2540, 0.2183, ..., 0.6993, 0.8002, 0.9164]), + size=(30000, 30000), nnz=450000, layout=torch.sparse_csr) +tensor([0.9266, 0.1174, 0.4919, ..., 0.2483, 0.0597, 0.7571]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 450000 +Density: 0.0005 +Time: 0.6019301414489746 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '34887', '-ss', '30000', '-sd', '0.0005', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 450000, "MATRIX_DENSITY": 0.0005, "TIME_S": 20.488590478897095} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 15, 31, ..., 449970, 449990, + 450000]), + col_indices=tensor([ 170, 825, 5087, ..., 18453, 22268, 25473]), + values=tensor([0.8450, 0.9269, 0.6663, ..., 0.1685, 0.3198, 0.2341]), + size=(30000, 30000), nnz=450000, layout=torch.sparse_csr) +tensor([0.4348, 0.7206, 0.1155, ..., 0.4036, 0.9348, 0.9025]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 450000 +Density: 0.0005 +Time: 20.488590478897095 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 15, 31, ..., 449970, 449990, + 450000]), + col_indices=tensor([ 170, 825, 5087, ..., 18453, 22268, 25473]), + values=tensor([0.8450, 0.9269, 0.6663, ..., 0.1685, 0.3198, 0.2341]), + size=(30000, 30000), nnz=450000, layout=torch.sparse_csr) +tensor([0.4348, 0.7206, 0.1155, ..., 0.4036, 0.9348, 0.9025]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 450000 +Density: 0.0005 +Time: 20.488590478897095 seconds + +[39.44, 38.55, 38.49, 38.28, 38.9, 38.59, 38.27, 39.46, 38.91, 38.62] +[66.46] +23.198935747146606 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 34887, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 450000, 'MATRIX_DENSITY': 0.0005, 'TIME_S': 20.488590478897095, 'TIME_S_1KI': 0.5872843889958177, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1541.8012697553634, 'W': 66.46} +[39.44, 38.55, 38.49, 38.28, 38.9, 38.59, 38.27, 39.46, 38.91, 38.62, 38.9, 40.17, 38.27, 38.69, 38.64, 38.67, 38.48, 38.59, 38.33, 38.49] +697.015 +34.85075 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 34887, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 450000, 'MATRIX_DENSITY': 0.0005, 'TIME_S': 20.488590478897095, 'TIME_S_1KI': 0.5872843889958177, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1541.8012697553634, 'W': 66.46, 'J_1KI': 44.194148816331676, 'W_1KI': 1.905007595952647, 'W_D': 31.609249999999996, 'J_D': 733.3009597654938, 'W_D_1KI': 0.9060466649468283, 'J_D_1KI': 0.025970896464208106} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.001.json b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.001.json new file mode 100644 index 0000000..6b2d57a --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.001.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 20725, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 900000, "MATRIX_DENSITY": 0.001, "TIME_S": 20.679001569747925, "TIME_S_1KI": 0.9977805341253522, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1558.1207911372185, "W": 66.77, "J_1KI": 75.18073781120475, "W_1KI": 3.2217129071170083, "W_D": 31.95525, "J_D": 745.6962619587779, "W_D_1KI": 1.541869722557298, "J_D_1KI": 0.07439660904980931} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.001.output b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.001.output new file mode 100644 index 0000000..5dedece --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.001.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '30000', '-sd', '0.001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 900000, "MATRIX_DENSITY": 0.001, "TIME_S": 1.0132288932800293} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 29, 66, ..., 899946, 899968, + 900000]), + col_indices=tensor([ 3782, 4225, 4981, ..., 28194, 28873, 29915]), + values=tensor([0.9172, 0.4074, 0.0680, ..., 0.0394, 0.1843, 0.7343]), + size=(30000, 30000), nnz=900000, layout=torch.sparse_csr) +tensor([0.0798, 0.0011, 0.8799, ..., 0.7150, 0.2962, 0.9319]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 900000 +Density: 0.001 +Time: 1.0132288932800293 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '20725', '-ss', '30000', '-sd', '0.001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 900000, "MATRIX_DENSITY": 0.001, "TIME_S": 20.679001569747925} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 26, 62, ..., 899937, 899971, + 900000]), + col_indices=tensor([ 143, 864, 1272, ..., 28362, 29224, 29939]), + values=tensor([0.4085, 0.1763, 0.0566, ..., 0.6744, 0.4746, 0.4502]), + size=(30000, 30000), nnz=900000, layout=torch.sparse_csr) +tensor([0.4289, 0.5358, 0.7834, ..., 0.0567, 0.8331, 0.5874]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 900000 +Density: 0.001 +Time: 20.679001569747925 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 26, 62, ..., 899937, 899971, + 900000]), + col_indices=tensor([ 143, 864, 1272, ..., 28362, 29224, 29939]), + values=tensor([0.4085, 0.1763, 0.0566, ..., 0.6744, 0.4746, 0.4502]), + size=(30000, 30000), nnz=900000, layout=torch.sparse_csr) +tensor([0.4289, 0.5358, 0.7834, ..., 0.0567, 0.8331, 0.5874]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 900000 +Density: 0.001 +Time: 20.679001569747925 seconds + +[39.66, 38.47, 38.7, 38.29, 38.39, 38.27, 38.73, 40.46, 38.83, 38.77] +[66.77] +23.335641622543335 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 20725, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 900000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 20.679001569747925, 'TIME_S_1KI': 0.9977805341253522, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1558.1207911372185, 'W': 66.77} +[39.66, 38.47, 38.7, 38.29, 38.39, 38.27, 38.73, 40.46, 38.83, 38.77, 39.05, 38.32, 38.41, 38.47, 38.31, 38.24, 38.86, 38.82, 38.88, 38.21] +696.295 +34.81475 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 20725, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 900000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 20.679001569747925, 'TIME_S_1KI': 0.9977805341253522, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1558.1207911372185, 'W': 66.77, 'J_1KI': 75.18073781120475, 'W_1KI': 3.2217129071170083, 'W_D': 31.95525, 'J_D': 745.6962619587779, 'W_D_1KI': 1.541869722557298, 'J_D_1KI': 0.07439660904980931} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.005.json b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.005.json new file mode 100644 index 0000000..465580a --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.005.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 3915, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 4500000, "MATRIX_DENSITY": 0.005, "TIME_S": 20.893795013427734, "TIME_S_1KI": 5.336856963838502, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1813.4314341068268, "W": 74.06, "J_1KI": 463.2008771664947, "W_1KI": 18.91698595146871, "W_D": 38.97975, "J_D": 954.4572501164675, "W_D_1KI": 9.956513409961687, "J_D_1KI": 2.543170730513841} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.005.output b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.005.output new file mode 100644 index 0000000..8f37edd --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.005.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '30000', '-sd', '0.005', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 4500000, "MATRIX_DENSITY": 0.005, "TIME_S": 5.36383318901062} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 155, 299, ..., 4499724, + 4499869, 4500000]), + col_indices=tensor([ 264, 391, 402, ..., 28982, 29660, 29822]), + values=tensor([0.6346, 0.1316, 0.6696, ..., 0.4424, 0.6280, 0.5777]), + size=(30000, 30000), nnz=4500000, layout=torch.sparse_csr) +tensor([0.7068, 0.8368, 0.5788, ..., 0.2748, 0.1756, 0.1861]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 4500000 +Density: 0.005 +Time: 5.36383318901062 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '3915', '-ss', '30000', '-sd', '0.005', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 4500000, "MATRIX_DENSITY": 0.005, "TIME_S": 20.893795013427734} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 154, 308, ..., 4499718, + 4499857, 4500000]), + col_indices=tensor([ 610, 1343, 1528, ..., 29102, 29121, 29420]), + values=tensor([0.4309, 0.4085, 0.5621, ..., 0.6007, 0.1982, 0.6029]), + size=(30000, 30000), nnz=4500000, layout=torch.sparse_csr) +tensor([0.1648, 0.4135, 0.3012, ..., 0.9678, 0.7893, 0.8451]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 4500000 +Density: 0.005 +Time: 20.893795013427734 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 154, 308, ..., 4499718, + 4499857, 4500000]), + col_indices=tensor([ 610, 1343, 1528, ..., 29102, 29121, 29420]), + values=tensor([0.4309, 0.4085, 0.5621, ..., 0.6007, 0.1982, 0.6029]), + size=(30000, 30000), nnz=4500000, layout=torch.sparse_csr) +tensor([0.1648, 0.4135, 0.3012, ..., 0.9678, 0.7893, 0.8451]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 4500000 +Density: 0.005 +Time: 20.893795013427734 seconds + +[39.73, 38.52, 38.68, 38.37, 38.44, 38.79, 38.97, 38.82, 38.35, 38.46] +[74.06] +24.485976696014404 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 3915, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 4500000, 'MATRIX_DENSITY': 0.005, 'TIME_S': 20.893795013427734, 'TIME_S_1KI': 5.336856963838502, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1813.4314341068268, 'W': 74.06} +[39.73, 38.52, 38.68, 38.37, 38.44, 38.79, 38.97, 38.82, 38.35, 38.46, 39.31, 38.45, 39.17, 38.79, 38.86, 38.46, 38.42, 40.19, 42.43, 38.29] +701.605 +35.08025 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 3915, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 4500000, 'MATRIX_DENSITY': 0.005, 'TIME_S': 20.893795013427734, 'TIME_S_1KI': 5.336856963838502, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1813.4314341068268, 'W': 74.06, 'J_1KI': 463.2008771664947, 'W_1KI': 18.91698595146871, 'W_D': 38.97975, 'J_D': 954.4572501164675, 'W_D_1KI': 9.956513409961687, 'J_D_1KI': 2.543170730513841} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.01.json b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.01.json new file mode 100644 index 0000000..a4676a2 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.01.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 1556, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 9000000, "MATRIX_DENSITY": 0.01, "TIME_S": 21.02338671684265, "TIME_S_1KI": 13.51117398254669, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1995.9884867286682, "W": 77.72, "J_1KI": 1282.768950339761, "W_1KI": 49.948586118251924, "W_D": 42.48775, "J_D": 1091.1613462044, "W_D_1KI": 27.305751928020563, "J_D_1KI": 17.54868375836797} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.01.output b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.01.output new file mode 100644 index 0000000..d1812b6 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.01.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '30000', '-sd', '0.01', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 9000000, "MATRIX_DENSITY": 0.01, "TIME_S": 13.49134111404419} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 301, 621, ..., 8999428, + 8999715, 9000000]), + col_indices=tensor([ 350, 633, 742, ..., 29783, 29873, 29944]), + values=tensor([0.6028, 0.5433, 0.5346, ..., 0.4728, 0.8732, 0.8469]), + size=(30000, 30000), nnz=9000000, layout=torch.sparse_csr) +tensor([0.9726, 0.3801, 0.1059, ..., 0.5337, 0.8863, 0.3497]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 9000000 +Density: 0.01 +Time: 13.49134111404419 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1556', '-ss', '30000', '-sd', '0.01', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 9000000, "MATRIX_DENSITY": 0.01, "TIME_S": 21.02338671684265} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 286, 540, ..., 8999445, + 8999721, 9000000]), + col_indices=tensor([ 47, 65, 169, ..., 29629, 29825, 29922]), + values=tensor([0.0693, 0.5848, 0.3473, ..., 0.1079, 0.3518, 0.8477]), + size=(30000, 30000), nnz=9000000, layout=torch.sparse_csr) +tensor([0.4830, 0.8793, 0.7685, ..., 0.7345, 0.8852, 0.3790]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 9000000 +Density: 0.01 +Time: 21.02338671684265 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 286, 540, ..., 8999445, + 8999721, 9000000]), + col_indices=tensor([ 47, 65, 169, ..., 29629, 29825, 29922]), + values=tensor([0.0693, 0.5848, 0.3473, ..., 0.1079, 0.3518, 0.8477]), + size=(30000, 30000), nnz=9000000, layout=torch.sparse_csr) +tensor([0.4830, 0.8793, 0.7685, ..., 0.7345, 0.8852, 0.3790]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 9000000 +Density: 0.01 +Time: 21.02338671684265 seconds + +[39.69, 38.9, 38.91, 42.35, 40.35, 38.51, 38.87, 38.42, 38.6, 38.45] +[77.72] +25.68178701400757 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1556, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 9000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 21.02338671684265, 'TIME_S_1KI': 13.51117398254669, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1995.9884867286682, 'W': 77.72} +[39.69, 38.9, 38.91, 42.35, 40.35, 38.51, 38.87, 38.42, 38.6, 38.45, 39.21, 38.97, 38.49, 40.7, 38.5, 38.41, 38.96, 38.84, 38.98, 38.42] +704.645 +35.23225 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1556, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 9000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 21.02338671684265, 'TIME_S_1KI': 13.51117398254669, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1995.9884867286682, 'W': 77.72, 'J_1KI': 1282.768950339761, 'W_1KI': 49.948586118251924, 'W_D': 42.48775, 'J_D': 1091.1613462044, 'W_D_1KI': 27.305751928020563, 'J_D_1KI': 17.54868375836797} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.05.json b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.05.json new file mode 100644 index 0000000..7f038bb --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.05.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 45000000, "MATRIX_DENSITY": 0.05, "TIME_S": 67.5497567653656, "TIME_S_1KI": 67.5497567653656, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 6177.228344964981, "W": 78.3, "J_1KI": 6177.228344964981, "W_1KI": 78.3, "W_D": 42.846000000000004, "J_D": 3380.198284398079, "W_D_1KI": 42.846000000000004, "J_D_1KI": 42.846000000000004} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.05.output b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.05.output new file mode 100644 index 0000000..509a893 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.05.output @@ -0,0 +1,45 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '30000', '-sd', '0.05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 45000000, "MATRIX_DENSITY": 0.05, "TIME_S": 67.5497567653656} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1454, 2998, ..., 44997015, + 44998496, 45000000]), + col_indices=tensor([ 16, 34, 52, ..., 29923, 29949, 29997]), + values=tensor([0.3150, 0.1901, 0.4388, ..., 0.7749, 0.7841, 0.0957]), + size=(30000, 30000), nnz=45000000, layout=torch.sparse_csr) +tensor([0.5511, 0.2744, 0.0926, ..., 0.8323, 0.9167, 0.9679]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 45000000 +Density: 0.05 +Time: 67.5497567653656 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1454, 2998, ..., 44997015, + 44998496, 45000000]), + col_indices=tensor([ 16, 34, 52, ..., 29923, 29949, 29997]), + values=tensor([0.3150, 0.1901, 0.4388, ..., 0.7749, 0.7841, 0.0957]), + size=(30000, 30000), nnz=45000000, layout=torch.sparse_csr) +tensor([0.5511, 0.2744, 0.0926, ..., 0.8323, 0.9167, 0.9679]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 45000000 +Density: 0.05 +Time: 67.5497567653656 seconds + +[39.5, 38.95, 38.67, 41.05, 38.61, 38.51, 38.69, 44.88, 39.32, 38.97] +[78.3] +78.89180517196655 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 45000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 67.5497567653656, 'TIME_S_1KI': 67.5497567653656, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 6177.228344964981, 'W': 78.3} +[39.5, 38.95, 38.67, 41.05, 38.61, 38.51, 38.69, 44.88, 39.32, 38.97, 39.34, 39.37, 38.66, 38.66, 38.66, 38.61, 39.18, 39.8, 39.03, 39.05] +709.0799999999999 +35.45399999999999 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 45000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 67.5497567653656, 'TIME_S_1KI': 67.5497567653656, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 6177.228344964981, 'W': 78.3, 'J_1KI': 6177.228344964981, 'W_1KI': 78.3, 'W_D': 42.846000000000004, 'J_D': 3380.198284398079, 'W_D_1KI': 42.846000000000004, 'J_D_1KI': 42.846000000000004} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.1.json b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.1.json new file mode 100644 index 0000000..9a9fc75 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.1.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 90000000, "MATRIX_DENSITY": 0.1, "TIME_S": 133.26440334320068, "TIME_S_1KI": 133.26440334320068, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 11974.481567811967, "W": 77.72, "J_1KI": 11974.481567811967, "W_1KI": 77.72, "W_D": 41.982749999999996, "J_D": 6468.369352046549, "W_D_1KI": 41.982749999999996, "J_D_1KI": 41.982749999999996} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.1.output b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.1.output new file mode 100644 index 0000000..09ee6f8 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_0.1.output @@ -0,0 +1,45 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '30000', '-sd', '0.1', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 90000000, "MATRIX_DENSITY": 0.1, "TIME_S": 133.26440334320068} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 3021, 6099, ..., 89993867, + 89996977, 90000000]), + col_indices=tensor([ 3, 4, 14, ..., 29943, 29960, 29964]), + values=tensor([0.6910, 0.0984, 0.4875, ..., 0.7473, 0.5068, 0.5297]), + size=(30000, 30000), nnz=90000000, layout=torch.sparse_csr) +tensor([0.9263, 0.2732, 0.6847, ..., 0.8727, 0.6781, 0.2367]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 90000000 +Density: 0.1 +Time: 133.26440334320068 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 3021, 6099, ..., 89993867, + 89996977, 90000000]), + col_indices=tensor([ 3, 4, 14, ..., 29943, 29960, 29964]), + values=tensor([0.6910, 0.0984, 0.4875, ..., 0.7473, 0.5068, 0.5297]), + size=(30000, 30000), nnz=90000000, layout=torch.sparse_csr) +tensor([0.9263, 0.2732, 0.6847, ..., 0.8727, 0.6781, 0.2367]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 90000000 +Density: 0.1 +Time: 133.26440334320068 seconds + +[39.6, 39.07, 38.84, 44.59, 38.99, 38.94, 39.08, 38.61, 39.42, 39.07] +[77.72] +154.07207369804382 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 90000000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 133.26440334320068, 'TIME_S_1KI': 133.26440334320068, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 11974.481567811967, 'W': 77.72} +[39.6, 39.07, 38.84, 44.59, 38.99, 38.94, 39.08, 38.61, 39.42, 39.07, 40.74, 38.83, 39.58, 40.58, 41.0, 38.76, 38.99, 38.91, 38.77, 44.16] +714.745 +35.73725 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 90000000, 'MATRIX_DENSITY': 0.1, 'TIME_S': 133.26440334320068, 'TIME_S_1KI': 133.26440334320068, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 11974.481567811967, 'W': 77.72, 'J_1KI': 11974.481567811967, 'W_1KI': 77.72, 'W_D': 41.982749999999996, 'J_D': 6468.369352046549, 'W_D_1KI': 41.982749999999996, 'J_D_1KI': 41.982749999999996} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_1e-05.json b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_1e-05.json new file mode 100644 index 0000000..1c62691 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 175149, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 9000, "MATRIX_DENSITY": 1e-05, "TIME_S": 20.99797296524048, "TIME_S_1KI": 0.11988634228708402, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1522.755680565834, "W": 64.38, "J_1KI": 8.694058661858383, "W_1KI": 0.36757275234229136, "W_D": 29.668999999999997, "J_D": 701.7495850684642, "W_D_1KI": 0.16939291688790686, "J_D_1KI": 0.0009671360777846684} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_1e-05.output b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_1e-05.output new file mode 100644 index 0000000..3d76ec3 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_30000_1e-05.output @@ -0,0 +1,81 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '30000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 9000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.14505624771118164} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 2, ..., 9000, 9000, 9000]), + col_indices=tensor([ 9793, 24410, 9766, ..., 25093, 22416, 28253]), + values=tensor([0.6564, 0.9558, 0.9015, ..., 0.1425, 0.1152, 0.5551]), + size=(30000, 30000), nnz=9000, layout=torch.sparse_csr) +tensor([0.6628, 0.4963, 0.8694, ..., 0.1058, 0.0731, 0.1152]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 9000 +Density: 1e-05 +Time: 0.14505624771118164 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '144771', '-ss', '30000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 9000, "MATRIX_DENSITY": 1e-05, "TIME_S": 17.35769486427307} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 1, ..., 9000, 9000, 9000]), + col_indices=tensor([23214, 17022, 19042, ..., 25316, 9102, 1076]), + values=tensor([0.7231, 0.3079, 0.5530, ..., 0.2799, 0.6458, 0.4353]), + size=(30000, 30000), nnz=9000, layout=torch.sparse_csr) +tensor([0.5188, 0.8305, 0.1941, ..., 0.8435, 0.1201, 0.3717]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 9000 +Density: 1e-05 +Time: 17.35769486427307 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '175149', '-ss', '30000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 9000, "MATRIX_DENSITY": 1e-05, "TIME_S": 20.99797296524048} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 1, ..., 8999, 8999, 9000]), + col_indices=tensor([ 6289, 7348, 12538, ..., 3410, 26024, 8619]), + values=tensor([0.6330, 0.6673, 0.9719, ..., 0.9831, 0.5544, 0.1794]), + size=(30000, 30000), nnz=9000, layout=torch.sparse_csr) +tensor([0.5417, 0.7572, 0.7994, ..., 0.0522, 0.2469, 0.9706]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 9000 +Density: 1e-05 +Time: 20.99797296524048 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 1, ..., 8999, 8999, 9000]), + col_indices=tensor([ 6289, 7348, 12538, ..., 3410, 26024, 8619]), + values=tensor([0.6330, 0.6673, 0.9719, ..., 0.9831, 0.5544, 0.1794]), + size=(30000, 30000), nnz=9000, layout=torch.sparse_csr) +tensor([0.5417, 0.7572, 0.7994, ..., 0.0522, 0.2469, 0.9706]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 9000 +Density: 1e-05 +Time: 20.99797296524048 seconds + +[38.91, 38.61, 38.98, 38.21, 38.26, 38.52, 38.56, 39.49, 38.59, 38.29] +[64.38] +23.65262007713318 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 175149, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 9000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 20.99797296524048, 'TIME_S_1KI': 0.11988634228708402, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1522.755680565834, 'W': 64.38} +[38.91, 38.61, 38.98, 38.21, 38.26, 38.52, 38.56, 39.49, 38.59, 38.29, 39.46, 38.49, 38.32, 38.33, 38.28, 38.28, 38.38, 38.51, 38.81, 38.54] +694.22 +34.711 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 175149, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 9000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 20.99797296524048, 'TIME_S_1KI': 0.11988634228708402, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1522.755680565834, 'W': 64.38, 'J_1KI': 8.694058661858383, 'W_1KI': 0.36757275234229136, 'W_D': 29.668999999999997, 'J_D': 701.7495850684642, 'W_D_1KI': 0.16939291688790686, 'J_D_1KI': 0.0009671360777846684} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_500000_0.0001.json b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_500000_0.0001.json new file mode 100644 index 0000000..d3de446 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_500000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 53.28069806098938, "TIME_S_1KI": 53.28069806098938, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 4799.690837917327, "W": 80.74, "J_1KI": 4799.690837917327, "W_1KI": 80.74, "W_D": 45.05724999999999, "J_D": 2678.484889853238, "W_D_1KI": 45.05724999999999, "J_D_1KI": 45.05724999999999} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_500000_0.0001.output b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_500000_0.0001.output new file mode 100644 index 0000000..c127bed --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_500000_0.0001.output @@ -0,0 +1,47 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '500000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 53.28069806098938} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 53, 102, ..., 24999886, + 24999937, 25000000]), + col_indices=tensor([ 16979, 17933, 30686, ..., 481834, 490973, + 494514]), + values=tensor([0.3572, 0.8267, 0.7501, ..., 0.1157, 0.6125, 0.1407]), + size=(500000, 500000), nnz=25000000, layout=torch.sparse_csr) +tensor([0.1123, 0.0430, 0.5296, ..., 0.1520, 0.8075, 0.3691]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 25000000 +Density: 0.0001 +Time: 53.28069806098938 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 53, 102, ..., 24999886, + 24999937, 25000000]), + col_indices=tensor([ 16979, 17933, 30686, ..., 481834, 490973, + 494514]), + values=tensor([0.3572, 0.8267, 0.7501, ..., 0.1157, 0.6125, 0.1407]), + size=(500000, 500000), nnz=25000000, layout=torch.sparse_csr) +tensor([0.1123, 0.0430, 0.5296, ..., 0.1520, 0.8075, 0.3691]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 25000000 +Density: 0.0001 +Time: 53.28069806098938 seconds + +[39.46, 39.23, 39.42, 39.24, 38.85, 39.3, 38.79, 39.04, 38.81, 39.05] +[80.74] +59.44625759124756 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 53.28069806098938, 'TIME_S_1KI': 53.28069806098938, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 4799.690837917327, 'W': 80.74} +[39.46, 39.23, 39.42, 39.24, 38.85, 39.3, 38.79, 39.04, 38.81, 39.05, 39.8, 38.77, 39.08, 40.74, 39.37, 39.16, 39.3, 47.07, 38.83, 39.0] +713.6550000000001 +35.682750000000006 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 53.28069806098938, 'TIME_S_1KI': 53.28069806098938, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 4799.690837917327, 'W': 80.74, 'J_1KI': 4799.690837917327, 'W_1KI': 80.74, 'W_D': 45.05724999999999, 'J_D': 2678.484889853238, 'W_D_1KI': 45.05724999999999, 'J_D_1KI': 45.05724999999999} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_500000_1e-05.json b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_500000_1e-05.json new file mode 100644 index 0000000..19009e3 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_500000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 2738, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 21.017223119735718, "TIME_S_1KI": 7.676122395812899, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1812.0194424438475, "W": 76.16, "J_1KI": 661.804033032815, "W_1KI": 27.81592403214025, "W_D": 40.82625, "J_D": 971.3492484515906, "W_D_1KI": 14.910975164353543, "J_D_1KI": 5.445936875220432} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_500000_1e-05.output b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_500000_1e-05.output new file mode 100644 index 0000000..b6ef67e --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_500000_1e-05.output @@ -0,0 +1,68 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '500000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 7.669674634933472} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 10, 17, ..., 2499990, + 2499993, 2500000]), + col_indices=tensor([ 52473, 65771, 123815, ..., 335848, 435662, + 475263]), + values=tensor([0.2082, 0.2192, 0.6702, ..., 0.7546, 0.3364, 0.5504]), + size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.6123, 0.6429, 0.4015, ..., 0.8475, 0.6522, 0.4492]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 2500000 +Density: 1e-05 +Time: 7.669674634933472 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '2738', '-ss', '500000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 21.017223119735718} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2, 8, ..., 2499990, + 2499995, 2500000]), + col_indices=tensor([334289, 479579, 4894, ..., 301830, 313714, + 458526]), + values=tensor([0.7811, 0.4358, 0.2037, ..., 0.6487, 0.4394, 0.7955]), + size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.3985, 0.6545, 0.8794, ..., 0.0163, 0.4728, 0.5226]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 2500000 +Density: 1e-05 +Time: 21.017223119735718 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2, 8, ..., 2499990, + 2499995, 2500000]), + col_indices=tensor([334289, 479579, 4894, ..., 301830, 313714, + 458526]), + values=tensor([0.7811, 0.4358, 0.2037, ..., 0.6487, 0.4394, 0.7955]), + size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.3985, 0.6545, 0.8794, ..., 0.0163, 0.4728, 0.5226]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 2500000 +Density: 1e-05 +Time: 21.017223119735718 seconds + +[39.49, 38.83, 40.75, 42.9, 39.3, 39.29, 38.89, 38.88, 38.79, 38.76] +[76.16] +23.792272090911865 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 2738, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 21.017223119735718, 'TIME_S_1KI': 7.676122395812899, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1812.0194424438475, 'W': 76.16} +[39.49, 38.83, 40.75, 42.9, 39.3, 39.29, 38.89, 38.88, 38.79, 38.76, 40.02, 38.88, 38.89, 38.66, 38.84, 38.71, 38.92, 38.66, 38.76, 39.18] +706.675 +35.333749999999995 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 2738, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 21.017223119735718, 'TIME_S_1KI': 7.676122395812899, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1812.0194424438475, 'W': 76.16, 'J_1KI': 661.804033032815, 'W_1KI': 27.81592403214025, 'W_D': 40.82625, 'J_D': 971.3492484515906, 'W_D_1KI': 14.910975164353543, 'J_D_1KI': 5.445936875220432} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.0001.json b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.0001.json new file mode 100644 index 0000000..b0cdcc0 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 30682, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 20.60400652885437, "TIME_S_1KI": 0.6715340111092618, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1545.1941801166536, "W": 65.18, "J_1KI": 50.36158594995938, "W_1KI": 2.1243725963105407, "W_D": 30.163750000000007, "J_D": 715.0790265494587, "W_D_1KI": 0.9831089889837691, "J_D_1KI": 0.032041880874251} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.0001.output b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.0001.output new file mode 100644 index 0000000..114c64b --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.0001.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.6844191551208496} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 5, 9, ..., 249993, 249996, + 250000]), + col_indices=tensor([ 8529, 23824, 37106, ..., 11640, 15800, 34725]), + values=tensor([0.8073, 0.5844, 0.8147, ..., 0.3062, 0.9804, 0.2233]), + size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) +tensor([0.0481, 0.3329, 0.6398, ..., 0.2932, 0.9523, 0.8115]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 250000 +Density: 0.0001 +Time: 0.6844191551208496 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '30682', '-ss', '50000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 20.60400652885437} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 5, 10, ..., 249991, 249996, + 250000]), + col_indices=tensor([ 1625, 14875, 16966, ..., 28233, 46165, 49230]), + values=tensor([0.7686, 0.4498, 0.3631, ..., 0.7737, 0.9073, 0.9265]), + size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) +tensor([0.0406, 0.0267, 0.6076, ..., 0.5503, 0.5752, 0.3050]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 250000 +Density: 0.0001 +Time: 20.60400652885437 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 5, 10, ..., 249991, 249996, + 250000]), + col_indices=tensor([ 1625, 14875, 16966, ..., 28233, 46165, 49230]), + values=tensor([0.7686, 0.4498, 0.3631, ..., 0.7737, 0.9073, 0.9265]), + size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) +tensor([0.0406, 0.0267, 0.6076, ..., 0.5503, 0.5752, 0.3050]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 250000 +Density: 0.0001 +Time: 20.60400652885437 seconds + +[43.14, 38.95, 39.67, 38.57, 38.57, 38.52, 38.64, 38.47, 38.93, 38.56] +[65.18] +23.7065691947937 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 30682, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 20.60400652885437, 'TIME_S_1KI': 0.6715340111092618, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1545.1941801166536, 'W': 65.18} +[43.14, 38.95, 39.67, 38.57, 38.57, 38.52, 38.64, 38.47, 38.93, 38.56, 40.45, 38.49, 38.69, 38.62, 38.51, 38.64, 38.59, 38.5, 39.32, 39.14] +700.325 +35.01625 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 30682, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 20.60400652885437, 'TIME_S_1KI': 0.6715340111092618, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1545.1941801166536, 'W': 65.18, 'J_1KI': 50.36158594995938, 'W_1KI': 2.1243725963105407, 'W_D': 30.163750000000007, 'J_D': 715.0790265494587, 'W_D_1KI': 0.9831089889837691, 'J_D_1KI': 0.032041880874251} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.0005.json b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.0005.json new file mode 100644 index 0000000..e7d785e --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.0005.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 14725, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.0005, "TIME_S": 20.75746774673462, "TIME_S_1KI": 1.4096752289802799, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1579.229201145172, "W": 66.94, "J_1KI": 107.24816306588606, "W_1KI": 4.546010186757215, "W_D": 32.068, "J_D": 756.5390203514098, "W_D_1KI": 2.177792869269949, "J_D_1KI": 0.14789764816773848} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.0005.output b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.0005.output new file mode 100644 index 0000000..ac0ade3 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.0005.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '0.0005', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.0005, "TIME_S": 1.4260749816894531} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 22, 46, ..., 1249956, + 1249973, 1250000]), + col_indices=tensor([ 3380, 4310, 7517, ..., 40689, 41242, 47374]), + values=tensor([0.8200, 0.1077, 0.6690, ..., 0.5575, 0.1139, 0.4853]), + size=(50000, 50000), nnz=1250000, layout=torch.sparse_csr) +tensor([0.0332, 0.0813, 0.1673, ..., 0.7573, 0.1508, 0.1365]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 1250000 +Density: 0.0005 +Time: 1.4260749816894531 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '14725', '-ss', '50000', '-sd', '0.0005', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.0005, "TIME_S": 20.75746774673462} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 28, 52, ..., 1249951, + 1249977, 1250000]), + col_indices=tensor([ 344, 2189, 2223, ..., 35575, 37368, 38958]), + values=tensor([0.6875, 0.6607, 0.3048, ..., 0.8392, 0.7333, 0.1352]), + size=(50000, 50000), nnz=1250000, layout=torch.sparse_csr) +tensor([0.9792, 0.5124, 0.4372, ..., 0.1755, 0.2227, 0.5082]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 1250000 +Density: 0.0005 +Time: 20.75746774673462 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 28, 52, ..., 1249951, + 1249977, 1250000]), + col_indices=tensor([ 344, 2189, 2223, ..., 35575, 37368, 38958]), + values=tensor([0.6875, 0.6607, 0.3048, ..., 0.8392, 0.7333, 0.1352]), + size=(50000, 50000), nnz=1250000, layout=torch.sparse_csr) +tensor([0.9792, 0.5124, 0.4372, ..., 0.1755, 0.2227, 0.5082]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 1250000 +Density: 0.0005 +Time: 20.75746774673462 seconds + +[39.99, 38.86, 39.01, 38.83, 38.77, 38.47, 38.81, 38.72, 39.0, 38.37] +[66.94] +23.59171199798584 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 14725, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 1250000, 'MATRIX_DENSITY': 0.0005, 'TIME_S': 20.75746774673462, 'TIME_S_1KI': 1.4096752289802799, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1579.229201145172, 'W': 66.94} +[39.99, 38.86, 39.01, 38.83, 38.77, 38.47, 38.81, 38.72, 39.0, 38.37, 39.4, 38.41, 39.01, 38.37, 38.38, 39.17, 38.41, 38.71, 38.46, 38.34] +697.4399999999999 +34.872 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 14725, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 1250000, 'MATRIX_DENSITY': 0.0005, 'TIME_S': 20.75746774673462, 'TIME_S_1KI': 1.4096752289802799, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1579.229201145172, 'W': 66.94, 'J_1KI': 107.24816306588606, 'W_1KI': 4.546010186757215, 'W_D': 32.068, 'J_D': 756.5390203514098, 'W_D_1KI': 2.177792869269949, 'J_D_1KI': 0.14789764816773848} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.001.json b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.001.json new file mode 100644 index 0000000..3e8eb72 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.001.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 6999, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 20.897379159927368, "TIME_S_1KI": 2.9857664180493457, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1683.2534707903862, "W": 70.47, "J_1KI": 240.49913856127822, "W_1KI": 10.068581225889414, "W_D": 35.496750000000006, "J_D": 847.8789220842721, "W_D_1KI": 5.071688812687528, "J_D_1KI": 0.724630491882773} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.001.output b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.001.output new file mode 100644 index 0000000..452da36 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.001.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '0.001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 3.0004022121429443} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 47, 90, ..., 2499903, + 2499954, 2500000]), + col_indices=tensor([ 2310, 2538, 3521, ..., 46920, 47069, 48673]), + values=tensor([0.5437, 0.3122, 0.8737, ..., 0.7809, 0.3023, 0.2727]), + size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.6467, 0.8674, 0.4268, ..., 0.4389, 0.3661, 0.7175]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 2500000 +Density: 0.001 +Time: 3.0004022121429443 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '6999', '-ss', '50000', '-sd', '0.001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 20.897379159927368} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 48, 100, ..., 2499890, + 2499936, 2500000]), + col_indices=tensor([ 2219, 5577, 6326, ..., 48217, 48582, 49573]), + values=tensor([0.8831, 0.9308, 0.4380, ..., 0.8264, 0.2520, 0.0049]), + size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.1681, 0.1881, 0.9636, ..., 0.5462, 0.5477, 0.9460]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 2500000 +Density: 0.001 +Time: 20.897379159927368 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 48, 100, ..., 2499890, + 2499936, 2500000]), + col_indices=tensor([ 2219, 5577, 6326, ..., 48217, 48582, 49573]), + values=tensor([0.8831, 0.9308, 0.4380, ..., 0.8264, 0.2520, 0.0049]), + size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.1681, 0.1881, 0.9636, ..., 0.5462, 0.5477, 0.9460]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 2500000 +Density: 0.001 +Time: 20.897379159927368 seconds + +[39.8, 38.87, 39.22, 38.93, 38.9, 38.99, 38.89, 38.48, 38.43, 39.67] +[70.47] +23.88610005378723 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 6999, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 20.897379159927368, 'TIME_S_1KI': 2.9857664180493457, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1683.2534707903862, 'W': 70.47} +[39.8, 38.87, 39.22, 38.93, 38.9, 38.99, 38.89, 38.48, 38.43, 39.67, 39.45, 38.51, 39.01, 38.47, 38.42, 38.44, 39.43, 38.73, 38.56, 39.45] +699.4649999999999 +34.97324999999999 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 6999, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 20.897379159927368, 'TIME_S_1KI': 2.9857664180493457, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1683.2534707903862, 'W': 70.47, 'J_1KI': 240.49913856127822, 'W_1KI': 10.068581225889414, 'W_D': 35.496750000000006, 'J_D': 847.8789220842721, 'W_D_1KI': 5.071688812687528, 'J_D_1KI': 0.724630491882773} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.005.json b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.005.json new file mode 100644 index 0000000..7504f86 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.005.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 1085, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 0.005, "TIME_S": 20.97959613800049, "TIME_S_1KI": 19.336033306912892, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2081.730987071991, "W": 77.68, "J_1KI": 1918.6460710340932, "W_1KI": 71.59447004608295, "W_D": 42.64725000000001, "J_D": 1142.8952347889544, "W_D_1KI": 39.306221198156685, "J_D_1KI": 36.22693197986791} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.005.output b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.005.output new file mode 100644 index 0000000..4a5e75c --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.005.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '0.005', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 0.005, "TIME_S": 19.343926906585693} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 284, 572, ..., 12499476, + 12499735, 12500000]), + col_indices=tensor([ 166, 205, 430, ..., 49351, 49645, 49668]), + values=tensor([0.0452, 0.2727, 0.3621, ..., 0.2139, 0.8914, 0.4747]), + size=(50000, 50000), nnz=12500000, layout=torch.sparse_csr) +tensor([0.9835, 0.4490, 0.0492, ..., 0.9538, 0.9723, 0.7788]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 12500000 +Density: 0.005 +Time: 19.343926906585693 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1085', '-ss', '50000', '-sd', '0.005', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 0.005, "TIME_S": 20.97959613800049} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 246, 489, ..., 12499492, + 12499760, 12500000]), + col_indices=tensor([ 25, 267, 758, ..., 49421, 49749, 49833]), + values=tensor([0.1040, 0.5728, 0.3234, ..., 0.7341, 0.5414, 0.1257]), + size=(50000, 50000), nnz=12500000, layout=torch.sparse_csr) +tensor([0.8524, 0.8502, 0.2995, ..., 0.6737, 0.1053, 0.0588]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 12500000 +Density: 0.005 +Time: 20.97959613800049 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 246, 489, ..., 12499492, + 12499760, 12500000]), + col_indices=tensor([ 25, 267, 758, ..., 49421, 49749, 49833]), + values=tensor([0.1040, 0.5728, 0.3234, ..., 0.7341, 0.5414, 0.1257]), + size=(50000, 50000), nnz=12500000, layout=torch.sparse_csr) +tensor([0.8524, 0.8502, 0.2995, ..., 0.6737, 0.1053, 0.0588]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 12500000 +Density: 0.005 +Time: 20.97959613800049 seconds + +[39.14, 39.08, 38.98, 38.87, 38.6, 38.74, 38.49, 39.78, 38.46, 38.7] +[77.68] +26.798802614212036 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1085, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 12500000, 'MATRIX_DENSITY': 0.005, 'TIME_S': 20.97959613800049, 'TIME_S_1KI': 19.336033306912892, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2081.730987071991, 'W': 77.68} +[39.14, 39.08, 38.98, 38.87, 38.6, 38.74, 38.49, 39.78, 38.46, 38.7, 40.03, 38.43, 38.73, 38.45, 38.99, 38.54, 39.08, 39.02, 40.09, 38.78] +700.655 +35.03275 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1085, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 12500000, 'MATRIX_DENSITY': 0.005, 'TIME_S': 20.97959613800049, 'TIME_S_1KI': 19.336033306912892, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2081.730987071991, 'W': 77.68, 'J_1KI': 1918.6460710340932, 'W_1KI': 71.59447004608295, 'W_D': 42.64725000000001, 'J_D': 1142.8952347889544, 'W_D_1KI': 39.306221198156685, 'J_D_1KI': 36.22693197986791} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.01.json b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.01.json new file mode 100644 index 0000000..446b456 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.01.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.01, "TIME_S": 37.82172966003418, "TIME_S_1KI": 37.82172966003418, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 3731.490132689476, "W": 78.5, "J_1KI": 3731.490132689476, "W_1KI": 78.5, "W_D": 43.14625000000001, "J_D": 2050.9529444274312, "W_D_1KI": 43.14625000000001, "J_D_1KI": 43.14625000000001} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.01.output b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.01.output new file mode 100644 index 0000000..607e614 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_0.01.output @@ -0,0 +1,45 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '0.01', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.01, "TIME_S": 37.82172966003418} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 478, 967, ..., 24999023, + 24999517, 25000000]), + col_indices=tensor([ 55, 61, 67, ..., 49814, 49816, 49912]), + values=tensor([0.1124, 0.8573, 0.8758, ..., 0.9585, 0.5286, 0.9143]), + size=(50000, 50000), nnz=25000000, layout=torch.sparse_csr) +tensor([0.5266, 0.3019, 0.6446, ..., 0.2615, 0.0113, 0.3544]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000000 +Density: 0.01 +Time: 37.82172966003418 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 478, 967, ..., 24999023, + 24999517, 25000000]), + col_indices=tensor([ 55, 61, 67, ..., 49814, 49816, 49912]), + values=tensor([0.1124, 0.8573, 0.8758, ..., 0.9585, 0.5286, 0.9143]), + size=(50000, 50000), nnz=25000000, layout=torch.sparse_csr) +tensor([0.5266, 0.3019, 0.6446, ..., 0.2615, 0.0113, 0.3544]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000000 +Density: 0.01 +Time: 37.82172966003418 seconds + +[39.15, 39.92, 38.57, 38.55, 39.15, 44.43, 38.71, 39.58, 38.59, 38.46] +[78.5] +47.53490614891052 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 37.82172966003418, 'TIME_S_1KI': 37.82172966003418, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 3731.490132689476, 'W': 78.5} +[39.15, 39.92, 38.57, 38.55, 39.15, 44.43, 38.71, 39.58, 38.59, 38.46, 40.51, 38.75, 38.64, 38.52, 38.8, 39.78, 38.55, 38.77, 39.3, 38.81] +707.0749999999998 +35.35374999999999 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 37.82172966003418, 'TIME_S_1KI': 37.82172966003418, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 3731.490132689476, 'W': 78.5, 'J_1KI': 3731.490132689476, 'W_1KI': 78.5, 'W_D': 43.14625000000001, 'J_D': 2050.9529444274312, 'W_D_1KI': 43.14625000000001, 'J_D_1KI': 43.14625000000001} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_1e-05.json b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_1e-05.json new file mode 100644 index 0000000..116c34c --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 1, "ITERATIONS": 71652, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 21.077060222625732, "TIME_S_1KI": 0.29415871465731214, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1735.6051402235032, "W": 73.31, "J_1KI": 24.222703347059444, "W_1KI": 1.0231396192709206, "W_D": 28.61775, "J_D": 677.5216751006842, "W_D_1KI": 0.39939917936694025, "J_D_1KI": 0.005574152561923467} diff --git a/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_1e-05.output b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_1e-05.output new file mode 100644 index 0000000..b01c98d --- /dev/null +++ b/pytorch/output_synthetic_1core_old/epyc_7313p_1_csr_20_10_10_synthetic_50000_1e-05.output @@ -0,0 +1,81 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.31334519386291504} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 25000, 25000, 25000]), + col_indices=tensor([33825, 38381, 10898, ..., 16973, 5749, 12690]), + values=tensor([0.0927, 0.2822, 0.8971, ..., 0.4021, 0.1329, 0.8374]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.5931, 0.9062, 0.9804, ..., 0.6131, 0.7776, 0.6003]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 0.31334519386291504 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '67018', '-ss', '50000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 19.641794443130493} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 24999, 25000, 25000]), + col_indices=tensor([16677, 19807, 33770, ..., 39614, 2095, 28370]), + values=tensor([0.9725, 0.0867, 0.0870, ..., 0.5654, 0.5916, 0.4400]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.2944, 0.4597, 0.6320, ..., 0.6057, 0.1898, 0.1566]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 19.641794443130493 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '71652', '-ss', '50000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 21.077060222625732} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 3, ..., 24998, 24998, 25000]), + col_indices=tensor([32921, 41293, 48516, ..., 42072, 6133, 17318]), + values=tensor([0.8803, 0.8660, 0.8154, ..., 0.4754, 0.7296, 0.3650]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.6139, 0.5193, 0.8626, ..., 0.9070, 0.3972, 0.6619]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 21.077060222625732 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 3, ..., 24998, 24998, 25000]), + col_indices=tensor([32921, 41293, 48516, ..., 42072, 6133, 17318]), + values=tensor([0.8803, 0.8660, 0.8154, ..., 0.4754, 0.7296, 0.3650]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.6139, 0.5193, 0.8626, ..., 0.9070, 0.3972, 0.6619]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 21.077060222625732 seconds + +[65.71, 63.81, 50.02, 60.96, 68.38, 61.87, 58.96, 64.5, 60.78, 39.15] +[73.31] +23.674875736236572 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 71652, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 21.077060222625732, 'TIME_S_1KI': 0.29415871465731214, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1735.6051402235032, 'W': 73.31} +[65.71, 63.81, 50.02, 60.96, 68.38, 61.87, 58.96, 64.5, 60.78, 39.15, 39.3, 40.05, 38.69, 39.1, 39.07, 38.76, 39.16, 39.36, 38.75, 39.09] +893.845 +44.69225 +{'CPU': 'Epyc 7313P', 'CORES': 1, 'ITERATIONS': 71652, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 21.077060222625732, 'TIME_S_1KI': 0.29415871465731214, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1735.6051402235032, 'W': 73.31, 'J_1KI': 24.222703347059444, 'W_1KI': 1.0231396192709206, 'W_D': 28.61775, 'J_D': 677.5216751006842, 'W_D_1KI': 0.39939917936694025, 'J_D_1KI': 0.005574152561923467} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_1000000_1e-05.json b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_1000000_1e-05.json new file mode 100644 index 0000000..72b0c08 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_1000000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [1000000, 1000000], "MATRIX_ROWS": 1000000, "MATRIX_SIZE": 1000000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 1e-05, "TIME_S": 66.54721975326538, "TIME_S_1KI": 66.54721975326538, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 3619.1285343217846, "W": 48.66, "J_1KI": 3619.1285343217846, "W_1KI": 48.66, "W_D": 32.3165, "J_D": 2403.5669395686386, "W_D_1KI": 32.3165, "J_D_1KI": 32.3165} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_1000000_1e-05.output b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_1000000_1e-05.output new file mode 100644 index 0000000..88175d1 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_1000000_1e-05.output @@ -0,0 +1,47 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '1000000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [1000000, 1000000], "MATRIX_ROWS": 1000000, "MATRIX_SIZE": 1000000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 1e-05, "TIME_S": 66.54721975326538} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 10, 21, ..., 9999976, + 9999986, 10000000]), + col_indices=tensor([ 54005, 89807, 113734, ..., 908702, 925766, + 933923]), + values=tensor([0.9939, 0.7767, 0.0078, ..., 0.2146, 0.1281, 0.5768]), + size=(1000000, 1000000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.8058, 0.8985, 0.9859, ..., 0.2784, 0.2654, 0.0031]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([1000000, 1000000]) +Rows: 1000000 +Size: 1000000000000 +NNZ: 10000000 +Density: 1e-05 +Time: 66.54721975326538 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 10, 21, ..., 9999976, + 9999986, 10000000]), + col_indices=tensor([ 54005, 89807, 113734, ..., 908702, 925766, + 933923]), + values=tensor([0.9939, 0.7767, 0.0078, ..., 0.2146, 0.1281, 0.5768]), + size=(1000000, 1000000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.8058, 0.8985, 0.9859, ..., 0.2784, 0.2654, 0.0031]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([1000000, 1000000]) +Rows: 1000000 +Size: 1000000000000 +NNZ: 10000000 +Density: 1e-05 +Time: 66.54721975326538 seconds + +[18.44, 17.85, 17.91, 17.76, 18.24, 18.72, 18.35, 17.95, 18.1, 18.22] +[48.66] +74.37584328651428 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [1000000, 1000000], 'MATRIX_ROWS': 1000000, 'MATRIX_SIZE': 1000000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 66.54721975326538, 'TIME_S_1KI': 66.54721975326538, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 3619.1285343217846, 'W': 48.66} +[18.44, 17.85, 17.91, 17.76, 18.24, 18.72, 18.35, 17.95, 18.1, 18.22, 18.26, 17.74, 18.13, 17.82, 17.99, 18.0, 18.47, 17.87, 17.8, 21.42] +326.87 +16.3435 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [1000000, 1000000], 'MATRIX_ROWS': 1000000, 'MATRIX_SIZE': 1000000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 66.54721975326538, 'TIME_S_1KI': 66.54721975326538, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 3619.1285343217846, 'W': 48.66, 'J_1KI': 3619.1285343217846, 'W_1KI': 48.66, 'W_D': 32.3165, 'J_D': 2403.5669395686386, 'W_D_1KI': 32.3165, 'J_D_1KI': 32.3165} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_0.0001.json b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_0.0001.json new file mode 100644 index 0000000..7aceaa7 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 7304, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 20.99964690208435, "TIME_S_1KI": 2.8750885681933664, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1205.7149387598038, "W": 48.21, "J_1KI": 165.07597737675297, "W_1KI": 6.600492880613363, "W_D": 31.907750000000004, "J_D": 798.001469346881, "W_D_1KI": 4.368530941949617, "J_D_1KI": 0.5981011694892684} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_0.0001.output b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_0.0001.output new file mode 100644 index 0000000..00d043f --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_0.0001.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '100000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 2.8750712871551514} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 11, 18, ..., 999987, + 999994, 1000000]), + col_indices=tensor([ 72, 12664, 19832, ..., 78809, 83339, 93425]), + values=tensor([0.5785, 0.6431, 0.7942, ..., 0.9990, 0.0590, 0.8738]), + size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.6025, 0.9571, 0.3756, ..., 0.4137, 0.6855, 0.5355]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 1000000 +Density: 0.0001 +Time: 2.8750712871551514 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '7304', '-ss', '100000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 20.99964690208435} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 8, 17, ..., 999983, + 999991, 1000000]), + col_indices=tensor([41096, 50256, 52141, ..., 67700, 76057, 98450]), + values=tensor([0.9809, 0.6280, 0.2788, ..., 0.6940, 0.2813, 0.2359]), + size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.7723, 0.9147, 0.2969, ..., 0.3023, 0.2205, 0.3351]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 1000000 +Density: 0.0001 +Time: 20.99964690208435 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 8, 17, ..., 999983, + 999991, 1000000]), + col_indices=tensor([41096, 50256, 52141, ..., 67700, 76057, 98450]), + values=tensor([0.9809, 0.6280, 0.2788, ..., 0.6940, 0.2813, 0.2359]), + size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.7723, 0.9147, 0.2969, ..., 0.3023, 0.2205, 0.3351]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 1000000 +Density: 0.0001 +Time: 20.99964690208435 seconds + +[19.43, 17.9, 18.08, 18.16, 18.32, 17.98, 18.9, 18.21, 18.25, 17.86] +[48.21] +25.009644031524658 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 7304, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 20.99964690208435, 'TIME_S_1KI': 2.8750885681933664, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1205.7149387598038, 'W': 48.21} +[19.43, 17.9, 18.08, 18.16, 18.32, 17.98, 18.9, 18.21, 18.25, 17.86, 18.22, 17.66, 18.06, 18.08, 17.89, 18.02, 17.74, 17.97, 18.02, 18.1] +326.04499999999996 +16.302249999999997 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 7304, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 20.99964690208435, 'TIME_S_1KI': 2.8750885681933664, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1205.7149387598038, 'W': 48.21, 'J_1KI': 165.07597737675297, 'W_1KI': 6.600492880613363, 'W_D': 31.907750000000004, 'J_D': 798.001469346881, 'W_D_1KI': 4.368530941949617, 'J_D_1KI': 0.5981011694892684} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_0.0005.json b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_0.0005.json new file mode 100644 index 0000000..62dfba2 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_0.0005.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 1831, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.0005, "TIME_S": 20.986559629440308, "TIME_S_1KI": 11.461802091447463, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1301.7127650523184, "W": 48.96999999999999, "J_1KI": 710.9299645288469, "W_1KI": 26.74494811578372, "W_D": 32.56024999999999, "J_D": 865.5113959218857, "W_D_1KI": 17.782768978700158, "J_D_1KI": 9.712052964882664} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_0.0005.output b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_0.0005.output new file mode 100644 index 0000000..1517cae --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_0.0005.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '100000', '-sd', '0.0005', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.0005, "TIME_S": 11.463933229446411} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 45, 93, ..., 4999886, + 4999950, 5000000]), + col_indices=tensor([ 115, 4142, 9033, ..., 95272, 97957, 99327]), + values=tensor([0.3001, 0.5395, 0.4547, ..., 0.4945, 0.6230, 0.1383]), + size=(100000, 100000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.4447, 0.7495, 0.9824, ..., 0.5428, 0.2940, 0.4090]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 5000000 +Density: 0.0005 +Time: 11.463933229446411 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1831', '-ss', '100000', '-sd', '0.0005', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.0005, "TIME_S": 20.986559629440308} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 47, 90, ..., 4999886, + 4999944, 5000000]), + col_indices=tensor([ 1153, 2047, 4582, ..., 97809, 98430, 99156]), + values=tensor([0.1070, 0.5860, 0.6550, ..., 0.5725, 0.6043, 0.9156]), + size=(100000, 100000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.2942, 0.6403, 0.2970, ..., 0.2270, 0.6172, 0.6041]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 5000000 +Density: 0.0005 +Time: 20.986559629440308 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 47, 90, ..., 4999886, + 4999944, 5000000]), + col_indices=tensor([ 1153, 2047, 4582, ..., 97809, 98430, 99156]), + values=tensor([0.1070, 0.5860, 0.6550, ..., 0.5725, 0.6043, 0.9156]), + size=(100000, 100000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.2942, 0.6403, 0.2970, ..., 0.2270, 0.6172, 0.6041]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 5000000 +Density: 0.0005 +Time: 20.986559629440308 seconds + +[18.11, 17.74, 18.14, 18.38, 18.12, 18.97, 17.92, 18.11, 17.89, 21.28] +[48.97] +26.581841230392456 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 1831, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.0005, 'TIME_S': 20.986559629440308, 'TIME_S_1KI': 11.461802091447463, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1301.7127650523184, 'W': 48.96999999999999} +[18.11, 17.74, 18.14, 18.38, 18.12, 18.97, 17.92, 18.11, 17.89, 21.28, 18.44, 17.94, 18.29, 17.78, 17.91, 18.22, 17.95, 18.14, 18.84, 17.88] +328.19500000000005 +16.409750000000003 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 1831, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.0005, 'TIME_S': 20.986559629440308, 'TIME_S_1KI': 11.461802091447463, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1301.7127650523184, 'W': 48.96999999999999, 'J_1KI': 710.9299645288469, 'W_1KI': 26.74494811578372, 'W_D': 32.56024999999999, 'J_D': 865.5113959218857, 'W_D_1KI': 17.782768978700158, 'J_D_1KI': 9.712052964882664} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_0.001.json b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_0.001.json new file mode 100644 index 0000000..03d76fb --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_0.001.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 27.55906629562378, "TIME_S_1KI": 27.55906629562378, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1724.2497406768798, "W": 48.51, "J_1KI": 1724.2497406768798, "W_1KI": 48.51, "W_D": 22.645749999999992, "J_D": 804.9253466281888, "W_D_1KI": 22.645749999999992, "J_D_1KI": 22.645749999999992} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_0.001.output b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_0.001.output new file mode 100644 index 0000000..1b57712 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_0.001.output @@ -0,0 +1,45 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '100000', '-sd', '0.001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 10000000, "MATRIX_DENSITY": 0.001, "TIME_S": 27.55906629562378} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 125, 225, ..., 9999802, + 9999889, 10000000]), + col_indices=tensor([ 1628, 2146, 2363, ..., 95541, 97818, 98495]), + values=tensor([0.1115, 0.6662, 0.7909, ..., 0.2161, 0.9828, 0.9922]), + size=(100000, 100000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.3917, 0.2257, 0.3594, ..., 0.6468, 0.3908, 0.8732]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 10000000 +Density: 0.001 +Time: 27.55906629562378 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 125, 225, ..., 9999802, + 9999889, 10000000]), + col_indices=tensor([ 1628, 2146, 2363, ..., 95541, 97818, 98495]), + values=tensor([0.1115, 0.6662, 0.7909, ..., 0.2161, 0.9828, 0.9922]), + size=(100000, 100000), nnz=10000000, layout=torch.sparse_csr) +tensor([0.3917, 0.2257, 0.3594, ..., 0.6468, 0.3908, 0.8732]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 10000000 +Density: 0.001 +Time: 27.55906629562378 seconds + +[18.54, 17.96, 18.27, 17.87, 17.85, 17.91, 18.31, 18.22, 18.21, 17.84] +[48.51] +35.544212341308594 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 27.55906629562378, 'TIME_S_1KI': 27.55906629562378, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1724.2497406768798, 'W': 48.51} +[18.54, 17.96, 18.27, 17.87, 17.85, 17.91, 18.31, 18.22, 18.21, 17.84, 39.12, 40.67, 39.37, 39.18, 39.34, 39.09, 38.69, 39.74, 39.23, 39.25] +517.2850000000001 +25.864250000000006 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 10000000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 27.55906629562378, 'TIME_S_1KI': 27.55906629562378, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1724.2497406768798, 'W': 48.51, 'J_1KI': 1724.2497406768798, 'W_1KI': 48.51, 'W_D': 22.645749999999992, 'J_D': 804.9253466281888, 'W_D_1KI': 22.645749999999992, 'J_D_1KI': 22.645749999999992} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_0.005.json b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_0.005.json new file mode 100644 index 0000000..b8a679c --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_0.005.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 50000000, "MATRIX_DENSITY": 0.005, "TIME_S": 152.2796802520752, "TIME_S_1KI": 152.2796802520752, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 24430.853182520867, "W": 40.51, "J_1KI": 24430.853182520867, "W_1KI": 40.51, "W_D": 24.2635, "J_D": 14632.880923083067, "W_D_1KI": 24.2635, "J_D_1KI": 24.2635} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_0.005.output b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_0.005.output new file mode 100644 index 0000000..3163e2f --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_0.005.output @@ -0,0 +1,45 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '100000', '-sd', '0.005', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 50000000, "MATRIX_DENSITY": 0.005, "TIME_S": 152.2796802520752} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 501, 992, ..., 49999019, + 49999505, 50000000]), + col_indices=tensor([ 35, 43, 383, ..., 99897, 99938, 99967]), + values=tensor([0.4513, 0.8581, 0.1042, ..., 0.5255, 0.8133, 0.9103]), + size=(100000, 100000), nnz=50000000, layout=torch.sparse_csr) +tensor([0.9931, 0.5926, 0.5381, ..., 0.5378, 0.4212, 0.4881]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 50000000 +Density: 0.005 +Time: 152.2796802520752 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 501, 992, ..., 49999019, + 49999505, 50000000]), + col_indices=tensor([ 35, 43, 383, ..., 99897, 99938, 99967]), + values=tensor([0.4513, 0.8581, 0.1042, ..., 0.5255, 0.8133, 0.9103]), + size=(100000, 100000), nnz=50000000, layout=torch.sparse_csr) +tensor([0.9931, 0.5926, 0.5381, ..., 0.5378, 0.4212, 0.4881]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 50000000 +Density: 0.005 +Time: 152.2796802520752 seconds + +[18.54, 17.77, 17.99, 18.91, 17.96, 17.85, 17.94, 17.96, 17.92, 17.99] +[40.51] +603.0820336341858 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 50000000, 'MATRIX_DENSITY': 0.005, 'TIME_S': 152.2796802520752, 'TIME_S_1KI': 152.2796802520752, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 24430.853182520867, 'W': 40.51} +[18.54, 17.77, 17.99, 18.91, 17.96, 17.85, 17.94, 17.96, 17.92, 17.99, 18.55, 18.48, 18.08, 18.21, 17.89, 17.61, 18.0, 17.78, 18.03, 18.02] +324.92999999999995 +16.246499999999997 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 50000000, 'MATRIX_DENSITY': 0.005, 'TIME_S': 152.2796802520752, 'TIME_S_1KI': 152.2796802520752, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 24430.853182520867, 'W': 40.51, 'J_1KI': 24430.853182520867, 'W_1KI': 40.51, 'W_D': 24.2635, 'J_D': 14632.880923083067, 'W_D_1KI': 24.2635, 'J_D_1KI': 24.2635} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_1e-05.json b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_1e-05.json new file mode 100644 index 0000000..0a18e77 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 15982, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 20.790293216705322, "TIME_S_1KI": 1.300856789932757, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1154.2612649059295, "W": 46.92999999999999, "J_1KI": 72.22257945851142, "W_1KI": 2.936428482042297, "W_D": 30.483749999999993, "J_D": 749.7594680178164, "W_D_1KI": 1.907380177699912, "J_D_1KI": 0.11934552482166888} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_1e-05.output b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_1e-05.output new file mode 100644 index 0000000..2e16cf3 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_100000_1e-05.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '100000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 1.3139328956604004} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 1, ..., 100000, 100000, + 100000]), + col_indices=tensor([39907, 27987, 76798, ..., 32180, 99907, 17440]), + values=tensor([0.1487, 0.6263, 0.1935, ..., 0.3652, 0.0716, 0.9913]), + size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) +tensor([0.5233, 0.9086, 0.0476, ..., 0.5287, 0.8958, 0.9684]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 100000 +Density: 1e-05 +Time: 1.3139328956604004 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '15982', '-ss', '100000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 20.790293216705322} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 2, ..., 99999, 99999, + 100000]), + col_indices=tensor([ 6594, 93201, 43608, ..., 41278, 68005, 16586]), + values=tensor([0.8802, 0.5778, 0.4721, ..., 0.6728, 0.8802, 0.6767]), + size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) +tensor([0.6356, 0.8811, 0.4031, ..., 0.8985, 0.9999, 0.3835]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 100000 +Density: 1e-05 +Time: 20.790293216705322 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 2, ..., 99999, 99999, + 100000]), + col_indices=tensor([ 6594, 93201, 43608, ..., 41278, 68005, 16586]), + values=tensor([0.8802, 0.5778, 0.4721, ..., 0.6728, 0.8802, 0.6767]), + size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) +tensor([0.6356, 0.8811, 0.4031, ..., 0.8985, 0.9999, 0.3835]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 100000 +Density: 1e-05 +Time: 20.790293216705322 seconds + +[18.44, 18.07, 17.97, 17.94, 21.94, 18.0, 18.46, 18.26, 18.2, 18.27] +[46.93] +24.59538173675537 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 15982, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 20.790293216705322, 'TIME_S_1KI': 1.300856789932757, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1154.2612649059295, 'W': 46.92999999999999} +[18.44, 18.07, 17.97, 17.94, 21.94, 18.0, 18.46, 18.26, 18.2, 18.27, 18.3, 17.85, 18.0, 18.05, 18.14, 17.86, 17.89, 17.78, 18.15, 17.72] +328.925 +16.44625 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 15982, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 20.790293216705322, 'TIME_S_1KI': 1.300856789932757, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1154.2612649059295, 'W': 46.92999999999999, 'J_1KI': 72.22257945851142, 'W_1KI': 2.936428482042297, 'W_D': 30.483749999999993, 'J_D': 749.7594680178164, 'W_D_1KI': 1.907380177699912, 'J_D_1KI': 0.11934552482166888} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_3000000_1e-05.json b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_3000000_1e-05.json new file mode 100644 index 0000000..e69de29 diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_3000000_1e-05.output b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_3000000_1e-05.output new file mode 100644 index 0000000..95dcd7c --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_3000000_1e-05.output @@ -0,0 +1,10 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '3000000', '-sd', '1e-05', '-c', '1'] +Traceback (most recent call last): + File "/nfshomes/vut/ampere_research/pytorch/run.py", line 129, in + program_result = run_program(program( + ^^^^^^^^^^^^^^^^^^^^ + File "/nfshomes/vut/ampere_research/pytorch/run.py", line 95, in run_program + process.check_returncode() + File "/usr/lib64/python3.11/subprocess.py", line 502, in check_returncode + raise CalledProcessError(self.returncode, self.args, self.stdout, +subprocess.CalledProcessError: Command '['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '3000000', '-sd', '1e-05', '-c', '1']' died with . diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_300000_0.0001.json b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_300000_0.0001.json new file mode 100644 index 0000000..b220cd4 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_300000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [300000, 300000], "MATRIX_ROWS": 300000, "MATRIX_SIZE": 90000000000, "MATRIX_NNZ": 9000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 43.59297776222229, "TIME_S_1KI": 43.59297776222229, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2443.445860421658, "W": 47.95000000000001, "J_1KI": 2443.445860421658, "W_1KI": 47.95000000000001, "W_D": 31.519750000000013, "J_D": 1606.1898364760286, "W_D_1KI": 31.519750000000013, "J_D_1KI": 31.519750000000013} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_300000_0.0001.output b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_300000_0.0001.output new file mode 100644 index 0000000..48e92e3 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_300000_0.0001.output @@ -0,0 +1,47 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '300000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [300000, 300000], "MATRIX_ROWS": 300000, "MATRIX_SIZE": 90000000000, "MATRIX_NNZ": 9000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 43.59297776222229} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 25, 55, ..., 8999936, + 8999970, 9000000]), + col_indices=tensor([ 9127, 10614, 42656, ..., 264952, 278523, + 294763]), + values=tensor([0.1591, 0.4772, 0.9607, ..., 0.8861, 0.4140, 0.1211]), + size=(300000, 300000), nnz=9000000, layout=torch.sparse_csr) +tensor([0.3992, 0.8236, 0.1831, ..., 0.0857, 0.3847, 0.6830]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([300000, 300000]) +Rows: 300000 +Size: 90000000000 +NNZ: 9000000 +Density: 0.0001 +Time: 43.59297776222229 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 25, 55, ..., 8999936, + 8999970, 9000000]), + col_indices=tensor([ 9127, 10614, 42656, ..., 264952, 278523, + 294763]), + values=tensor([0.1591, 0.4772, 0.9607, ..., 0.8861, 0.4140, 0.1211]), + size=(300000, 300000), nnz=9000000, layout=torch.sparse_csr) +tensor([0.3992, 0.8236, 0.1831, ..., 0.0857, 0.3847, 0.6830]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([300000, 300000]) +Rows: 300000 +Size: 90000000000 +NNZ: 9000000 +Density: 0.0001 +Time: 43.59297776222229 seconds + +[18.34, 18.1, 18.78, 20.56, 17.99, 18.51, 17.93, 18.03, 17.94, 18.04] +[47.95] +50.95820355415344 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [300000, 300000], 'MATRIX_ROWS': 300000, 'MATRIX_SIZE': 90000000000, 'MATRIX_NNZ': 9000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 43.59297776222229, 'TIME_S_1KI': 43.59297776222229, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2443.445860421658, 'W': 47.95000000000001} +[18.34, 18.1, 18.78, 20.56, 17.99, 18.51, 17.93, 18.03, 17.94, 18.04, 18.97, 18.18, 18.43, 17.75, 17.93, 17.87, 17.94, 18.08, 17.97, 17.88] +328.60499999999996 +16.430249999999997 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [300000, 300000], 'MATRIX_ROWS': 300000, 'MATRIX_SIZE': 90000000000, 'MATRIX_NNZ': 9000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 43.59297776222229, 'TIME_S_1KI': 43.59297776222229, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2443.445860421658, 'W': 47.95000000000001, 'J_1KI': 2443.445860421658, 'W_1KI': 47.95000000000001, 'W_D': 31.519750000000013, 'J_D': 1606.1898364760286, 'W_D_1KI': 31.519750000000013, 'J_D_1KI': 31.519750000000013} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_300000_0.0005.json b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_300000_0.0005.json new file mode 100644 index 0000000..efafaea --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_300000_0.0005.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [300000, 300000], "MATRIX_ROWS": 300000, "MATRIX_SIZE": 90000000000, "MATRIX_NNZ": 45000000, "MATRIX_DENSITY": 0.0005, "TIME_S": 233.5992555618286, "TIME_S_1KI": 233.5992555618286, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 24127.435356621743, "W": 44.42, "J_1KI": 24127.435356621743, "W_1KI": 44.42, "W_D": 28.19375, "J_D": 15313.887451277675, "W_D_1KI": 28.19375, "J_D_1KI": 28.19375} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_300000_0.0005.output b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_300000_0.0005.output new file mode 100644 index 0000000..f20383f --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_300000_0.0005.output @@ -0,0 +1,47 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '300000', '-sd', '0.0005', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [300000, 300000], "MATRIX_ROWS": 300000, "MATRIX_SIZE": 90000000000, "MATRIX_NNZ": 45000000, "MATRIX_DENSITY": 0.0005, "TIME_S": 233.5992555618286} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 130, 284, ..., 44999682, + 44999844, 45000000]), + col_indices=tensor([ 1852, 3586, 4765, ..., 295056, 296384, + 297411]), + values=tensor([0.2696, 0.5396, 0.2299, ..., 0.9264, 0.4734, 0.5186]), + size=(300000, 300000), nnz=45000000, layout=torch.sparse_csr) +tensor([0.0972, 0.1995, 0.9087, ..., 0.4631, 0.8051, 0.0013]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([300000, 300000]) +Rows: 300000 +Size: 90000000000 +NNZ: 45000000 +Density: 0.0005 +Time: 233.5992555618286 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 130, 284, ..., 44999682, + 44999844, 45000000]), + col_indices=tensor([ 1852, 3586, 4765, ..., 295056, 296384, + 297411]), + values=tensor([0.2696, 0.5396, 0.2299, ..., 0.9264, 0.4734, 0.5186]), + size=(300000, 300000), nnz=45000000, layout=torch.sparse_csr) +tensor([0.0972, 0.1995, 0.9087, ..., 0.4631, 0.8051, 0.0013]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([300000, 300000]) +Rows: 300000 +Size: 90000000000 +NNZ: 45000000 +Density: 0.0005 +Time: 233.5992555618286 seconds + +[18.63, 18.36, 17.97, 17.94, 18.0, 17.84, 17.92, 17.85, 18.12, 17.92] +[44.42] +543.1660368442535 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [300000, 300000], 'MATRIX_ROWS': 300000, 'MATRIX_SIZE': 90000000000, 'MATRIX_NNZ': 45000000, 'MATRIX_DENSITY': 0.0005, 'TIME_S': 233.5992555618286, 'TIME_S_1KI': 233.5992555618286, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 24127.435356621743, 'W': 44.42} +[18.63, 18.36, 17.97, 17.94, 18.0, 17.84, 17.92, 17.85, 18.12, 17.92, 18.74, 17.84, 18.23, 17.69, 18.02, 17.95, 18.42, 17.86, 17.99, 17.76] +324.525 +16.22625 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [300000, 300000], 'MATRIX_ROWS': 300000, 'MATRIX_SIZE': 90000000000, 'MATRIX_NNZ': 45000000, 'MATRIX_DENSITY': 0.0005, 'TIME_S': 233.5992555618286, 'TIME_S_1KI': 233.5992555618286, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 24127.435356621743, 'W': 44.42, 'J_1KI': 24127.435356621743, 'W_1KI': 44.42, 'W_D': 28.19375, 'J_D': 15313.887451277675, 'W_D_1KI': 28.19375, 'J_D_1KI': 28.19375} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_300000_0.001.json b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_300000_0.001.json new file mode 100644 index 0000000..e69de29 diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_300000_0.001.output b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_300000_0.001.output new file mode 100644 index 0000000..30ff4c4 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_300000_0.001.output @@ -0,0 +1,10 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '300000', '-sd', '0.001', '-c', '1'] +Traceback (most recent call last): + File "/nfshomes/vut/ampere_research/pytorch/run.py", line 129, in + program_result = run_program(program( + ^^^^^^^^^^^^^^^^^^^^ + File "/nfshomes/vut/ampere_research/pytorch/run.py", line 95, in run_program + process.check_returncode() + File "/usr/lib64/python3.11/subprocess.py", line 502, in check_returncode + raise CalledProcessError(self.returncode, self.args, self.stdout, +subprocess.CalledProcessError: Command '['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '300000', '-sd', '0.001', '-c', '1']' died with . diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_300000_1e-05.json b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_300000_1e-05.json new file mode 100644 index 0000000..49d4d09 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_300000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 3598, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [300000, 300000], "MATRIX_ROWS": 300000, "MATRIX_SIZE": 90000000000, "MATRIX_NNZ": 900000, "MATRIX_DENSITY": 1e-05, "TIME_S": 21.015570878982544, "TIME_S_1KI": 5.840903523897316, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1199.0254331445694, "W": 48.06, "J_1KI": 333.24775796124777, "W_1KI": 13.357420789327406, "W_D": 31.746750000000002, "J_D": 792.0341379459501, "W_D_1KI": 8.823443579766536, "J_D_1KI": 2.4523189493514552} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_300000_1e-05.output b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_300000_1e-05.output new file mode 100644 index 0000000..46d6c02 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_300000_1e-05.output @@ -0,0 +1,68 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '300000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [300000, 300000], "MATRIX_ROWS": 300000, "MATRIX_SIZE": 90000000000, "MATRIX_NNZ": 900000, "MATRIX_DENSITY": 1e-05, "TIME_S": 5.835606575012207} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 5, 7, ..., 899996, 899998, + 900000]), + col_indices=tensor([100602, 129512, 176801, ..., 48622, 26613, + 190176]), + values=tensor([0.1487, 0.8854, 0.0841, ..., 0.8808, 0.2948, 0.6815]), + size=(300000, 300000), nnz=900000, layout=torch.sparse_csr) +tensor([0.5133, 0.8774, 0.0043, ..., 0.0470, 0.1306, 0.4977]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([300000, 300000]) +Rows: 300000 +Size: 90000000000 +NNZ: 900000 +Density: 1e-05 +Time: 5.835606575012207 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '3598', '-ss', '300000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [300000, 300000], "MATRIX_ROWS": 300000, "MATRIX_SIZE": 90000000000, "MATRIX_NNZ": 900000, "MATRIX_DENSITY": 1e-05, "TIME_S": 21.015570878982544} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2, 5, ..., 899988, 899992, + 900000]), + col_indices=tensor([ 18941, 81855, 33867, ..., 201457, 255893, + 299263]), + values=tensor([0.5587, 0.5974, 0.8127, ..., 0.5995, 0.0776, 0.5594]), + size=(300000, 300000), nnz=900000, layout=torch.sparse_csr) +tensor([0.7686, 0.4534, 0.3324, ..., 0.2462, 0.7149, 0.9702]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([300000, 300000]) +Rows: 300000 +Size: 90000000000 +NNZ: 900000 +Density: 1e-05 +Time: 21.015570878982544 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2, 5, ..., 899988, 899992, + 900000]), + col_indices=tensor([ 18941, 81855, 33867, ..., 201457, 255893, + 299263]), + values=tensor([0.5587, 0.5974, 0.8127, ..., 0.5995, 0.0776, 0.5594]), + size=(300000, 300000), nnz=900000, layout=torch.sparse_csr) +tensor([0.7686, 0.4534, 0.3324, ..., 0.2462, 0.7149, 0.9702]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([300000, 300000]) +Rows: 300000 +Size: 90000000000 +NNZ: 900000 +Density: 1e-05 +Time: 21.015570878982544 seconds + +[18.25, 18.65, 17.9, 17.84, 17.95, 18.05, 18.67, 17.88, 18.3, 18.01] +[48.06] +24.948510885238647 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 3598, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [300000, 300000], 'MATRIX_ROWS': 300000, 'MATRIX_SIZE': 90000000000, 'MATRIX_NNZ': 900000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 21.015570878982544, 'TIME_S_1KI': 5.840903523897316, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1199.0254331445694, 'W': 48.06} +[18.25, 18.65, 17.9, 17.84, 17.95, 18.05, 18.67, 17.88, 18.3, 18.01, 18.4, 18.0, 17.84, 18.93, 18.16, 17.77, 18.14, 17.83, 18.06, 17.93] +326.265 +16.31325 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 3598, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [300000, 300000], 'MATRIX_ROWS': 300000, 'MATRIX_SIZE': 90000000000, 'MATRIX_NNZ': 900000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 21.015570878982544, 'TIME_S_1KI': 5.840903523897316, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1199.0254331445694, 'W': 48.06, 'J_1KI': 333.24775796124777, 'W_1KI': 13.357420789327406, 'W_D': 31.746750000000002, 'J_D': 792.0341379459501, 'W_D_1KI': 8.823443579766536, 'J_D_1KI': 2.4523189493514552} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.0001.json b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.0001.json new file mode 100644 index 0000000..aa132a9 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 33277, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 90000, "MATRIX_DENSITY": 0.0001, "TIME_S": 20.4328293800354, "TIME_S_1KI": 0.6140225795605192, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1130.1519185829163, "W": 46.86, "J_1KI": 33.96195325849435, "W_1KI": 1.408179823902395, "W_D": 30.543249999999997, "J_D": 736.6306570050716, "W_D_1KI": 0.9178486642425698, "J_D_1KI": 0.027582073631714693} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.0001.output b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.0001.output new file mode 100644 index 0000000..5969df1 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.0001.output @@ -0,0 +1,62 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '30000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 90000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.6310491561889648} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 7, ..., 89994, 89997, 90000]), + col_indices=tensor([ 2667, 5647, 6980, ..., 2168, 3268, 28772]), + values=tensor([0.1347, 0.9532, 0.3607, ..., 0.9962, 0.2520, 0.4682]), + size=(30000, 30000), nnz=90000, layout=torch.sparse_csr) +tensor([0.4612, 0.6559, 0.6162, ..., 0.2529, 0.9562, 0.7602]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 90000 +Density: 0.0001 +Time: 0.6310491561889648 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '33277', '-ss', '30000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 90000, "MATRIX_DENSITY": 0.0001, "TIME_S": 20.4328293800354} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2, 6, ..., 89998, 89999, 90000]), + col_indices=tensor([13602, 24899, 9076, ..., 25653, 15048, 9911]), + values=tensor([0.7061, 0.1886, 0.4037, ..., 0.8692, 0.8414, 0.2535]), + size=(30000, 30000), nnz=90000, layout=torch.sparse_csr) +tensor([0.8274, 0.3618, 0.1359, ..., 0.5733, 0.1118, 0.0977]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 90000 +Density: 0.0001 +Time: 20.4328293800354 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2, 6, ..., 89998, 89999, 90000]), + col_indices=tensor([13602, 24899, 9076, ..., 25653, 15048, 9911]), + values=tensor([0.7061, 0.1886, 0.4037, ..., 0.8692, 0.8414, 0.2535]), + size=(30000, 30000), nnz=90000, layout=torch.sparse_csr) +tensor([0.8274, 0.3618, 0.1359, ..., 0.5733, 0.1118, 0.0977]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 90000 +Density: 0.0001 +Time: 20.4328293800354 seconds + +[18.45, 18.04, 18.2, 18.12, 18.16, 18.2, 18.24, 17.92, 17.99, 18.02] +[46.86] +24.11762523651123 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 33277, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 90000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 20.4328293800354, 'TIME_S_1KI': 0.6140225795605192, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1130.1519185829163, 'W': 46.86} +[18.45, 18.04, 18.2, 18.12, 18.16, 18.2, 18.24, 17.92, 17.99, 18.02, 18.46, 18.14, 18.16, 18.26, 17.95, 18.13, 18.04, 18.32, 17.97, 18.06] +326.33500000000004 +16.316750000000003 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 33277, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 90000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 20.4328293800354, 'TIME_S_1KI': 0.6140225795605192, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1130.1519185829163, 'W': 46.86, 'J_1KI': 33.96195325849435, 'W_1KI': 1.408179823902395, 'W_D': 30.543249999999997, 'J_D': 736.6306570050716, 'W_D_1KI': 0.9178486642425698, 'J_D_1KI': 0.027582073631714693} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.0005.json b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.0005.json new file mode 100644 index 0000000..e7b3ed3 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.0005.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 18733, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 450000, "MATRIX_DENSITY": 0.0005, "TIME_S": 20.639018058776855, "TIME_S_1KI": 1.1017465466704133, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1175.502190952301, "W": 47.87, "J_1KI": 62.75034382919452, "W_1KI": 2.55538354774996, "W_D": 31.414249999999996, "J_D": 771.4125695033073, "W_D_1KI": 1.6769470987028237, "J_D_1KI": 0.0895183418941346} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.0005.output b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.0005.output new file mode 100644 index 0000000..2f47860 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.0005.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '30000', '-sd', '0.0005', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 450000, "MATRIX_DENSITY": 0.0005, "TIME_S": 1.1210110187530518} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 10, 29, ..., 449963, 449981, + 450000]), + col_indices=tensor([ 792, 5705, 11402, ..., 28541, 29300, 29723]), + values=tensor([0.4108, 0.9785, 0.1600, ..., 0.6171, 0.0607, 0.2902]), + size=(30000, 30000), nnz=450000, layout=torch.sparse_csr) +tensor([0.8871, 0.5462, 0.8388, ..., 0.2778, 0.5429, 0.3514]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 450000 +Density: 0.0005 +Time: 1.1210110187530518 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '18733', '-ss', '30000', '-sd', '0.0005', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 450000, "MATRIX_DENSITY": 0.0005, "TIME_S": 20.639018058776855} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 11, 20, ..., 449977, 449985, + 450000]), + col_indices=tensor([ 220, 1019, 9874, ..., 23783, 27634, 29111]), + values=tensor([0.9174, 0.1323, 0.6653, ..., 0.3636, 0.2491, 0.8467]), + size=(30000, 30000), nnz=450000, layout=torch.sparse_csr) +tensor([0.9099, 0.7629, 0.0246, ..., 0.7433, 0.9009, 0.8261]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 450000 +Density: 0.0005 +Time: 20.639018058776855 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 11, 20, ..., 449977, 449985, + 450000]), + col_indices=tensor([ 220, 1019, 9874, ..., 23783, 27634, 29111]), + values=tensor([0.9174, 0.1323, 0.6653, ..., 0.3636, 0.2491, 0.8467]), + size=(30000, 30000), nnz=450000, layout=torch.sparse_csr) +tensor([0.9099, 0.7629, 0.0246, ..., 0.7433, 0.9009, 0.8261]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 450000 +Density: 0.0005 +Time: 20.639018058776855 seconds + +[18.47, 17.86, 18.03, 18.06, 18.18, 18.04, 18.02, 21.6, 18.44, 17.85] +[47.87] +24.556135177612305 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 18733, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 450000, 'MATRIX_DENSITY': 0.0005, 'TIME_S': 20.639018058776855, 'TIME_S_1KI': 1.1017465466704133, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1175.502190952301, 'W': 47.87} +[18.47, 17.86, 18.03, 18.06, 18.18, 18.04, 18.02, 21.6, 18.44, 17.85, 18.05, 18.82, 17.94, 18.23, 17.84, 17.88, 17.89, 18.05, 18.07, 17.96] +329.11500000000007 +16.455750000000002 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 18733, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 450000, 'MATRIX_DENSITY': 0.0005, 'TIME_S': 20.639018058776855, 'TIME_S_1KI': 1.1017465466704133, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1175.502190952301, 'W': 47.87, 'J_1KI': 62.75034382919452, 'W_1KI': 2.55538354774996, 'W_D': 31.414249999999996, 'J_D': 771.4125695033073, 'W_D_1KI': 1.6769470987028237, 'J_D_1KI': 0.0895183418941346} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.001.json b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.001.json new file mode 100644 index 0000000..a79d073 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.001.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 11640, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 900000, "MATRIX_DENSITY": 0.001, "TIME_S": 20.839291095733643, "TIME_S_1KI": 1.790317104444471, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1197.1045216155053, "W": 48.31, "J_1KI": 102.84403106662417, "W_1KI": 4.150343642611684, "W_D": 31.900750000000002, "J_D": 790.4891754900814, "W_D_1KI": 2.7406142611683855, "J_D_1KI": 0.2354479605814764} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.001.output b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.001.output new file mode 100644 index 0000000..4ec6b31 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.001.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '30000', '-sd', '0.001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 900000, "MATRIX_DENSITY": 0.001, "TIME_S": 1.804121494293213} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 31, 61, ..., 899944, 899973, + 900000]), + col_indices=tensor([ 214, 468, 621, ..., 27947, 28785, 29886]), + values=tensor([0.5497, 0.2471, 0.3999, ..., 0.8981, 0.5437, 0.4393]), + size=(30000, 30000), nnz=900000, layout=torch.sparse_csr) +tensor([0.3080, 0.4231, 0.6575, ..., 0.3533, 0.8148, 0.0442]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 900000 +Density: 0.001 +Time: 1.804121494293213 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '11640', '-ss', '30000', '-sd', '0.001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 900000, "MATRIX_DENSITY": 0.001, "TIME_S": 20.839291095733643} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 32, 54, ..., 899931, 899971, + 900000]), + col_indices=tensor([ 1264, 2511, 3373, ..., 24630, 25069, 29984]), + values=tensor([0.3611, 0.1242, 0.5465, ..., 0.3866, 0.2436, 0.7931]), + size=(30000, 30000), nnz=900000, layout=torch.sparse_csr) +tensor([0.0647, 0.2891, 0.3015, ..., 0.6009, 0.0656, 0.2202]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 900000 +Density: 0.001 +Time: 20.839291095733643 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 32, 54, ..., 899931, 899971, + 900000]), + col_indices=tensor([ 1264, 2511, 3373, ..., 24630, 25069, 29984]), + values=tensor([0.3611, 0.1242, 0.5465, ..., 0.3866, 0.2436, 0.7931]), + size=(30000, 30000), nnz=900000, layout=torch.sparse_csr) +tensor([0.0647, 0.2891, 0.3015, ..., 0.6009, 0.0656, 0.2202]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 900000 +Density: 0.001 +Time: 20.839291095733643 seconds + +[18.3, 17.96, 21.33, 17.75, 18.29, 18.22, 17.9, 17.9, 18.0, 18.1] +[48.31] +24.779642343521118 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 11640, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 900000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 20.839291095733643, 'TIME_S_1KI': 1.790317104444471, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1197.1045216155053, 'W': 48.31} +[18.3, 17.96, 21.33, 17.75, 18.29, 18.22, 17.9, 17.9, 18.0, 18.1, 18.54, 17.81, 18.9, 17.85, 18.01, 17.86, 18.01, 17.93, 18.05, 17.89] +328.185 +16.40925 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 11640, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 900000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 20.839291095733643, 'TIME_S_1KI': 1.790317104444471, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1197.1045216155053, 'W': 48.31, 'J_1KI': 102.84403106662417, 'W_1KI': 4.150343642611684, 'W_D': 31.900750000000002, 'J_D': 790.4891754900814, 'W_D_1KI': 2.7406142611683855, 'J_D_1KI': 0.2354479605814764} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.005.json b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.005.json new file mode 100644 index 0000000..4201fbb --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.005.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 2157, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 4500000, "MATRIX_DENSITY": 0.005, "TIME_S": 20.902870178222656, "TIME_S_1KI": 9.690714037191773, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1295.0206210327149, "W": 48.72, "J_1KI": 600.3804455413606, "W_1KI": 22.58692628650904, "W_D": 32.4265, "J_D": 861.9250034465789, "W_D_1KI": 15.03314789058878, "J_D_1KI": 6.96947051024051} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.005.output b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.005.output new file mode 100644 index 0000000..98b9204 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.005.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '30000', '-sd', '0.005', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 4500000, "MATRIX_DENSITY": 0.005, "TIME_S": 9.735076665878296} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 157, 297, ..., 4499702, + 4499846, 4500000]), + col_indices=tensor([ 52, 107, 115, ..., 29647, 29660, 29851]), + values=tensor([0.0696, 0.1442, 0.4515, ..., 0.9885, 0.1135, 0.9052]), + size=(30000, 30000), nnz=4500000, layout=torch.sparse_csr) +tensor([0.6712, 0.0504, 0.9004, ..., 0.5534, 0.8230, 0.9335]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 4500000 +Density: 0.005 +Time: 9.735076665878296 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '2157', '-ss', '30000', '-sd', '0.005', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 4500000, "MATRIX_DENSITY": 0.005, "TIME_S": 20.902870178222656} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 143, 285, ..., 4499715, + 4499860, 4500000]), + col_indices=tensor([ 156, 239, 621, ..., 29559, 29678, 29713]), + values=tensor([0.8567, 0.6051, 0.6450, ..., 0.7880, 0.1108, 0.6079]), + size=(30000, 30000), nnz=4500000, layout=torch.sparse_csr) +tensor([0.9332, 0.3072, 0.5823, ..., 0.4039, 0.3932, 0.8837]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 4500000 +Density: 0.005 +Time: 20.902870178222656 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 143, 285, ..., 4499715, + 4499860, 4500000]), + col_indices=tensor([ 156, 239, 621, ..., 29559, 29678, 29713]), + values=tensor([0.8567, 0.6051, 0.6450, ..., 0.7880, 0.1108, 0.6079]), + size=(30000, 30000), nnz=4500000, layout=torch.sparse_csr) +tensor([0.9332, 0.3072, 0.5823, ..., 0.4039, 0.3932, 0.8837]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 4500000 +Density: 0.005 +Time: 20.902870178222656 seconds + +[18.31, 18.87, 18.08, 17.97, 18.03, 17.81, 18.09, 17.94, 17.97, 17.95] +[48.72] +26.580883026123047 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 2157, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 4500000, 'MATRIX_DENSITY': 0.005, 'TIME_S': 20.902870178222656, 'TIME_S_1KI': 9.690714037191773, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1295.0206210327149, 'W': 48.72} +[18.31, 18.87, 18.08, 17.97, 18.03, 17.81, 18.09, 17.94, 17.97, 17.95, 18.88, 17.75, 18.5, 17.89, 18.12, 18.19, 18.06, 17.82, 18.14, 18.14] +325.87 +16.2935 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 2157, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 4500000, 'MATRIX_DENSITY': 0.005, 'TIME_S': 20.902870178222656, 'TIME_S_1KI': 9.690714037191773, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1295.0206210327149, 'W': 48.72, 'J_1KI': 600.3804455413606, 'W_1KI': 22.58692628650904, 'W_D': 32.4265, 'J_D': 861.9250034465789, 'W_D_1KI': 15.03314789058878, 'J_D_1KI': 6.96947051024051} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.01.json b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.01.json new file mode 100644 index 0000000..46b364e --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.01.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 9000000, "MATRIX_DENSITY": 0.01, "TIME_S": 24.740506410598755, "TIME_S_1KI": 24.740506410598755, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1555.6125507831573, "W": 48.26, "J_1KI": 1555.6125507831573, "W_1KI": 48.26, "W_D": 31.86275, "J_D": 1027.063692550063, "W_D_1KI": 31.862749999999995, "J_D_1KI": 31.862749999999995} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.01.output b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.01.output new file mode 100644 index 0000000..5a27d6d --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.01.output @@ -0,0 +1,45 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '30000', '-sd', '0.01', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 9000000, "MATRIX_DENSITY": 0.01, "TIME_S": 24.740506410598755} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 261, 540, ..., 8999386, + 8999702, 9000000]), + col_indices=tensor([ 87, 89, 474, ..., 29936, 29945, 29986]), + values=tensor([0.1960, 0.4552, 0.3026, ..., 0.0541, 0.8647, 0.1885]), + size=(30000, 30000), nnz=9000000, layout=torch.sparse_csr) +tensor([0.5184, 0.4657, 0.5829, ..., 0.6124, 0.1016, 0.6788]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 9000000 +Density: 0.01 +Time: 24.740506410598755 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 261, 540, ..., 8999386, + 8999702, 9000000]), + col_indices=tensor([ 87, 89, 474, ..., 29936, 29945, 29986]), + values=tensor([0.1960, 0.4552, 0.3026, ..., 0.0541, 0.8647, 0.1885]), + size=(30000, 30000), nnz=9000000, layout=torch.sparse_csr) +tensor([0.5184, 0.4657, 0.5829, ..., 0.6124, 0.1016, 0.6788]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 9000000 +Density: 0.01 +Time: 24.740506410598755 seconds + +[18.57, 18.03, 17.81, 17.79, 18.07, 17.83, 17.76, 17.79, 22.13, 17.94] +[48.26] +32.233994007110596 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 9000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 24.740506410598755, 'TIME_S_1KI': 24.740506410598755, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1555.6125507831573, 'W': 48.26} +[18.57, 18.03, 17.81, 17.79, 18.07, 17.83, 17.76, 17.79, 22.13, 17.94, 18.41, 18.28, 18.04, 17.85, 18.14, 17.76, 17.85, 17.98, 18.37, 18.01] +327.945 +16.39725 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 9000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 24.740506410598755, 'TIME_S_1KI': 24.740506410598755, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1555.6125507831573, 'W': 48.26, 'J_1KI': 1555.6125507831573, 'W_1KI': 48.26, 'W_D': 31.86275, 'J_D': 1027.063692550063, 'W_D_1KI': 31.862749999999995, 'J_D_1KI': 31.862749999999995} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.05.json b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.05.json new file mode 100644 index 0000000..e69de29 diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.05.output b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.05.output new file mode 100644 index 0000000..1e221b3 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.05.output @@ -0,0 +1,10 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '30000', '-sd', '0.05', '-c', '1'] +Traceback (most recent call last): + File "/nfshomes/vut/ampere_research/pytorch/run.py", line 129, in + program_result = run_program(program( + ^^^^^^^^^^^^^^^^^^^^ + File "/nfshomes/vut/ampere_research/pytorch/run.py", line 95, in run_program + process.check_returncode() + File "/usr/lib64/python3.11/subprocess.py", line 502, in check_returncode + raise CalledProcessError(self.returncode, self.args, self.stdout, +subprocess.CalledProcessError: Command '['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '30000', '-sd', '0.05', '-c', '1']' died with . diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.1.json b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.1.json new file mode 100644 index 0000000..e69de29 diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.1.output b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.1.output new file mode 100644 index 0000000..3d666e4 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_0.1.output @@ -0,0 +1,10 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '30000', '-sd', '0.1', '-c', '1'] +Traceback (most recent call last): + File "/nfshomes/vut/ampere_research/pytorch/run.py", line 129, in + program_result = run_program(program( + ^^^^^^^^^^^^^^^^^^^^ + File "/nfshomes/vut/ampere_research/pytorch/run.py", line 95, in run_program + process.check_returncode() + File "/usr/lib64/python3.11/subprocess.py", line 502, in check_returncode + raise CalledProcessError(self.returncode, self.args, self.stdout, +subprocess.CalledProcessError: Command '['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '30000', '-sd', '0.1', '-c', '1']' died with . diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_1e-05.json b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_1e-05.json new file mode 100644 index 0000000..0a79d7f --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 107895, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 9000, "MATRIX_DENSITY": 1e-05, "TIME_S": 21.02440118789673, "TIME_S_1KI": 0.1948598284248272, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1153.7907242584229, "W": 46.480000000000004, "J_1KI": 10.69364404521454, "W_1KI": 0.4307891931970898, "W_D": 30.00775, "J_D": 744.893795306921, "W_D_1KI": 0.2781199314148014, "J_D_1KI": 0.002577690638257578} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_1e-05.output b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_1e-05.output new file mode 100644 index 0000000..b924b07 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_30000_1e-05.output @@ -0,0 +1,81 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '30000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 9000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.21645355224609375} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 1, ..., 8999, 9000, 9000]), + col_indices=tensor([14460, 16831, 822, ..., 6744, 9809, 7337]), + values=tensor([0.8017, 0.3190, 0.3138, ..., 0.7835, 0.9662, 0.5600]), + size=(30000, 30000), nnz=9000, layout=torch.sparse_csr) +tensor([0.9173, 0.3762, 0.0968, ..., 0.4714, 0.2077, 0.2375]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 9000 +Density: 1e-05 +Time: 0.21645355224609375 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '97018', '-ss', '30000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 9000, "MATRIX_DENSITY": 1e-05, "TIME_S": 18.88284707069397} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 9000, 9000, 9000]), + col_indices=tensor([ 9904, 14426, 27453, ..., 21883, 11984, 20369]), + values=tensor([0.0383, 0.4855, 0.7841, ..., 0.2563, 0.0898, 0.2306]), + size=(30000, 30000), nnz=9000, layout=torch.sparse_csr) +tensor([0.3139, 0.0953, 0.3077, ..., 0.3327, 0.7858, 0.4046]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 9000 +Density: 1e-05 +Time: 18.88284707069397 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '107895', '-ss', '30000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [30000, 30000], "MATRIX_ROWS": 30000, "MATRIX_SIZE": 900000000, "MATRIX_NNZ": 9000, "MATRIX_DENSITY": 1e-05, "TIME_S": 21.02440118789673} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 9000, 9000, 9000]), + col_indices=tensor([ 4725, 5479, 22893, ..., 1358, 17086, 18996]), + values=tensor([0.5818, 0.4877, 0.3711, ..., 0.0217, 0.6305, 0.8996]), + size=(30000, 30000), nnz=9000, layout=torch.sparse_csr) +tensor([0.9504, 0.0026, 0.0759, ..., 0.7751, 0.7432, 0.9903]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 9000 +Density: 1e-05 +Time: 21.02440118789673 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 9000, 9000, 9000]), + col_indices=tensor([ 4725, 5479, 22893, ..., 1358, 17086, 18996]), + values=tensor([0.5818, 0.4877, 0.3711, ..., 0.0217, 0.6305, 0.8996]), + size=(30000, 30000), nnz=9000, layout=torch.sparse_csr) +tensor([0.9504, 0.0026, 0.0759, ..., 0.7751, 0.7432, 0.9903]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([30000, 30000]) +Rows: 30000 +Size: 900000000 +NNZ: 9000 +Density: 1e-05 +Time: 21.02440118789673 seconds + +[18.53, 17.93, 18.18, 18.25, 18.09, 18.04, 18.17, 18.3, 18.1, 18.0] +[46.48] +24.82338047027588 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 107895, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 9000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 21.02440118789673, 'TIME_S_1KI': 0.1948598284248272, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1153.7907242584229, 'W': 46.480000000000004} +[18.53, 17.93, 18.18, 18.25, 18.09, 18.04, 18.17, 18.3, 18.1, 18.0, 21.62, 17.95, 18.69, 18.08, 18.06, 18.24, 18.11, 18.56, 18.5, 18.24] +329.44500000000005 +16.472250000000003 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 107895, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [30000, 30000], 'MATRIX_ROWS': 30000, 'MATRIX_SIZE': 900000000, 'MATRIX_NNZ': 9000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 21.02440118789673, 'TIME_S_1KI': 0.1948598284248272, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1153.7907242584229, 'W': 46.480000000000004, 'J_1KI': 10.69364404521454, 'W_1KI': 0.4307891931970898, 'W_D': 30.00775, 'J_D': 744.893795306921, 'W_D_1KI': 0.2781199314148014, 'J_D_1KI': 0.002577690638257578} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_500000_0.0001.json b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_500000_0.0001.json new file mode 100644 index 0000000..bdc1501 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_500000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 145.63775444030762, "TIME_S_1KI": 145.63775444030762, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 8970.34398475647, "W": 47.33, "J_1KI": 8970.34398475647, "W_1KI": 47.33, "W_D": 20.887749999999997, "J_D": 3958.806308210372, "W_D_1KI": 20.887749999999997, "J_D_1KI": 20.887749999999997} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_500000_0.0001.output b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_500000_0.0001.output new file mode 100644 index 0000000..53f20ab --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_500000_0.0001.output @@ -0,0 +1,47 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '500000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 145.63775444030762} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 54, 110, ..., 24999911, + 24999950, 25000000]), + col_indices=tensor([ 8959, 17884, 23107, ..., 479254, 480973, + 488093]), + values=tensor([0.9355, 0.2752, 0.4481, ..., 0.8378, 0.5445, 0.7672]), + size=(500000, 500000), nnz=25000000, layout=torch.sparse_csr) +tensor([0.8528, 0.7383, 0.2866, ..., 0.1948, 0.0294, 0.9953]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 25000000 +Density: 0.0001 +Time: 145.63775444030762 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 54, 110, ..., 24999911, + 24999950, 25000000]), + col_indices=tensor([ 8959, 17884, 23107, ..., 479254, 480973, + 488093]), + values=tensor([0.9355, 0.2752, 0.4481, ..., 0.8378, 0.5445, 0.7672]), + size=(500000, 500000), nnz=25000000, layout=torch.sparse_csr) +tensor([0.8528, 0.7383, 0.2866, ..., 0.1948, 0.0294, 0.9953]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 25000000 +Density: 0.0001 +Time: 145.63775444030762 seconds + +[18.47, 18.19, 18.09, 17.89, 17.96, 17.92, 17.83, 17.75, 17.84, 19.05] +[47.33] +189.52765655517578 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 145.63775444030762, 'TIME_S_1KI': 145.63775444030762, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 8970.34398475647, 'W': 47.33} +[18.47, 18.19, 18.09, 17.89, 17.96, 17.92, 17.83, 17.75, 17.84, 19.05, 46.69, 47.22, 47.59, 46.72, 46.73, 40.63, 39.32, 36.13, 23.63, 30.6] +528.845 +26.44225 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 145.63775444030762, 'TIME_S_1KI': 145.63775444030762, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 8970.34398475647, 'W': 47.33, 'J_1KI': 8970.34398475647, 'W_1KI': 47.33, 'W_D': 20.887749999999997, 'J_D': 3958.806308210372, 'W_D_1KI': 20.887749999999997, 'J_D_1KI': 20.887749999999997} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_500000_1e-05.json b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_500000_1e-05.json new file mode 100644 index 0000000..4c5f481 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_500000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 1584, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 21.39402437210083, "TIME_S_1KI": 13.506328517740423, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1269.1197284793855, "W": 49.09, "J_1KI": 801.2119497975918, "W_1KI": 30.99116161616162, "W_D": 32.84400000000001, "J_D": 849.1132279930117, "W_D_1KI": 20.73484848484849, "J_D_1KI": 13.090182124273037} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_500000_1e-05.output b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_500000_1e-05.output new file mode 100644 index 0000000..fddfb78 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_500000_1e-05.output @@ -0,0 +1,68 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '500000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 13.255852460861206} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 7, 12, ..., 2499986, + 2499994, 2500000]), + col_indices=tensor([ 32665, 199892, 257011, ..., 396065, 419080, + 487395]), + values=tensor([0.3748, 0.5935, 0.2005, ..., 0.1065, 0.8464, 0.2707]), + size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.0132, 0.8881, 0.5277, ..., 0.7521, 0.8271, 0.6760]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 2500000 +Density: 1e-05 +Time: 13.255852460861206 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1584', '-ss', '500000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 21.39402437210083} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 9, 15, ..., 2499992, + 2499996, 2500000]), + col_indices=tensor([ 21234, 111933, 179128, ..., 123034, 350119, + 388488]), + values=tensor([0.5221, 0.0977, 0.5310, ..., 0.7164, 0.7480, 0.4663]), + size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.3196, 0.7899, 0.9317, ..., 0.3730, 0.0273, 0.1855]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 2500000 +Density: 1e-05 +Time: 21.39402437210083 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 9, 15, ..., 2499992, + 2499996, 2500000]), + col_indices=tensor([ 21234, 111933, 179128, ..., 123034, 350119, + 388488]), + values=tensor([0.5221, 0.0977, 0.5310, ..., 0.7164, 0.7480, 0.4663]), + size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.3196, 0.7899, 0.9317, ..., 0.3730, 0.0273, 0.1855]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 2500000 +Density: 1e-05 +Time: 21.39402437210083 seconds + +[18.22, 18.42, 18.08, 18.01, 17.97, 17.95, 18.16, 18.01, 18.24, 17.86] +[49.09] +25.852917671203613 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 1584, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 21.39402437210083, 'TIME_S_1KI': 13.506328517740423, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1269.1197284793855, 'W': 49.09} +[18.22, 18.42, 18.08, 18.01, 17.97, 17.95, 18.16, 18.01, 18.24, 17.86, 18.17, 18.05, 17.89, 17.96, 18.01, 17.98, 17.96, 17.9, 18.04, 18.33] +324.91999999999996 +16.246 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 1584, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 21.39402437210083, 'TIME_S_1KI': 13.506328517740423, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1269.1197284793855, 'W': 49.09, 'J_1KI': 801.2119497975918, 'W_1KI': 30.99116161616162, 'W_D': 32.84400000000001, 'J_D': 849.1132279930117, 'W_D_1KI': 20.73484848484849, 'J_D_1KI': 13.090182124273037} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.0001.json b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.0001.json new file mode 100644 index 0000000..e4cd738 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 18145, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 20.748866319656372, "TIME_S_1KI": 1.1435032416454325, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1163.7240363693238, "W": 47.52, "J_1KI": 64.13469475719613, "W_1KI": 2.6189032791402593, "W_D": 31.13875, "J_D": 762.5612760415673, "W_D_1KI": 1.7161063653899147, "J_D_1KI": 0.09457736926921546} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.0001.output b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.0001.output new file mode 100644 index 0000000..a874d29 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.0001.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 1.1573309898376465} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 7, 12, ..., 249987, 249995, + 250000]), + col_indices=tensor([ 2662, 3637, 9309, ..., 20434, 25231, 37285]), + values=tensor([0.2333, 0.4961, 0.7423, ..., 0.5095, 0.9257, 0.2343]), + size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) +tensor([0.2799, 0.1370, 0.8773, ..., 0.1897, 0.8081, 0.5839]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 250000 +Density: 0.0001 +Time: 1.1573309898376465 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '18145', '-ss', '50000', '-sd', '0.0001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 20.748866319656372} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 3, 8, ..., 249992, 249993, + 250000]), + col_indices=tensor([ 4160, 33356, 44413, ..., 34267, 38517, 46233]), + values=tensor([0.6958, 0.8946, 0.2330, ..., 0.2200, 0.1570, 0.6240]), + size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) +tensor([0.7770, 0.7832, 0.7648, ..., 0.3539, 0.1104, 0.8005]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 250000 +Density: 0.0001 +Time: 20.748866319656372 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 3, 8, ..., 249992, 249993, + 250000]), + col_indices=tensor([ 4160, 33356, 44413, ..., 34267, 38517, 46233]), + values=tensor([0.6958, 0.8946, 0.2330, ..., 0.2200, 0.1570, 0.6240]), + size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) +tensor([0.7770, 0.7832, 0.7648, ..., 0.3539, 0.1104, 0.8005]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 250000 +Density: 0.0001 +Time: 20.748866319656372 seconds + +[18.17, 18.03, 18.03, 18.1, 17.95, 18.76, 18.0, 18.04, 18.64, 21.07] +[47.52] +24.489142179489136 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 18145, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 20.748866319656372, 'TIME_S_1KI': 1.1435032416454325, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1163.7240363693238, 'W': 47.52} +[18.17, 18.03, 18.03, 18.1, 17.95, 18.76, 18.0, 18.04, 18.64, 21.07, 18.03, 17.85, 18.06, 18.05, 18.34, 17.99, 17.97, 18.26, 17.91, 18.02] +327.625 +16.38125 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 18145, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 20.748866319656372, 'TIME_S_1KI': 1.1435032416454325, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1163.7240363693238, 'W': 47.52, 'J_1KI': 64.13469475719613, 'W_1KI': 2.6189032791402593, 'W_D': 31.13875, 'J_D': 762.5612760415673, 'W_D_1KI': 1.7161063653899147, 'J_D_1KI': 0.09457736926921546} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.0005.json b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.0005.json new file mode 100644 index 0000000..f35b37b --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.0005.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 8093, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.0005, "TIME_S": 20.65882921218872, "TIME_S_1KI": 2.5526787609278045, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1204.7929471635819, "W": 48.53, "J_1KI": 148.86852182918346, "W_1KI": 5.996540219943161, "W_D": 32.0905, "J_D": 796.6702672770023, "W_D_1KI": 3.965216854071419, "J_D_1KI": 0.48995636402711223} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.0005.output b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.0005.output new file mode 100644 index 0000000..e222138 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.0005.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '0.0005', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.0005, "TIME_S": 2.594694137573242} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 27, 51, ..., 1249948, + 1249974, 1250000]), + col_indices=tensor([ 1900, 3832, 3916, ..., 43370, 44397, 46024]), + values=tensor([0.8523, 0.5318, 0.4293, ..., 0.0706, 0.5129, 0.4581]), + size=(50000, 50000), nnz=1250000, layout=torch.sparse_csr) +tensor([0.7048, 0.2686, 0.1617, ..., 0.3130, 0.5850, 0.3952]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 1250000 +Density: 0.0005 +Time: 2.594694137573242 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '8093', '-ss', '50000', '-sd', '0.0005', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 1250000, "MATRIX_DENSITY": 0.0005, "TIME_S": 20.65882921218872} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 31, 51, ..., 1249949, + 1249978, 1250000]), + col_indices=tensor([ 2007, 2541, 6490, ..., 44052, 45524, 48586]), + values=tensor([0.7205, 0.3330, 0.8983, ..., 0.6824, 0.5041, 0.2342]), + size=(50000, 50000), nnz=1250000, layout=torch.sparse_csr) +tensor([0.2974, 0.0968, 0.2938, ..., 0.7419, 0.3048, 0.3649]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 1250000 +Density: 0.0005 +Time: 20.65882921218872 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 31, 51, ..., 1249949, + 1249978, 1250000]), + col_indices=tensor([ 2007, 2541, 6490, ..., 44052, 45524, 48586]), + values=tensor([0.7205, 0.3330, 0.8983, ..., 0.6824, 0.5041, 0.2342]), + size=(50000, 50000), nnz=1250000, layout=torch.sparse_csr) +tensor([0.2974, 0.0968, 0.2938, ..., 0.7419, 0.3048, 0.3649]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 1250000 +Density: 0.0005 +Time: 20.65882921218872 seconds + +[18.26, 17.93, 19.82, 19.92, 18.14, 18.3, 17.92, 18.17, 18.01, 17.89] +[48.53] +24.825735569000244 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 8093, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 1250000, 'MATRIX_DENSITY': 0.0005, 'TIME_S': 20.65882921218872, 'TIME_S_1KI': 2.5526787609278045, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1204.7929471635819, 'W': 48.53} +[18.26, 17.93, 19.82, 19.92, 18.14, 18.3, 17.92, 18.17, 18.01, 17.89, 18.17, 18.47, 18.36, 17.94, 18.08, 17.71, 18.06, 18.03, 17.85, 17.84] +328.79 +16.439500000000002 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 8093, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 1250000, 'MATRIX_DENSITY': 0.0005, 'TIME_S': 20.65882921218872, 'TIME_S_1KI': 2.5526787609278045, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1204.7929471635819, 'W': 48.53, 'J_1KI': 148.86852182918346, 'W_1KI': 5.996540219943161, 'W_D': 32.0905, 'J_D': 796.6702672770023, 'W_D_1KI': 3.965216854071419, 'J_D_1KI': 0.48995636402711223} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.001.json b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.001.json new file mode 100644 index 0000000..b01cbb8 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.001.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 3914, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 20.652085304260254, "TIME_S_1KI": 5.276465330674567, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1237.7624758052825, "W": 48.73, "J_1KI": 316.2397740943491, "W_1KI": 12.450178845171179, "W_D": 32.29675, "J_D": 820.3510207359792, "W_D_1KI": 8.25159683188554, "J_D_1KI": 2.1082260684429075} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.001.output b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.001.output new file mode 100644 index 0000000..b99ed97 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.001.output @@ -0,0 +1,65 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '0.001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 5.365004062652588} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 43, 96, ..., 2499913, + 2499951, 2500000]), + col_indices=tensor([ 152, 193, 2640, ..., 47928, 48233, 48479]), + values=tensor([0.0424, 0.9841, 0.8826, ..., 0.5350, 0.0103, 0.5454]), + size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.5585, 0.2658, 0.0418, ..., 0.1878, 0.1276, 0.9658]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 2500000 +Density: 0.001 +Time: 5.365004062652588 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '3914', '-ss', '50000', '-sd', '0.001', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 20.652085304260254} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 43, 92, ..., 2499909, + 2499953, 2500000]), + col_indices=tensor([ 375, 697, 898, ..., 48167, 48194, 49268]), + values=tensor([0.2181, 0.7785, 0.7713, ..., 0.8896, 0.2915, 0.3579]), + size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.4723, 0.0239, 0.8312, ..., 0.6749, 0.1846, 0.8368]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 2500000 +Density: 0.001 +Time: 20.652085304260254 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 43, 92, ..., 2499909, + 2499953, 2500000]), + col_indices=tensor([ 375, 697, 898, ..., 48167, 48194, 49268]), + values=tensor([0.2181, 0.7785, 0.7713, ..., 0.8896, 0.2915, 0.3579]), + size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.4723, 0.0239, 0.8312, ..., 0.6749, 0.1846, 0.8368]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 2500000 +Density: 0.001 +Time: 20.652085304260254 seconds + +[18.41, 18.63, 18.36, 18.08, 17.92, 18.1, 17.9, 18.13, 17.86, 17.84] +[48.73] +25.40042018890381 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 3914, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 20.652085304260254, 'TIME_S_1KI': 5.276465330674567, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1237.7624758052825, 'W': 48.73} +[18.41, 18.63, 18.36, 18.08, 17.92, 18.1, 17.9, 18.13, 17.86, 17.84, 18.24, 18.29, 17.98, 17.83, 18.07, 17.97, 17.88, 21.28, 17.93, 18.42] +328.66499999999996 +16.433249999999997 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 3914, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 20.652085304260254, 'TIME_S_1KI': 5.276465330674567, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1237.7624758052825, 'W': 48.73, 'J_1KI': 316.2397740943491, 'W_1KI': 12.450178845171179, 'W_D': 32.29675, 'J_D': 820.3510207359792, 'W_D_1KI': 8.25159683188554, 'J_D_1KI': 2.1082260684429075} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.005.json b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.005.json new file mode 100644 index 0000000..b7790eb --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.005.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 0.005, "TIME_S": 35.204474687576294, "TIME_S_1KI": 35.204474687576294, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2211.0711840987206, "W": 48.25, "J_1KI": 2211.0711840987206, "W_1KI": 48.25, "W_D": 31.797500000000003, "J_D": 1457.1302793031932, "W_D_1KI": 31.797500000000007, "J_D_1KI": 31.797500000000007} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.005.output b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.005.output new file mode 100644 index 0000000..e6456ba --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.005.output @@ -0,0 +1,45 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '0.005', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 12500000, "MATRIX_DENSITY": 0.005, "TIME_S": 35.204474687576294} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 258, 483, ..., 12499493, + 12499749, 12500000]), + col_indices=tensor([ 83, 353, 999, ..., 49462, 49644, 49677]), + values=tensor([0.4021, 0.2117, 0.1170, ..., 0.4112, 0.6043, 0.8924]), + size=(50000, 50000), nnz=12500000, layout=torch.sparse_csr) +tensor([0.5812, 0.1638, 0.8038, ..., 0.6848, 0.2982, 0.3371]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 12500000 +Density: 0.005 +Time: 35.204474687576294 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 258, 483, ..., 12499493, + 12499749, 12500000]), + col_indices=tensor([ 83, 353, 999, ..., 49462, 49644, 49677]), + values=tensor([0.4021, 0.2117, 0.1170, ..., 0.4112, 0.6043, 0.8924]), + size=(50000, 50000), nnz=12500000, layout=torch.sparse_csr) +tensor([0.5812, 0.1638, 0.8038, ..., 0.6848, 0.2982, 0.3371]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 12500000 +Density: 0.005 +Time: 35.204474687576294 seconds + +[18.49, 20.96, 18.34, 17.83, 18.46, 17.92, 17.89, 18.07, 18.14, 17.83] +[48.25] +45.82530951499939 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 12500000, 'MATRIX_DENSITY': 0.005, 'TIME_S': 35.204474687576294, 'TIME_S_1KI': 35.204474687576294, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2211.0711840987206, 'W': 48.25} +[18.49, 20.96, 18.34, 17.83, 18.46, 17.92, 17.89, 18.07, 18.14, 17.83, 18.4, 17.93, 18.23, 18.54, 18.36, 18.08, 18.03, 17.87, 18.07, 17.94] +329.04999999999995 +16.452499999999997 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 12500000, 'MATRIX_DENSITY': 0.005, 'TIME_S': 35.204474687576294, 'TIME_S_1KI': 35.204474687576294, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2211.0711840987206, 'W': 48.25, 'J_1KI': 2211.0711840987206, 'W_1KI': 48.25, 'W_D': 31.797500000000003, 'J_D': 1457.1302793031932, 'W_D_1KI': 31.797500000000007, 'J_D_1KI': 31.797500000000007} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.01.json b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.01.json new file mode 100644 index 0000000..17bdd0a --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.01.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.01, "TIME_S": 71.75394105911255, "TIME_S_1KI": 71.75394105911255, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 5446.096093916894, "W": 46.45, "J_1KI": 5446.096093916894, "W_1KI": 46.45, "W_D": 30.238500000000002, "J_D": 3545.3557962520126, "W_D_1KI": 30.238500000000002, "J_D_1KI": 30.238500000000002} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.01.output b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.01.output new file mode 100644 index 0000000..0c0f915 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_0.01.output @@ -0,0 +1,45 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '0.01', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000000, "MATRIX_DENSITY": 0.01, "TIME_S": 71.75394105911255} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 525, 1034, ..., 24998963, + 24999515, 25000000]), + col_indices=tensor([ 177, 318, 326, ..., 49654, 49818, 49958]), + values=tensor([0.8680, 0.9679, 0.4484, ..., 0.6827, 0.9201, 0.6726]), + size=(50000, 50000), nnz=25000000, layout=torch.sparse_csr) +tensor([0.0409, 0.1065, 0.8971, ..., 0.2398, 0.1614, 0.8383]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000000 +Density: 0.01 +Time: 71.75394105911255 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 525, 1034, ..., 24998963, + 24999515, 25000000]), + col_indices=tensor([ 177, 318, 326, ..., 49654, 49818, 49958]), + values=tensor([0.8680, 0.9679, 0.4484, ..., 0.6827, 0.9201, 0.6726]), + size=(50000, 50000), nnz=25000000, layout=torch.sparse_csr) +tensor([0.0409, 0.1065, 0.8971, ..., 0.2398, 0.1614, 0.8383]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000000 +Density: 0.01 +Time: 71.75394105911255 seconds + +[18.42, 17.83, 17.87, 17.83, 18.36, 17.93, 17.78, 17.97, 18.31, 17.74] +[46.45] +117.24641752243042 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 71.75394105911255, 'TIME_S_1KI': 71.75394105911255, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 5446.096093916894, 'W': 46.45} +[18.42, 17.83, 17.87, 17.83, 18.36, 17.93, 17.78, 17.97, 18.31, 17.74, 18.62, 17.9, 18.04, 17.88, 18.17, 17.99, 17.87, 18.14, 17.94, 18.06] +324.23 +16.2115 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 71.75394105911255, 'TIME_S_1KI': 71.75394105911255, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 5446.096093916894, 'W': 46.45, 'J_1KI': 5446.096093916894, 'W_1KI': 46.45, 'W_D': 30.238500000000002, 'J_D': 3545.3557962520126, 'W_D_1KI': 30.238500000000002, 'J_D_1KI': 30.238500000000002} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_1e-05.json b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_1e-05.json new file mode 100644 index 0000000..cd77447 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 1, "ITERATIONS": 42431, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 20.11350655555725, "TIME_S_1KI": 0.47402857711478047, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1109.2391641235351, "W": 46.64, "J_1KI": 26.142187648736424, "W_1KI": 1.0991963422969055, "W_D": 30.3375, "J_D": 721.5167912006378, "W_D_1KI": 0.7149843274964058, "J_D_1KI": 0.01685051795848332} diff --git a/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_1e-05.output b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_1e-05.output new file mode 100644 index 0000000..0874c10 --- /dev/null +++ b/pytorch/output_synthetic_1core_old/xeon_4216_1_csr_20_10_10_synthetic_50000_1e-05.output @@ -0,0 +1,62 @@ +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.49491095542907715} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 24999, 24999, 25000]), + col_indices=tensor([48293, 21867, 31172, ..., 8085, 31082, 49903]), + values=tensor([0.7536, 0.0496, 0.9146, ..., 0.3335, 0.2529, 0.5168]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.5953, 0.1156, 0.8276, ..., 0.3405, 0.8051, 0.4714]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 0.49491095542907715 seconds + +['apptainer', 'run', '--env', 'OMP_PROC_BIND=true', '--env', 'OMP_PLACES={0:1}', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '42431', '-ss', '50000', '-sd', '1e-05', '-c', '1'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 20.11350655555725} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 25000, 25000, 25000]), + col_indices=tensor([ 5529, 8530, 10143, ..., 49628, 3004, 27732]), + values=tensor([0.0410, 0.4304, 0.2964, ..., 0.9705, 0.5689, 0.1235]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.9110, 0.1233, 0.5259, ..., 0.7671, 0.0751, 0.3217]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 20.11350655555725 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 25000, 25000, 25000]), + col_indices=tensor([ 5529, 8530, 10143, ..., 49628, 3004, 27732]), + values=tensor([0.0410, 0.4304, 0.2964, ..., 0.9705, 0.5689, 0.1235]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.9110, 0.1233, 0.5259, ..., 0.7671, 0.0751, 0.3217]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 20.11350655555725 seconds + +[18.38, 18.06, 17.97, 17.82, 18.09, 18.18, 18.18, 18.07, 18.17, 18.01] +[46.64] +23.783000946044922 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 42431, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 20.11350655555725, 'TIME_S_1KI': 0.47402857711478047, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1109.2391641235351, 'W': 46.64} +[18.38, 18.06, 17.97, 17.82, 18.09, 18.18, 18.18, 18.07, 18.17, 18.01, 18.57, 18.17, 17.88, 17.88, 17.9, 17.94, 18.68, 18.4, 18.2, 17.96] +326.05 +16.302500000000002 +{'CPU': 'Xeon 4216', 'CORES': 1, 'ITERATIONS': 42431, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 20.11350655555725, 'TIME_S_1KI': 0.47402857711478047, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1109.2391641235351, 'W': 46.64, 'J_1KI': 26.142187648736424, 'W_1KI': 1.0991963422969055, 'W_D': 30.3375, 'J_D': 721.5167912006378, 'W_D_1KI': 0.7149843274964058, 'J_D_1KI': 0.01685051795848332} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_100000_0.0001.json b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_100000_0.0001.json new file mode 100644 index 0000000..5cee3aa --- /dev/null +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_100000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 80, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 22.577640295028687, "TIME_S_1KI": 22.577640295028687, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1196.5292521381377, "W": 64.81606725703797, "J_1KI": 1196.5292521381377, "W_1KI": 64.81606725703797, "W_D": 45.67406725703797, "J_D": 843.1606521334647, "W_D_1KI": 45.67406725703797, "J_D_1KI": 45.67406725703797} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_100000_0.0001.output b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_100000_0.0001.output new file mode 100644 index 0000000..047a391 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_100000_0.0001.output @@ -0,0 +1,45 @@ +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 100000 -sd 0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 22.577640295028687} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 13, 26, ..., 999978, + 999989, 1000000]), + col_indices=tensor([16134, 16354, 24327, ..., 64689, 79970, 99510]), + values=tensor([0.0032, 0.4253, 0.4412, ..., 0.5357, 0.1333, 0.2349]), + size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.8413, 0.1731, 0.9001, ..., 0.4021, 0.4850, 0.1983]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 1000000 +Density: 0.0001 +Time: 22.577640295028687 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 13, 26, ..., 999978, + 999989, 1000000]), + col_indices=tensor([16134, 16354, 24327, ..., 64689, 79970, 99510]), + values=tensor([0.0032, 0.4253, 0.4412, ..., 0.5357, 0.1333, 0.2349]), + size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.8413, 0.1731, 0.9001, ..., 0.4021, 0.4850, 0.1983]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 1000000 +Density: 0.0001 +Time: 22.577640295028687 seconds + +[21.64, 21.64, 21.48, 21.36, 21.64, 21.36, 21.36, 21.28, 21.44, 21.36] +[21.12, 21.24, 21.32, 22.2, 24.84, 39.96, 57.72, 73.16, 89.8, 95.92, 95.4, 95.4, 93.32, 91.16, 90.92, 93.4, 92.2, 91.64] +18.46038031578064 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 22.577640295028687, 'TIME_S_1KI': 22.577640295028687, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1196.5292521381377, 'W': 64.81606725703797} +[21.64, 21.64, 21.48, 21.36, 21.64, 21.36, 21.36, 21.28, 21.44, 21.36, 21.08, 20.96, 20.96, 21.0, 21.28, 21.08, 21.28, 21.12, 21.12, 20.88] +382.84000000000003 +19.142000000000003 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 22.577640295028687, 'TIME_S_1KI': 22.577640295028687, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1196.5292521381377, 'W': 64.81606725703797, 'J_1KI': 1196.5292521381377, 'W_1KI': 64.81606725703797, 'W_D': 45.67406725703797, 'J_D': 843.1606521334647, 'W_D_1KI': 45.67406725703797, 'J_D_1KI': 45.67406725703797} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_100000_1e-05.json b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_100000_1e-05.json new file mode 100644 index 0000000..15d76ee --- /dev/null +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_100000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 80, "ITERATIONS": 5444, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 15.66837453842163, "TIME_S_1KI": 2.878099658049528, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1209.8989781379698, "W": 61.815457006610345, "J_1KI": 222.24448533026631, "W_1KI": 11.354786371530189, "W_D": 42.416457006610344, "J_D": 830.2070464842318, "W_D_1KI": 7.791413851324457, "J_D_1KI": 1.4311928455776004} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_100000_1e-05.output b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_100000_1e-05.output new file mode 100644 index 0000000..529e04c --- /dev/null +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_100000_1e-05.output @@ -0,0 +1,85 @@ +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 100000 -sd 1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 2.735213041305542} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2, 3, ..., 99998, 100000, + 100000]), + col_indices=tensor([47108, 85356, 39968, ..., 81528, 26483, 51109]), + values=tensor([0.3148, 0.6992, 0.6314, ..., 0.5894, 0.0851, 0.0670]), + size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) +tensor([0.4890, 0.3896, 0.3852, ..., 0.6786, 0.1828, 0.3984]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 100000 +Density: 1e-05 +Time: 2.735213041305542 seconds + +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 3838 -ss 100000 -sd 1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 7.402097463607788} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2, 3, ..., 99999, 99999, + 100000]), + col_indices=tensor([ 1694, 16648, 92396, ..., 98787, 30932, 62089]), + values=tensor([0.4689, 0.5529, 0.8985, ..., 0.1212, 0.7499, 0.9985]), + size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) +tensor([0.8040, 0.7540, 0.7072, ..., 0.4394, 0.3265, 0.7941]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 100000 +Density: 1e-05 +Time: 7.402097463607788 seconds + +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 5444 -ss 100000 -sd 1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 15.66837453842163} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 99997, 100000, + 100000]), + col_indices=tensor([ 8956, 7966, 63353, ..., 28673, 30724, 93829]), + values=tensor([0.9652, 0.8395, 0.8363, ..., 0.6704, 0.2134, 0.9962]), + size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) +tensor([0.1215, 0.6198, 0.6986, ..., 0.9502, 0.5989, 0.9473]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 100000 +Density: 1e-05 +Time: 15.66837453842163 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 99997, 100000, + 100000]), + col_indices=tensor([ 8956, 7966, 63353, ..., 28673, 30724, 93829]), + values=tensor([0.9652, 0.8395, 0.8363, ..., 0.6704, 0.2134, 0.9962]), + size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) +tensor([0.1215, 0.6198, 0.6986, ..., 0.9502, 0.5989, 0.9473]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 100000 +Density: 1e-05 +Time: 15.66837453842163 seconds + +[21.92, 21.92, 22.08, 21.96, 21.68, 21.6, 21.44, 21.8, 21.6, 21.76] +[21.64, 21.56, 21.96, 22.76, 26.44, 43.68, 43.68, 58.28, 74.48, 87.48, 92.36, 91.24, 90.2, 88.56, 87.2, 86.36, 85.72, 85.72, 85.2] +19.572757959365845 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 5444, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 15.66837453842163, 'TIME_S_1KI': 2.878099658049528, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1209.8989781379698, 'W': 61.815457006610345} +[21.92, 21.92, 22.08, 21.96, 21.68, 21.6, 21.44, 21.8, 21.6, 21.76, 21.4, 21.32, 21.48, 21.48, 21.32, 21.52, 21.24, 21.16, 21.2, 21.28] +387.98 +19.399 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 5444, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 15.66837453842163, 'TIME_S_1KI': 2.878099658049528, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1209.8989781379698, 'W': 61.815457006610345, 'J_1KI': 222.24448533026631, 'W_1KI': 11.354786371530189, 'W_D': 42.416457006610344, 'J_D': 830.2070464842318, 'W_D_1KI': 7.791413851324457, 'J_D_1KI': 1.4311928455776004} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.0001.json b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.0001.json new file mode 100644 index 0000000..b31b4ad --- /dev/null +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 80, "ITERATIONS": 31990, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.162655591964722, "TIME_S_1KI": 0.3176822629560713, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 281.0764434432984, "W": 21.267196136821532, "J_1KI": 8.786384602791447, "W_1KI": 0.6648076316605669, "W_D": 2.733196136821533, "J_D": 36.12309984016423, "W_D_1KI": 0.08543907898785662, "J_D_1KI": 0.0026708058451971432} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.0001.output b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.0001.output new file mode 100644 index 0000000..3e5c97c --- /dev/null +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.0001.output @@ -0,0 +1,62 @@ +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 10000 -sd 0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.32822322845458984} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 3, 4, ..., 9997, 9998, 10000]), + col_indices=tensor([2721, 4826, 6729, ..., 6567, 802, 8084]), + values=tensor([0.9788, 0.8960, 0.9515, ..., 0.3823, 0.9672, 0.4403]), + size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) +tensor([0.1442, 0.5021, 0.5745, ..., 0.9716, 0.6255, 0.3521]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000 +Density: 0.0001 +Time: 0.32822322845458984 seconds + +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 31990 -ss 10000 -sd 0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.162655591964722} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2, 2, ..., 9997, 10000, 10000]), + col_indices=tensor([1219, 6055, 1582, ..., 3506, 4664, 5684]), + values=tensor([0.3475, 0.3226, 0.1217, ..., 0.8742, 0.3097, 0.9052]), + size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) +tensor([0.3839, 0.3550, 0.5972, ..., 0.2550, 0.5835, 0.6125]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000 +Density: 0.0001 +Time: 10.162655591964722 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2, 2, ..., 9997, 10000, 10000]), + col_indices=tensor([1219, 6055, 1582, ..., 3506, 4664, 5684]), + values=tensor([0.3475, 0.3226, 0.1217, ..., 0.8742, 0.3097, 0.9052]), + size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) +tensor([0.3839, 0.3550, 0.5972, ..., 0.2550, 0.5835, 0.6125]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000 +Density: 0.0001 +Time: 10.162655591964722 seconds + +[20.68, 20.44, 20.44, 20.76, 20.52, 20.44, 20.48, 20.32, 20.48, 20.48] +[20.68, 20.88, 21.64, 22.32, 23.4, 23.4, 23.8, 24.24, 23.6, 23.6, 23.44, 23.48, 23.64] +13.216431617736816 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 31990, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.162655591964722, 'TIME_S_1KI': 0.3176822629560713, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 281.0764434432984, 'W': 21.267196136821532} +[20.68, 20.44, 20.44, 20.76, 20.52, 20.44, 20.48, 20.32, 20.48, 20.48, 20.56, 20.64, 20.48, 20.52, 20.48, 20.72, 20.72, 20.8, 20.92, 21.32] +370.67999999999995 +18.534 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 31990, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.162655591964722, 'TIME_S_1KI': 0.3176822629560713, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 281.0764434432984, 'W': 21.267196136821532, 'J_1KI': 8.786384602791447, 'W_1KI': 0.6648076316605669, 'W_D': 2.733196136821533, 'J_D': 36.12309984016423, 'W_D_1KI': 0.08543907898785662, 'J_D_1KI': 0.0026708058451971432} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.001.json b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.001.json new file mode 100644 index 0000000..44e0916 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.001.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 80, "ITERATIONS": 4642, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.39481520652771, "TIME_S_1KI": 2.2392966838706827, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 335.1584589004516, "W": 23.611594488388015, "J_1KI": 72.20130523490987, "W_1KI": 5.086513246098236, "W_D": 5.040594488388017, "J_D": 71.54950427007671, "W_D_1KI": 1.0858669729401156, "J_D_1KI": 0.23392222596728038} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.001.output b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.001.output new file mode 100644 index 0000000..12aea87 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.001.output @@ -0,0 +1,65 @@ +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 10000 -sd 0.001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 2.2614803314208984} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 12, 19, ..., 99975, 99988, + 100000]), + col_indices=tensor([ 662, 710, 3445, ..., 9576, 9602, 9965]), + values=tensor([0.0517, 0.2381, 0.9401, ..., 0.3987, 0.7682, 0.4070]), + size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) +tensor([0.1766, 0.1636, 0.7477, ..., 0.1192, 0.5625, 0.2605]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 100000 +Density: 0.001 +Time: 2.2614803314208984 seconds + +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 4642 -ss 10000 -sd 0.001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.39481520652771} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 7, 19, ..., 99983, 99997, + 100000]), + col_indices=tensor([ 82, 3146, 3840, ..., 8041, 8695, 8893]), + values=tensor([0.8450, 0.6541, 0.7727, ..., 0.8034, 0.8111, 0.1952]), + size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) +tensor([0.0486, 0.3621, 0.6684, ..., 0.7127, 0.4964, 0.1751]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 100000 +Density: 0.001 +Time: 10.39481520652771 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 7, 19, ..., 99983, 99997, + 100000]), + col_indices=tensor([ 82, 3146, 3840, ..., 8041, 8695, 8893]), + values=tensor([0.8450, 0.6541, 0.7727, ..., 0.8034, 0.8111, 0.1952]), + size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) +tensor([0.0486, 0.3621, 0.6684, ..., 0.7127, 0.4964, 0.1751]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 100000 +Density: 0.001 +Time: 10.39481520652771 seconds + +[20.6, 20.72, 20.92, 21.0, 20.88, 20.88, 20.64, 20.36, 20.08, 19.92] +[20.16, 20.2, 20.48, 21.88, 25.12, 28.64, 29.48, 29.64, 29.64, 29.56, 24.6, 24.56, 24.44, 24.24] +14.194655895233154 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 4642, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.39481520652771, 'TIME_S_1KI': 2.2392966838706827, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 335.1584589004516, 'W': 23.611594488388015} +[20.6, 20.72, 20.92, 21.0, 20.88, 20.88, 20.64, 20.36, 20.08, 19.92, 20.36, 20.52, 20.6, 20.84, 20.8, 20.56, 20.64, 20.64, 20.64, 20.52] +371.41999999999996 +18.570999999999998 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 4642, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.39481520652771, 'TIME_S_1KI': 2.2392966838706827, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 335.1584589004516, 'W': 23.611594488388015, 'J_1KI': 72.20130523490987, 'W_1KI': 5.086513246098236, 'W_D': 5.040594488388017, 'J_D': 71.54950427007671, 'W_D_1KI': 1.0858669729401156, 'J_D_1KI': 0.23392222596728038} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.01.json b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.01.json new file mode 100644 index 0000000..6da6654 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.01.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 80, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 21.402220964431763, "TIME_S_1KI": 21.402220964431763, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 598.721107492447, "W": 23.65441632405048, "J_1KI": 598.721107492447, "W_1KI": 23.65441632405048, "W_D": 5.107416324050483, "J_D": 129.27471623349203, "W_D_1KI": 5.107416324050483, "J_D_1KI": 5.107416324050483} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.01.output b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.01.output new file mode 100644 index 0000000..5b10379 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.01.output @@ -0,0 +1,45 @@ +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 10000 -sd 0.01'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 21.402220964431763} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 109, 232, ..., 999786, + 999885, 1000000]), + col_indices=tensor([ 48, 108, 238, ..., 9836, 9911, 9942]), + values=tensor([0.7065, 0.8335, 0.4165, ..., 0.0617, 0.0653, 0.1993]), + size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.6170, 0.2022, 0.1812, ..., 0.2173, 0.9754, 0.3705]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000000 +Density: 0.01 +Time: 21.402220964431763 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 109, 232, ..., 999786, + 999885, 1000000]), + col_indices=tensor([ 48, 108, 238, ..., 9836, 9911, 9942]), + values=tensor([0.7065, 0.8335, 0.4165, ..., 0.0617, 0.0653, 0.1993]), + size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.6170, 0.2022, 0.1812, ..., 0.2173, 0.9754, 0.3705]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000000 +Density: 0.01 +Time: 21.402220964431763 seconds + +[20.56, 20.56, 20.76, 20.64, 20.84, 20.76, 21.0, 20.84, 20.84, 20.8] +[20.64, 20.52, 20.44, 21.52, 22.84, 29.04, 29.96, 30.44, 29.96, 27.0, 24.4, 24.4, 24.24, 24.08, 24.0, 24.16, 24.04, 24.2, 24.28, 24.16, 24.12, 23.92, 23.72, 23.72, 23.72] +25.311176538467407 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 21.402220964431763, 'TIME_S_1KI': 21.402220964431763, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 598.721107492447, 'W': 23.65441632405048} +[20.56, 20.56, 20.76, 20.64, 20.84, 20.76, 21.0, 20.84, 20.84, 20.8, 20.76, 20.56, 20.4, 20.28, 20.24, 20.28, 20.36, 20.6, 20.6, 20.64] +370.93999999999994 +18.546999999999997 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 21.402220964431763, 'TIME_S_1KI': 21.402220964431763, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 598.721107492447, 'W': 23.65441632405048, 'J_1KI': 598.721107492447, 'W_1KI': 23.65441632405048, 'W_D': 5.107416324050483, 'J_D': 129.27471623349203, 'W_D_1KI': 5.107416324050483, 'J_D_1KI': 5.107416324050483} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.05.json b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.05.json new file mode 100644 index 0000000..23a9329 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.05.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 80, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 108.30107378959656, "TIME_S_1KI": 108.30107378959656, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2693.844181451797, "W": 24.185192869557547, "J_1KI": 2693.844181451797, "W_1KI": 24.185192869557547, "W_D": 5.823192869557545, "J_D": 648.6106732220641, "W_D_1KI": 5.823192869557545, "J_D_1KI": 5.823192869557545} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.05.output b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.05.output new file mode 100644 index 0000000..f20f6e0 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_0.05.output @@ -0,0 +1,45 @@ +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 10000 -sd 0.05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 108.30107378959656} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 484, 1003, ..., 4999033, + 4999518, 5000000]), + col_indices=tensor([ 10, 43, 51, ..., 9955, 9982, 9992]), + values=tensor([0.0167, 0.2062, 0.3972, ..., 0.2194, 0.0680, 0.6916]), + size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.1565, 0.8667, 0.6742, ..., 0.1248, 0.3395, 0.1639]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000000 +Density: 0.05 +Time: 108.30107378959656 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 484, 1003, ..., 4999033, + 4999518, 5000000]), + col_indices=tensor([ 10, 43, 51, ..., 9955, 9982, 9992]), + values=tensor([0.0167, 0.2062, 0.3972, ..., 0.2194, 0.0680, 0.6916]), + size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.1565, 0.8667, 0.6742, ..., 0.1248, 0.3395, 0.1639]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000000 +Density: 0.05 +Time: 108.30107378959656 seconds + +[20.52, 20.36, 20.4, 20.4, 20.48, 20.48, 20.48, 20.12, 20.12, 20.2] +[20.12, 20.52, 21.16, 22.2, 23.84, 29.72, 33.04, 33.04, 32.72, 32.68, 29.16, 24.72, 24.68, 24.72, 24.52, 24.44, 24.24, 24.24, 24.12, 24.08, 24.08, 24.28, 24.12, 24.28, 24.44, 24.44, 24.64, 24.6, 24.64, 24.52, 24.56, 24.4, 24.4, 24.28, 24.48, 24.36, 24.44, 24.48, 24.36, 24.24, 24.28, 24.12, 24.28, 24.32, 24.32, 24.28, 24.28, 24.4, 24.44, 24.36, 24.16, 24.0, 23.88, 23.92, 24.0, 24.08, 24.2, 24.2, 24.24, 24.16, 24.28, 24.36, 24.24, 24.36, 24.44, 24.48, 24.76, 24.56, 24.4, 24.4, 24.32, 24.28, 24.12, 24.4, 24.8, 24.76, 24.84, 24.84, 24.4, 24.4, 24.4, 24.2, 24.2, 24.16, 24.16, 23.84, 23.92, 24.12, 24.52, 24.52, 24.68, 24.52, 24.48, 24.24, 24.24, 24.28, 24.28, 24.52, 24.64, 24.48, 24.32, 24.16, 24.16, 24.0, 23.96, 23.96, 24.08, 24.08, 23.96, 24.28] +111.38402724266052 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 108.30107378959656, 'TIME_S_1KI': 108.30107378959656, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2693.844181451797, 'W': 24.185192869557547} +[20.52, 20.36, 20.4, 20.4, 20.48, 20.48, 20.48, 20.12, 20.12, 20.2, 20.64, 20.72, 20.68, 20.72, 20.36, 20.32, 20.24, 20.16, 20.24, 20.56] +367.24 +18.362000000000002 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 108.30107378959656, 'TIME_S_1KI': 108.30107378959656, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2693.844181451797, 'W': 24.185192869557547, 'J_1KI': 2693.844181451797, 'W_1KI': 24.185192869557547, 'W_D': 5.823192869557545, 'J_D': 648.6106732220641, 'W_D_1KI': 5.823192869557545, 'J_D_1KI': 5.823192869557545} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_1e-05.json b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_1e-05.json new file mode 100644 index 0000000..c8342c5 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 80, "ITERATIONS": 141816, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.164389848709106, "TIME_S_1KI": 0.07167308236524163, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 285.17019953727726, "W": 21.625492932171987, "J_1KI": 2.010846445656888, "W_1KI": 0.1524897961596152, "W_D": 3.365492932171989, "J_D": 44.37994981288918, "W_D_1KI": 0.023731405004879483, "J_D_1KI": 0.00016733940461499043} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_1e-05.output b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_1e-05.output new file mode 100644 index 0000000..c5a4de0 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_10000_1e-05.output @@ -0,0 +1,1521 @@ +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 10000 -sd 1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.07915711402893066} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), + col_indices=tensor([8887, 6657, 7565, 3220, 7011, 960, 7687, 1638, 5195, + 5216, 8504, 887, 1870, 7762, 4871, 1881, 1312, 2356, + 8882, 564, 3323, 3943, 7528, 9194, 2802, 9093, 6109, + 8556, 927, 2210, 2106, 820, 4388, 6120, 3013, 4186, + 9725, 4312, 7062, 7727, 7858, 3639, 0, 955, 9212, + 3900, 2519, 3782, 2814, 6711, 4282, 9829, 2935, 5472, + 5069, 5474, 6384, 2189, 3553, 9092, 4939, 7190, 5600, + 4241, 9909, 3829, 8005, 1584, 4693, 2762, 7432, 5677, + 4550, 3593, 1945, 2933, 5983, 5180, 6269, 6691, 1646, + 3773, 6546, 3306, 693, 4467, 6900, 7830, 1109, 4818, + 9859, 245, 7505, 9264, 3708, 4499, 1575, 3766, 2431, + 3105, 5276, 7713, 8061, 1468, 9875, 2972, 4010, 5060, + 5944, 2540, 6479, 3011, 9049, 9192, 3917, 4370, 9436, + 2170, 5413, 6341, 7955, 756, 1941, 4548, 6653, 6105, + 6655, 371, 9243, 4712, 1764, 3647, 4532, 7542, 3855, + 701, 9379, 1959, 4900, 6181, 1070, 1534, 4303, 7198, + 8129, 4622, 9647, 1667, 5420, 404, 5307, 3269, 7357, + 9683, 4571, 4602, 9781, 8350, 968, 1863, 4392, 7887, + 8623, 7866, 8686, 931, 3235, 8580, 8592, 1774, 1791, + 4885, 5147, 6993, 391, 7696, 1435, 7008, 8681, 3384, + 7772, 6766, 9136, 5772, 5532, 4763, 1097, 3503, 2661, + 1199, 8747, 2373, 8288, 8987, 7989, 7009, 5851, 2781, + 8197, 3284, 7637, 1948, 1310, 3684, 7181, 9300, 1965, + 7082, 2105, 8226, 4401, 785, 1537, 6650, 7702, 6767, + 9286, 6120, 5857, 6414, 8812, 9360, 5725, 150, 867, + 1740, 4319, 7241, 5001, 8821, 526, 5415, 7843, 4481, + 2191, 9623, 2827, 5301, 341, 4635, 1949, 228, 2674, + 4843, 7932, 8636, 9999, 8927, 3866, 6804, 5632, 8294, + 5745, 5855, 6452, 7967, 1596, 7541, 1963, 6645, 6340, + 6058, 3781, 550, 9725, 2560, 5091, 8, 3323, 7037, + 4291, 2756, 27, 6726, 8154, 1196, 9556, 2602, 3116, + 6248, 6191, 6280, 7110, 1655, 2403, 5399, 2801, 5381, + 9390, 136, 8827, 4083, 6391, 3010, 952, 6732, 6238, + 2612, 1538, 867, 6657, 9210, 385, 2200, 1004, 5776, + 8332, 3443, 1716, 7647, 2989, 8296, 7265, 9569, 9141, + 321, 2256, 6340, 1623, 6267, 9242, 723, 8012, 5285, + 916, 1961, 9243, 9408, 9442, 5661, 8307, 7094, 6390, + 3421, 68, 3559, 7933, 7503, 7548, 7293, 4522, 1713, + 7678, 9470, 268, 1213, 7230, 7923, 856, 7247, 5880, + 3484, 1227, 3300, 4627, 8061, 1180, 1700, 1296, 1034, + 1004, 1067, 4596, 8259, 2423, 814, 4630, 3804, 3309, + 1619, 6828, 2502, 7605, 4685, 3019, 9130, 4620, 4569, + 2163, 8056, 2174, 6553, 1536, 8448, 2517, 620, 757, + 5326, 3833, 9578, 1759, 3548, 8424, 3163, 5428, 1887, + 1274, 8349, 8458, 9029, 8274, 140, 8789, 5215, 7103, + 4882, 2422, 2763, 954, 7400, 2556, 561, 8373, 8078, + 2595, 9986, 562, 79, 1993, 1013, 1172, 2226, 314, + 4866, 5412, 5351, 5648, 69, 7936, 8338, 8184, 674, + 7151, 5270, 1143, 6040, 6613, 1888, 6884, 2188, 2406, + 9349, 4853, 2537, 1250, 8384, 9865, 5595, 7996, 9401, + 4770, 1337, 9996, 8027, 1642, 1431, 5185, 188, 4258, + 5864, 1122, 652, 2537, 6723, 4096, 1689, 804, 6154, + 4505, 7840, 4329, 9805, 4198, 1451, 2264, 7700, 6859, + 4829, 840, 1331, 3545, 6718, 9780, 6839, 5411, 7328, + 1642, 5800, 1105, 1752, 3487, 2642, 409, 4333, 1966, + 6252, 618, 4107, 5209, 6398, 4835, 8816, 3849, 8435, + 3483, 3075, 6577, 9217, 4979, 914, 7020, 511, 8068, + 3235, 4761, 6012, 3485, 83, 4105, 233, 5388, 8565, + 709, 6099, 417, 3254, 4161, 7182, 6515, 3619, 651, + 6035, 3182, 2816, 1070, 1105, 2960, 118, 7896, 5349, + 5720, 2247, 1468, 2997, 3534, 7994, 6783, 774, 4224, + 1688, 4683, 1822, 2426, 4523, 4977, 2376, 8828, 6828, + 9060, 437, 4170, 9284, 8923, 9820, 507, 775, 7408, + 3736, 3532, 1951, 6412, 9144, 3571, 2896, 8946, 133, + 1005, 9994, 6696, 1636, 4808, 3058, 2030, 1275, 8551, + 9322, 5319, 907, 6649, 4422, 5714, 5380, 1517, 3833, + 8999, 2780, 375, 503, 6667, 8317, 8485, 820, 9516, + 6337, 3558, 3760, 4893, 2040, 3162, 2327, 7312, 8505, + 6798, 7032, 3707, 5985, 1589, 4795, 2643, 6736, 7780, + 7043, 6125, 5680, 5321, 4202, 158, 2162, 1838, 5360, + 4209, 2277, 4304, 2389, 9090, 99, 3472, 2993, 7538, + 9671, 2721, 7847, 1502, 1626, 9264, 5824, 1239, 4347, + 577, 8556, 1592, 1069, 1530, 6386, 2931, 1240, 3099, + 1014, 1603, 835, 305, 5553, 2047, 7189, 361, 9937, + 5054, 8951, 252, 2260, 3663, 8478, 4527, 9913, 2888, + 5908, 8032, 992, 389, 6440, 6370, 5962, 6590, 1487, + 1042, 8782, 1658, 2911, 7147, 4133, 7210, 8518, 1001, + 1282, 7983, 9936, 2406, 3848, 9210, 1622, 1334, 6223, + 2591, 4541, 4387, 6436, 2649, 122, 5758, 6465, 4821, + 3059, 8130, 2075, 5680, 753, 2471, 1159, 8391, 3988, + 3678, 2834, 8222, 2762, 5948, 9929, 6125, 3916, 2395, + 8622, 7666, 915, 2645, 8831, 8510, 9092, 3806, 498, + 4185, 3614, 7571, 7909, 7743, 4794, 5295, 6223, 6623, + 6583, 6713, 7364, 1792, 3792, 9985, 1476, 4407, 6263, + 1370, 8779, 230, 5604, 2199, 6697, 9730, 5902, 9551, + 1553, 2491, 1091, 7873, 5945, 9817, 476, 4053, 2660, + 2706, 3420, 1455, 375, 7502, 4159, 7324, 4860, 5587, + 6271, 2753, 9983, 8044, 5696, 9843, 3997, 8631, 7328, + 5279, 1110, 4661, 7566, 8626, 1784, 573, 6356, 5517, + 1192, 1431, 1879, 1796, 4040, 254, 8485, 5216, 6763, + 357, 8405, 8556, 5840, 2248, 2608, 6008, 5101, 7967, + 5739, 9849, 4550, 2489, 3039, 25, 2374, 904, 805, + 8710, 5027, 1789, 2228, 5223, 6113, 4331, 2161, 2124, + 8695, 8607, 3670, 175, 921, 4398, 9976, 6429, 1155, + 8564, 2432, 4522, 4533, 6492, 9786, 5540, 5902, 3158, + 8620, 4872, 8641, 3392, 240, 464, 9305, 8458, 6235, + 9184, 6516, 3063, 9247, 5646, 2064, 9748, 3812, 6501, + 7954, 8984, 7903, 9555, 7865, 6718, 8520, 1064, 3806, + 492, 4609, 6537, 761, 1233, 7753, 7086, 3694, 4284, + 857, 2653, 6661, 3093, 6288, 3189, 4080, 5143, 6716, + 7707, 2187, 8448, 253, 4631, 3235, 8416, 1853, 3894, + 545, 7250, 6083, 1479, 9953, 8191, 5805, 5430, 2352, + 2970, 7367, 8111, 8507, 4276, 2983, 8374, 8627, 8319, + 2331, 5041, 1777, 4281, 1272, 7299, 3348, 1178, 4640, + 8954, 5461, 7271, 8102, 7226, 6993, 9293, 9340, 3435, + 4202, 7285, 5737, 9775, 8016, 6575, 4814, 9918, 5533, + 7261, 4085, 6151, 330, 523, 8329, 5505, 1084, 1104, + 4474, 9640, 1004, 8868, 7052, 2157, 5365, 7931, 5204, + 1590, 5202, 6964, 4014, 8831, 9579, 3394, 681, 7521, + 1110, 5820, 4952, 4774, 6224, 5363, 8909, 1392, 6975, + 203, 1344, 3905, 6290, 6297, 9869, 8652, 9965, 4960, + 9765]), + values=tensor([9.1816e-01, 1.0056e-01, 8.3455e-01, 4.9401e-01, + 5.1788e-01, 7.9790e-01, 5.9107e-01, 1.9589e-01, + 3.7361e-01, 1.5392e-01, 2.1838e-01, 3.7216e-01, + 5.0103e-03, 8.9289e-01, 5.5436e-01, 2.7300e-01, + 9.0417e-01, 1.8971e-01, 3.2539e-01, 7.2729e-01, + 4.7876e-01, 1.1198e-01, 2.7973e-01, 9.9509e-01, + 2.2868e-01, 2.5159e-01, 1.6433e-01, 1.5749e-01, + 1.7052e-01, 4.4167e-01, 6.8471e-01, 1.7346e-01, + 6.3537e-01, 5.2518e-01, 3.3209e-01, 8.5467e-01, + 8.6825e-01, 1.5055e-01, 1.6340e-01, 1.3577e-01, + 4.9881e-01, 6.4956e-01, 2.2581e-01, 1.3965e-01, + 8.9003e-01, 1.6748e-01, 2.4828e-01, 7.3011e-01, + 3.7868e-01, 3.5484e-01, 6.0153e-01, 6.9457e-01, + 1.6644e-01, 9.2132e-01, 6.3805e-01, 3.7527e-01, + 4.3497e-01, 8.1449e-01, 1.0704e-02, 9.9986e-01, + 6.2014e-01, 3.5089e-01, 2.5154e-01, 2.9422e-01, + 1.3192e-01, 9.8133e-01, 4.2280e-01, 4.8166e-01, + 3.2448e-01, 8.8208e-01, 7.1062e-01, 9.2449e-01, + 5.3092e-01, 3.3073e-01, 2.0541e-01, 7.0914e-01, + 9.2026e-01, 6.7472e-01, 7.0878e-01, 8.7498e-01, + 1.6264e-01, 6.8012e-01, 2.5296e-01, 9.2499e-01, + 9.1036e-01, 9.8542e-01, 4.0924e-01, 6.5739e-01, + 8.1039e-01, 1.8085e-01, 3.8594e-01, 7.4307e-01, + 6.1123e-01, 7.2832e-01, 3.4987e-01, 8.2568e-01, + 4.7229e-01, 9.2822e-01, 9.5010e-01, 7.4010e-01, + 1.9359e-01, 3.6998e-01, 2.1068e-01, 5.8354e-01, + 2.6092e-01, 6.5678e-01, 8.0397e-01, 1.9206e-01, + 9.2830e-01, 9.0444e-01, 6.5885e-01, 6.4095e-01, + 3.1034e-01, 1.6964e-01, 4.0490e-01, 6.8714e-01, + 2.3928e-01, 7.5874e-01, 8.3858e-01, 4.9350e-01, + 7.8286e-01, 6.0832e-01, 5.1931e-01, 6.5691e-01, + 8.5466e-01, 6.5988e-01, 3.3136e-01, 6.4700e-01, + 6.3916e-01, 2.3446e-02, 7.5143e-02, 2.2272e-01, + 9.2781e-01, 1.3044e-02, 8.4248e-01, 6.5091e-01, + 9.0584e-01, 7.6630e-01, 7.2283e-01, 1.1793e-01, + 2.4103e-01, 4.3916e-01, 4.2399e-01, 4.9121e-01, + 3.4221e-01, 5.0459e-01, 8.8761e-01, 9.8120e-01, + 5.4676e-02, 2.6374e-02, 3.4874e-01, 2.8205e-01, + 2.0117e-01, 6.3053e-01, 6.0229e-01, 9.5126e-01, + 7.1311e-01, 7.9652e-01, 9.2944e-01, 8.8881e-01, + 3.5873e-02, 6.6588e-01, 3.6499e-02, 3.4913e-01, + 6.7968e-01, 9.8987e-01, 1.6090e-01, 1.8428e-01, + 7.3259e-01, 9.5962e-01, 8.5567e-01, 2.7735e-01, + 5.7339e-01, 9.9140e-01, 8.8419e-01, 3.7208e-01, + 6.0974e-01, 7.1044e-01, 3.0170e-01, 9.4617e-02, + 6.1406e-01, 1.9213e-01, 5.4457e-01, 5.8633e-01, + 9.4966e-01, 1.5253e-01, 3.3710e-01, 8.1343e-01, + 7.5181e-01, 4.6327e-01, 7.3512e-01, 7.2133e-01, + 2.7151e-01, 9.0746e-01, 5.8079e-01, 5.0598e-01, + 7.0086e-01, 9.0008e-01, 4.7321e-01, 3.0896e-01, + 2.8871e-02, 3.7236e-01, 3.9048e-01, 7.4433e-01, + 9.9416e-01, 2.2912e-01, 3.6267e-01, 6.7301e-01, + 8.0299e-01, 1.3822e-01, 7.8584e-01, 8.3181e-01, + 5.0366e-01, 3.4138e-01, 9.8237e-01, 9.5851e-01, + 7.8906e-01, 8.9995e-01, 8.0776e-01, 4.0043e-01, + 5.3367e-01, 6.8389e-01, 2.8047e-01, 3.6550e-01, + 8.3281e-01, 7.3455e-04, 8.6907e-02, 4.1214e-01, + 3.0553e-01, 5.5251e-01, 2.2118e-01, 1.1900e-01, + 4.5453e-01, 4.6127e-01, 3.1902e-01, 8.8099e-01, + 4.7670e-02, 9.5269e-01, 9.0599e-01, 9.0200e-01, + 6.1127e-01, 3.7701e-01, 6.2454e-01, 4.9416e-01, + 1.4405e-01, 9.4340e-01, 7.6097e-01, 3.1111e-01, + 6.6914e-01, 1.6385e-01, 1.3336e-01, 1.8604e-01, + 2.2905e-01, 3.8319e-01, 8.9209e-01, 9.9726e-01, + 8.7777e-01, 6.0539e-01, 3.6662e-01, 2.7918e-01, + 6.0749e-01, 8.7536e-02, 6.4316e-01, 1.5981e-01, + 2.8177e-01, 9.5691e-01, 8.4048e-01, 8.3338e-02, + 1.5081e-01, 7.7582e-02, 3.9449e-01, 8.5440e-01, + 6.0796e-01, 3.2600e-01, 6.2418e-01, 7.6839e-02, + 3.0664e-01, 3.2739e-01, 6.6048e-01, 3.8014e-01, + 5.1151e-01, 7.7506e-01, 2.1841e-02, 1.2341e-01, + 1.0072e-01, 6.9198e-01, 5.3058e-01, 9.6326e-01, + 5.2568e-01, 5.4784e-01, 1.4338e-01, 5.4407e-01, + 4.1409e-01, 4.6898e-01, 9.8951e-02, 1.0546e-01, + 8.0199e-01, 7.6598e-01, 4.5483e-01, 1.5641e-01, + 9.2098e-01, 6.7770e-01, 5.0760e-01, 5.5632e-01, + 3.6137e-01, 3.3508e-01, 5.9599e-01, 3.6756e-01, + 4.1378e-01, 9.9199e-01, 6.7374e-01, 4.8966e-01, + 7.3576e-01, 6.9524e-01, 5.5618e-01, 6.0703e-01, + 3.6832e-01, 2.2753e-01, 1.8109e-01, 4.2289e-01, + 5.7324e-01, 8.7307e-01, 1.0458e-01, 8.4548e-01, + 4.5329e-01, 7.0979e-02, 1.9282e-01, 5.1377e-03, + 4.0425e-02, 3.2026e-01, 6.1447e-01, 4.4646e-01, + 8.0835e-01, 3.9544e-01, 7.2351e-01, 2.2953e-01, + 6.5581e-01, 7.4538e-01, 9.0051e-01, 3.2091e-01, + 3.0483e-01, 8.5878e-01, 4.2062e-01, 7.6524e-01, + 4.8438e-01, 1.4893e-01, 5.4477e-01, 7.4463e-01, + 4.0281e-01, 8.9282e-01, 3.5734e-01, 8.4502e-01, + 5.7758e-01, 4.0753e-01, 2.3936e-01, 5.7984e-01, + 1.2596e-01, 1.0506e-01, 5.3306e-01, 1.2798e-01, + 4.3213e-02, 3.6882e-01, 1.6130e-01, 4.7150e-01, + 9.3138e-01, 6.0438e-01, 3.1401e-03, 7.1791e-01, + 4.3441e-01, 9.0765e-01, 7.0091e-02, 4.0801e-01, + 7.2909e-01, 5.5901e-01, 7.1350e-02, 7.4512e-02, + 4.1934e-01, 9.6563e-01, 8.8523e-01, 1.8177e-01, + 5.8354e-01, 3.9575e-01, 6.6693e-02, 7.5159e-01, + 5.0189e-01, 6.6046e-01, 5.7468e-01, 1.4039e-01, + 1.7243e-01, 9.4741e-01, 7.2128e-02, 7.5654e-01, + 6.5793e-01, 1.3738e-01, 3.5703e-01, 8.8200e-01, + 5.9310e-01, 3.7116e-01, 4.4413e-01, 9.5211e-01, + 3.2213e-02, 4.6352e-01, 1.2401e-01, 1.9383e-01, + 4.1520e-01, 5.3684e-01, 9.5974e-01, 4.3453e-01, + 6.7380e-01, 3.5117e-01, 8.8375e-01, 4.9149e-01, + 4.7584e-01, 7.6680e-01, 5.0605e-01, 5.4259e-01, + 3.1782e-02, 8.1916e-01, 5.6236e-01, 7.0322e-02, + 3.0076e-01, 3.7236e-01, 4.4999e-01, 2.4629e-01, + 7.8628e-01, 5.3838e-01, 1.8878e-01, 3.6490e-01, + 9.6722e-02, 3.7376e-02, 1.0592e-01, 8.1332e-01, + 3.0899e-01, 4.6040e-02, 1.8400e-01, 3.9960e-01, + 1.8388e-01, 9.3449e-01, 8.5176e-01, 3.6878e-01, + 5.7553e-01, 6.5055e-01, 7.9471e-01, 2.8149e-01, + 3.7543e-01, 8.4307e-01, 8.9627e-01, 7.5633e-01, + 3.5617e-01, 6.9103e-01, 3.5778e-01, 6.3010e-01, + 3.3315e-01, 7.2280e-02, 9.0937e-01, 7.1337e-01, + 3.9137e-01, 9.3037e-01, 5.8999e-01, 1.5294e-01, + 3.0835e-01, 3.1983e-01, 3.8701e-01, 4.6868e-01, + 9.3783e-01, 5.4351e-01, 3.4183e-01, 4.4611e-01, + 3.3621e-01, 9.9490e-02, 1.3700e-02, 7.0371e-01, + 9.5369e-03, 2.2249e-01, 4.9951e-01, 1.0140e-01, + 8.5242e-01, 9.4639e-01, 1.6058e-01, 1.6258e-01, + 3.4844e-01, 1.6819e-01, 2.8903e-01, 8.8768e-01, + 3.1540e-01, 9.1951e-01, 9.7167e-01, 5.0153e-01, + 4.7257e-01, 4.5687e-01, 1.5921e-01, 2.4562e-01, + 6.0697e-02, 4.4029e-01, 9.1039e-01, 2.5979e-01, + 4.0992e-01, 7.7663e-01, 7.7724e-01, 1.5090e-01, + 8.5900e-01, 2.8982e-02, 3.7795e-03, 5.8246e-01, + 4.9880e-01, 2.0485e-01, 4.2276e-01, 2.1280e-01, + 4.5690e-01, 5.9213e-01, 3.2956e-01, 1.5409e-01, + 5.8660e-01, 8.8005e-01, 8.9911e-01, 6.0337e-02, + 7.1061e-01, 1.0442e-01, 5.7918e-01, 9.3306e-01, + 5.1219e-01, 4.1652e-01, 6.4804e-01, 7.7464e-01, + 5.0314e-02, 8.9469e-01, 7.4405e-01, 4.3210e-01, + 2.7828e-01, 2.1534e-01, 6.4450e-01, 3.8160e-01, + 2.9848e-01, 4.8793e-01, 7.1970e-01, 9.8776e-01, + 5.7412e-01, 1.7962e-01, 4.4675e-01, 7.6705e-01, + 8.5803e-01, 1.1996e-01, 5.5360e-01, 5.2607e-01, + 3.8064e-01, 3.6147e-03, 9.6967e-01, 9.2945e-01, + 2.2587e-03, 5.7884e-01, 7.1192e-01, 6.0498e-01, + 5.2640e-01, 9.8261e-01, 7.1940e-01, 9.4668e-01, + 7.4228e-01, 1.3694e-01, 1.0410e-01, 1.2959e-01, + 3.5371e-01, 6.9605e-01, 4.9023e-01, 4.9412e-01, + 3.1448e-01, 6.9715e-01, 7.5290e-01, 3.3958e-01, + 4.3937e-01, 6.5379e-01, 8.5164e-01, 3.8019e-01, + 8.7873e-01, 8.0767e-03, 2.3596e-01, 1.7902e-01, + 5.7292e-01, 4.8103e-01, 1.0072e-01, 4.3923e-02, + 2.6610e-01, 8.1750e-01, 9.0729e-01, 1.1136e-01, + 8.6722e-01, 4.0481e-01, 6.7723e-01, 4.1020e-01, + 8.1097e-01, 6.3929e-02, 4.6936e-02, 7.6398e-01, + 9.1014e-01, 8.1936e-01, 6.6357e-01, 5.0768e-01, + 1.5502e-01, 8.2746e-01, 4.9313e-01, 5.3942e-01, + 5.2489e-01, 9.9488e-01, 8.1487e-01, 5.1081e-01, + 7.8702e-01, 1.5604e-01, 1.7260e-01, 3.2286e-01, + 1.7719e-01, 6.8326e-01, 2.9854e-01, 8.2931e-01, + 7.2193e-01, 3.8553e-01, 8.2932e-02, 2.4682e-01, + 7.0800e-01, 3.3477e-02, 6.1871e-01, 8.1973e-01, + 1.0388e-01, 9.1066e-01, 4.5246e-01, 3.8378e-01, + 5.3738e-01, 7.5175e-01, 8.1556e-01, 7.3781e-01, + 7.0504e-01, 8.9030e-01, 6.3940e-01, 5.9759e-01, + 9.7746e-01, 3.4186e-02, 7.8468e-01, 4.8855e-01, + 6.5585e-01, 1.5988e-01, 5.4604e-01, 9.7090e-01, + 7.4413e-01, 8.7259e-02, 9.0187e-01, 3.4464e-02, + 2.0455e-01, 6.6205e-01, 1.4350e-01, 1.5094e-01, + 1.6797e-01, 8.3789e-01, 1.1554e-01, 8.5879e-01, + 5.7774e-01, 7.9623e-01, 4.8633e-02, 2.4730e-01, + 4.1750e-02, 5.0146e-01, 5.4241e-01, 7.5681e-01, + 2.9902e-01, 5.4496e-01, 8.6511e-01, 1.8136e-01, + 7.5735e-01, 2.5526e-01, 2.7050e-01, 3.0676e-01, + 2.2450e-01, 2.5394e-01, 8.8327e-01, 3.0172e-01, + 6.4102e-01, 1.6565e-01, 4.3199e-01, 2.8793e-01, + 3.7305e-01, 1.3904e-01, 7.7512e-01, 5.0053e-01, + 7.5270e-01, 2.2475e-01, 3.3951e-01, 1.9012e-02, + 6.2560e-01, 4.3614e-01, 6.3881e-01, 2.0244e-01, + 2.2924e-01, 8.1471e-01, 6.9332e-01, 5.8077e-01, + 2.6657e-01, 6.0886e-02, 8.9582e-01, 2.9665e-01, + 9.1985e-01, 1.9895e-01, 5.2447e-01, 2.7301e-01, + 7.5669e-01, 1.7010e-01, 8.7730e-02, 2.9161e-01, + 9.2160e-01, 5.3655e-01, 2.4259e-01, 8.0699e-02, + 1.1672e-01, 1.6745e-01, 9.5233e-02, 4.1844e-01, + 4.6995e-01, 5.6290e-01, 6.2333e-01, 2.3950e-01, + 7.2046e-01, 6.0602e-01, 4.2767e-01, 6.2854e-01, + 5.0176e-03, 1.8205e-01, 7.2275e-01, 4.8755e-01, + 1.7151e-01, 9.2735e-01, 9.8824e-01, 4.4083e-01, + 2.4951e-01, 2.9792e-01, 5.6965e-02, 4.6045e-01, + 2.7247e-01, 6.0166e-01, 4.4300e-01, 8.4340e-02, + 5.2114e-01, 8.7333e-01, 8.3597e-01, 3.7496e-01, + 5.1327e-01, 7.6537e-01, 9.4934e-01, 5.2477e-01, + 1.6338e-01, 8.0987e-01, 7.8629e-01, 7.5501e-01, + 3.5845e-01, 3.3452e-01, 5.2293e-01, 5.2330e-01, + 3.9246e-01, 2.0239e-01, 3.7181e-01, 5.4493e-01, + 1.9378e-01, 8.5026e-02, 7.5606e-01, 6.4257e-01, + 6.3940e-01, 3.1292e-01, 8.8050e-01, 4.0043e-01, + 2.1620e-01, 5.9146e-01, 2.6386e-01, 6.4687e-01, + 2.2471e-01, 7.5267e-01, 5.2917e-01, 2.1213e-01, + 8.4583e-01, 3.7476e-01, 4.2410e-01, 6.8464e-01, + 1.4995e-02, 3.3691e-01, 1.3516e-02, 5.2181e-01, + 7.4635e-01, 9.4113e-01, 7.9229e-02, 7.6484e-01, + 4.9854e-01, 4.4013e-01, 4.8178e-01, 3.8801e-01, + 6.3690e-01, 3.0241e-01, 9.8122e-01, 8.5268e-01, + 1.3579e-01, 7.5927e-01, 6.5030e-01, 5.5904e-01, + 5.3291e-01, 3.8234e-01, 1.8204e-01, 5.8867e-02, + 1.2404e-02, 8.8712e-01, 3.2173e-01, 9.2022e-01, + 7.9135e-01, 8.9467e-01, 8.3079e-01, 8.1209e-01, + 2.5463e-01, 6.5680e-01, 5.5293e-01, 1.3993e-01, + 3.5481e-01, 8.4648e-01, 9.6119e-01, 6.7458e-01, + 9.1012e-01, 2.8003e-01, 3.7273e-02, 7.9784e-01, + 9.0025e-01, 2.8522e-01, 1.1653e-01, 4.2112e-01, + 2.3142e-01, 5.1203e-01, 4.6552e-01, 1.0825e-01, + 2.6191e-01, 3.7008e-01, 8.3410e-01, 9.4793e-01, + 9.4600e-01, 5.8473e-01, 1.3957e-01, 9.8234e-01, + 8.9868e-01, 8.1273e-01, 7.5800e-01, 5.5921e-01, + 4.5453e-01, 2.3077e-01, 8.6072e-01, 1.2992e-01, + 6.3607e-01, 8.8713e-01, 4.4198e-01, 2.4138e-01, + 3.3843e-01, 2.7523e-01, 5.3152e-01, 7.1777e-01, + 7.6129e-01, 3.8293e-01, 7.7646e-01, 4.2633e-01, + 3.0830e-01, 3.7612e-01, 4.6028e-01, 3.7857e-01, + 8.7302e-01, 1.0316e-01, 6.0765e-01, 3.4387e-01, + 7.8725e-01, 1.5606e-01, 9.3539e-01, 8.7938e-01, + 4.8138e-01, 5.6849e-01, 7.7224e-01, 3.6936e-01, + 8.4701e-01, 8.2521e-01, 1.4421e-01, 2.9370e-01, + 1.4391e-02, 4.1091e-01, 3.8605e-01, 4.6313e-01, + 3.1919e-01, 4.5735e-01, 6.4363e-01, 6.6653e-01, + 4.6964e-01, 6.9800e-01, 8.2382e-02, 1.3131e-01, + 5.7590e-01, 6.3297e-01, 8.9063e-01, 2.8157e-01, + 3.1231e-01, 2.8244e-01, 7.9429e-01, 6.6369e-01, + 7.1310e-01, 3.2836e-01, 5.6521e-01, 1.5836e-01, + 5.1110e-02, 4.3549e-01, 6.4228e-01, 6.6466e-01, + 3.8126e-01, 6.4327e-01, 9.9962e-01, 5.8379e-01, + 5.4148e-01, 1.0675e-01, 5.7636e-01, 1.1120e-01, + 8.6602e-01, 3.1601e-01, 8.8296e-01, 2.3215e-01, + 9.2228e-02, 6.5512e-01, 2.8197e-01, 7.6639e-01, + 4.1955e-01, 6.7177e-01, 1.2141e-01, 3.3267e-01, + 1.6749e-01, 4.1088e-01, 2.8360e-01, 3.9061e-01, + 6.4098e-02, 1.4131e-01, 9.8964e-01, 3.1334e-01, + 5.7250e-01, 2.8781e-01, 6.9604e-01, 7.9814e-01, + 6.7089e-01, 1.3042e-01, 8.2591e-01, 3.9613e-02, + 3.0492e-01, 2.2895e-01, 9.5397e-01, 3.6673e-01, + 8.0038e-01, 6.6781e-01, 3.4711e-01, 2.9668e-02, + 8.7182e-01, 8.6393e-02, 5.7309e-01, 9.6534e-01, + 4.5090e-01, 3.4242e-01, 8.6828e-01, 9.9417e-01, + 9.1192e-01, 5.0104e-01, 5.0505e-01, 5.4064e-01, + 2.8746e-01, 1.4854e-01, 1.0731e-01, 4.8918e-01, + 7.9998e-02, 3.5250e-01, 7.1745e-01, 2.3441e-01, + 4.5486e-01, 6.2764e-01, 6.1764e-01, 4.5336e-01, + 8.4348e-02, 5.5913e-01, 4.0829e-01, 7.6562e-02, + 8.0261e-01, 2.9340e-01, 2.5262e-01, 5.0934e-01, + 5.5562e-02, 1.2272e-01, 1.9260e-02, 5.1804e-01, + 9.0714e-01, 1.9684e-01, 1.3426e-01, 2.7331e-01, + 3.2961e-01, 4.5633e-02, 5.7125e-01, 3.1779e-01, + 9.7359e-01, 6.4771e-01, 8.8411e-01, 2.6973e-01, + 1.3044e-01, 1.4941e-01, 1.8696e-02, 2.4935e-02]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.9198, 0.2486, 0.6139, ..., 0.7346, 0.8053, 0.7353]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 0.07915711402893066 seconds + +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 132647 -ss 10000 -sd 1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 9.821086883544922} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), + col_indices=tensor([9896, 2294, 608, 7455, 4786, 9947, 6306, 3161, 2752, + 3769, 8365, 7822, 2650, 3972, 4525, 3555, 390, 931, + 2637, 9922, 8440, 7065, 7479, 7024, 5903, 1510, 7327, + 4589, 3801, 959, 4616, 1851, 8424, 5751, 466, 7240, + 2164, 4942, 3099, 6866, 3692, 3245, 1569, 1786, 834, + 2878, 8450, 562, 8579, 8350, 4382, 4571, 2230, 1625, + 3124, 6145, 6696, 7788, 711, 1615, 7369, 3625, 7867, + 7330, 6146, 1902, 296, 9427, 4612, 950, 3058, 3653, + 2098, 9957, 1836, 5903, 9459, 1827, 2742, 6093, 8427, + 2467, 2948, 3117, 9056, 5451, 1784, 336, 1205, 5825, + 9644, 9509, 9139, 6860, 3591, 7747, 1333, 6979, 3236, + 3937, 6062, 4432, 6485, 5241, 6733, 3552, 6786, 9248, + 6777, 6449, 1983, 8864, 9572, 9119, 62, 8989, 7326, + 738, 3062, 1891, 7582, 6731, 4795, 8955, 5876, 9183, + 492, 5210, 239, 1997, 3278, 2556, 5768, 2678, 6024, + 6689, 7761, 9772, 5230, 256, 8454, 7193, 9641, 1793, + 1386, 2670, 4303, 4899, 6109, 32, 6002, 6275, 5289, + 8096, 5499, 3157, 5595, 6515, 6658, 8717, 6316, 8087, + 4958, 3092, 7067, 3822, 9708, 7382, 9487, 9406, 1087, + 9352, 5752, 3373, 8042, 3846, 300, 2304, 1453, 565, + 7389, 6027, 2200, 1376, 9247, 1040, 7531, 7341, 2822, + 8196, 9844, 6322, 8766, 1035, 889, 7035, 9823, 8702, + 4606, 1985, 8551, 3694, 5878, 8651, 3978, 4944, 7842, + 3461, 1926, 1851, 8100, 6746, 7543, 1835, 7605, 3542, + 8053, 3683, 9433, 1809, 5110, 8421, 5218, 2148, 37, + 4037, 1098, 6007, 6003, 4795, 9196, 2179, 8236, 5419, + 8295, 1075, 2083, 4346, 6769, 9065, 1027, 9599, 3795, + 6559, 9341, 5665, 6551, 2113, 4600, 2073, 1072, 7264, + 5766, 3645, 7777, 379, 2128, 204, 142, 8527, 3482, + 8094, 2725, 7469, 4390, 2032, 7446, 5393, 2570, 3060, + 8761, 8295, 3100, 7151, 6720, 2530, 8609, 9441, 6159, + 8710, 1890, 818, 9688, 2154, 7546, 8539, 9462, 5585, + 8719, 9613, 5807, 7134, 549, 1236, 9899, 1389, 5850, + 6589, 3584, 2421, 5299, 7484, 8435, 6020, 9264, 5131, + 6382, 3584, 2890, 7073, 8722, 3579, 1135, 3793, 1379, + 6246, 5228, 305, 3531, 3778, 4740, 8670, 6232, 5941, + 8820, 2754, 2765, 6838, 7330, 9897, 3696, 2166, 5468, + 6484, 8666, 6774, 6953, 2835, 2823, 8419, 3724, 8197, + 7956, 2462, 8728, 8544, 2134, 7924, 4123, 6881, 834, + 1355, 6095, 2196, 349, 152, 1748, 1972, 2616, 8999, + 9770, 8151, 1707, 2923, 2044, 2775, 8914, 3020, 397, + 9127, 8132, 5827, 1668, 3805, 4336, 4225, 8956, 582, + 8792, 4475, 712, 8732, 5637, 2746, 6120, 4903, 9753, + 5872, 1165, 5049, 3489, 5821, 6318, 1962, 6983, 7282, + 4336, 2616, 7459, 277, 3180, 2702, 9764, 1958, 4767, + 1913, 9524, 7748, 561, 9946, 569, 4821, 6591, 9695, + 3476, 7023, 2895, 5322, 283, 8392, 3685, 8235, 9462, + 4253, 3683, 340, 8310, 486, 4196, 9204, 5385, 44, + 2050, 7769, 3049, 1280, 8815, 2028, 8850, 3335, 2501, + 9288, 8918, 9722, 2757, 9451, 706, 7211, 6764, 7298, + 3039, 8462, 5935, 2554, 5418, 996, 7023, 8999, 7975, + 2346, 119, 4875, 3914, 6747, 3953, 4647, 2193, 4387, + 2338, 1669, 9233, 8727, 8487, 5872, 4292, 7426, 2293, + 7992, 6459, 4534, 1688, 5081, 4627, 3667, 5148, 9861, + 8564, 1404, 9776, 7539, 6790, 5390, 677, 8173, 9225, + 7452, 7721, 755, 6717, 4978, 1260, 7675, 2916, 4995, + 2394, 682, 6355, 754, 6151, 4829, 8246, 4620, 8909, + 1100, 511, 5603, 4303, 1815, 3683, 7878, 5711, 5615, + 2488, 7169, 2432, 3962, 355, 4889, 3473, 640, 1508, + 1601, 325, 9526, 997, 9666, 2826, 2606, 8082, 2812, + 9819, 3223, 1911, 3924, 8060, 2031, 5706, 9275, 462, + 3808, 190, 8140, 8943, 3369, 5330, 4987, 4601, 8251, + 1715, 4026, 4790, 6758, 5407, 9827, 6991, 55, 3664, + 5197, 8450, 7957, 7655, 8057, 9897, 7358, 3254, 8867, + 739, 5856, 6060, 9954, 4729, 9221, 4866, 8845, 6409, + 2192, 5002, 2376, 9903, 6819, 9593, 8230, 7836, 9523, + 8243, 6484, 6984, 3691, 7668, 688, 3857, 3616, 821, + 3745, 8075, 7678, 2887, 4722, 3611, 8800, 344, 8296, + 9758, 1347, 2470, 8722, 1252, 5362, 8386, 8196, 8038, + 8906, 7131, 7363, 5167, 9568, 3843, 2101, 211, 266, + 6601, 6305, 4260, 8610, 5288, 6092, 839, 1389, 9324, + 8990, 6778, 357, 9901, 974, 3450, 4646, 5266, 6499, + 9574, 698, 6454, 8546, 642, 4566, 9534, 5629, 3389, + 2301, 9080, 223, 6613, 6455, 628, 8978, 5613, 1223, + 1348, 5621, 1039, 9243, 7071, 540, 1007, 9867, 5937, + 1553, 4290, 5982, 6483, 652, 6973, 2314, 1902, 921, + 4523, 831, 447, 7989, 1124, 9819, 2213, 6782, 713, + 5647, 2123, 9759, 9811, 6295, 9215, 8497, 8045, 1549, + 3829, 9733, 9488, 8478, 4602, 5587, 814, 3794, 1677, + 7495, 7380, 1929, 8286, 3882, 5872, 3386, 9625, 2254, + 5938, 820, 3610, 7955, 5494, 279, 6459, 5040, 2130, + 4529, 1464, 5867, 2373, 2964, 6875, 1181, 4387, 2206, + 6866, 9906, 7926, 21, 3669, 2596, 5783, 3787, 7157, + 5630, 1759, 2223, 4366, 5511, 227, 8520, 2665, 1054, + 3891, 1630, 2643, 4027, 8872, 1885, 1964, 9415, 3006, + 2310, 3317, 611, 5083, 5953, 5909, 3230, 2053, 1728, + 31, 6667, 8857, 4691, 9505, 4998, 6321, 8141, 4969, + 5456, 2268, 6492, 6622, 9485, 3625, 4414, 2505, 5473, + 2738, 6931, 5647, 6599, 6183, 6288, 9738, 3002, 9540, + 5853, 5934, 3318, 7413, 8581, 9006, 151, 6634, 5686, + 8775, 5756, 4026, 3548, 2576, 9854, 1591, 3869, 4316, + 7529, 3212, 2440, 1603, 5668, 7196, 6221, 3190, 7986, + 3271, 2698, 9125, 9232, 1031, 8965, 450, 2291, 5587, + 6902, 435, 8549, 526, 3918, 1724, 6940, 9977, 1527, + 8102, 356, 9543, 6038, 4658, 9471, 9500, 8602, 6352, + 2238, 853, 1210, 2510, 1510, 2023, 5756, 8805, 5530, + 2709, 2719, 7538, 8404, 1726, 7778, 8582, 6685, 8228, + 4393, 1016, 2230, 7643, 8958, 9791, 7857, 2210, 7309, + 8575, 8260, 1203, 2725, 7197, 8334, 9528, 7109, 9832, + 5883, 8391, 4243, 493, 3345, 4094, 6878, 6913, 8059, + 7746, 1565, 1716, 4366, 9143, 6431, 169, 3160, 8018, + 4280, 8602, 6331, 7118, 3171, 4398, 7571, 2904, 2776, + 6876, 8123, 4068, 4297, 5962, 3220, 8451, 790, 5884, + 7424, 178, 4641, 5221, 7241, 6300, 2231, 4565, 1894, + 4230, 6103, 8220, 4346, 6276, 5051, 8766, 1946, 6624, + 6670, 2125, 2733, 5408, 4755, 6962, 7371, 9438, 1494, + 6892, 9384, 3598, 2767, 2285, 4386, 5296, 1607, 1528, + 1225, 2304, 2168, 3676, 9649, 6148, 9358, 1569, 6313, + 3401, 1404, 3390, 2969, 2500, 1423, 1604, 8240, 8052, + 9396, 1378, 4091, 7110, 4400, 8047, 5864, 3115, 7935, + 4128, 399, 6366, 2243, 3402, 5046, 2113, 5030, 4099, + 1700]), + values=tensor([9.8657e-01, 6.8017e-01, 5.9022e-02, 4.8063e-01, + 1.8697e-01, 4.4385e-01, 6.9391e-01, 8.3625e-01, + 1.7672e-01, 7.2174e-01, 4.6967e-01, 6.4861e-01, + 6.3794e-01, 3.9399e-01, 8.7530e-01, 4.9904e-01, + 8.3206e-01, 6.6493e-02, 2.2310e-01, 1.9008e-01, + 2.8789e-01, 9.0711e-01, 6.5785e-02, 6.4877e-01, + 7.1176e-01, 9.4587e-01, 5.2800e-01, 8.0382e-01, + 5.4674e-01, 4.7233e-01, 5.0026e-01, 1.4438e-01, + 4.9761e-01, 8.9960e-01, 2.1832e-01, 5.3157e-01, + 1.9084e-01, 2.3008e-01, 4.6183e-01, 2.6507e-01, + 7.0130e-01, 7.1507e-01, 5.9371e-01, 8.4885e-01, + 7.1662e-01, 9.6998e-01, 8.4112e-01, 2.1296e-01, + 2.0175e-01, 6.5871e-01, 4.6262e-01, 4.0127e-01, + 7.0860e-01, 3.8362e-01, 6.0489e-01, 3.0190e-01, + 6.8903e-01, 6.4856e-01, 8.5783e-02, 4.6953e-01, + 3.3232e-01, 1.4302e-01, 9.1148e-01, 2.0996e-01, + 3.2027e-01, 6.2572e-01, 2.8405e-01, 5.5547e-01, + 6.4271e-01, 1.3591e-01, 3.9741e-01, 1.1633e-01, + 1.7203e-01, 3.9350e-01, 6.7056e-01, 7.3724e-01, + 1.8016e-01, 6.3732e-01, 3.4346e-01, 6.9875e-01, + 8.7932e-01, 7.8631e-01, 3.4078e-01, 8.9240e-01, + 8.5760e-02, 3.6185e-01, 9.1460e-01, 4.3307e-02, + 8.4032e-02, 4.7212e-01, 8.0055e-01, 9.9888e-01, + 8.0489e-01, 6.5549e-01, 2.9076e-01, 3.7294e-01, + 2.9971e-01, 4.0164e-01, 3.2874e-01, 9.3830e-03, + 8.8356e-01, 7.4339e-01, 5.9986e-01, 3.1253e-01, + 8.6312e-01, 8.6569e-01, 9.3944e-01, 5.3998e-01, + 3.7985e-02, 3.7747e-01, 2.2014e-01, 9.4907e-01, + 1.9790e-01, 2.8362e-01, 5.9145e-01, 6.1426e-01, + 5.7464e-01, 3.9214e-01, 7.0507e-01, 1.8174e-01, + 6.9014e-01, 1.9349e-01, 6.3708e-01, 2.1715e-01, + 8.6582e-01, 7.3151e-01, 3.1880e-01, 8.5025e-01, + 2.5533e-01, 8.8835e-01, 5.2483e-01, 1.0277e-01, + 8.3245e-01, 7.9357e-01, 5.2672e-02, 1.0682e-01, + 5.0113e-01, 4.9015e-01, 2.2016e-01, 1.1082e-01, + 4.0155e-01, 2.4413e-01, 8.4404e-01, 1.9221e-01, + 3.6094e-01, 2.7083e-01, 2.6853e-01, 1.5021e-01, + 4.0131e-01, 7.1453e-01, 2.8592e-01, 9.5338e-01, + 2.0474e-01, 9.3394e-01, 2.4722e-02, 4.4165e-01, + 9.3481e-01, 4.4711e-01, 4.4178e-01, 6.5012e-01, + 5.9035e-01, 3.2891e-01, 8.7656e-01, 6.0752e-01, + 3.7596e-01, 5.0862e-01, 7.5444e-01, 4.6019e-01, + 3.9466e-03, 3.1021e-01, 3.8321e-01, 6.1185e-01, + 6.6206e-03, 9.6546e-01, 7.3684e-01, 4.3789e-01, + 2.3688e-02, 7.4620e-01, 7.9828e-01, 7.2192e-01, + 6.2974e-01, 5.6341e-02, 8.2188e-02, 7.4590e-01, + 2.0376e-01, 4.6178e-01, 4.3863e-01, 4.2009e-01, + 1.5075e-01, 2.3388e-02, 4.1834e-01, 9.5610e-01, + 6.3185e-02, 4.0945e-01, 9.7439e-01, 4.6463e-01, + 4.2124e-02, 9.0775e-01, 4.2827e-01, 8.2278e-02, + 1.4690e-01, 4.6693e-01, 9.5192e-01, 5.7203e-01, + 6.2811e-01, 3.2224e-01, 9.9626e-01, 8.3408e-01, + 6.6144e-01, 5.8853e-01, 5.8047e-01, 8.3278e-01, + 2.5654e-01, 2.8605e-01, 4.4783e-01, 2.1991e-01, + 7.4339e-01, 6.3494e-01, 3.0373e-01, 1.4345e-01, + 7.4749e-01, 4.5109e-01, 8.6356e-01, 2.0773e-01, + 2.4500e-01, 6.2315e-01, 1.8660e-01, 7.3484e-01, + 1.1023e-01, 6.1309e-01, 6.2293e-01, 2.9065e-01, + 2.9666e-02, 1.4567e-01, 3.0125e-01, 7.9120e-01, + 5.2020e-01, 3.8899e-01, 5.1695e-01, 9.5133e-01, + 8.9874e-01, 4.0797e-01, 2.6028e-01, 3.6012e-02, + 1.1411e-01, 6.2144e-04, 8.0430e-01, 6.8260e-01, + 3.5790e-01, 1.6475e-01, 3.0474e-02, 8.1837e-01, + 6.9421e-01, 7.6068e-01, 2.6430e-01, 1.4334e-01, + 9.2430e-01, 3.5461e-01, 2.7750e-01, 1.4061e-01, + 8.7641e-02, 5.5670e-01, 6.6083e-01, 2.2299e-01, + 9.3532e-01, 1.4369e-01, 2.7515e-01, 4.0042e-01, + 3.2958e-01, 2.8062e-01, 9.3684e-01, 9.7266e-01, + 8.1233e-01, 4.9834e-01, 8.6323e-01, 3.3073e-01, + 8.6503e-01, 9.4119e-01, 1.5656e-01, 6.2703e-01, + 4.7449e-01, 9.0910e-01, 9.0667e-01, 1.4864e-02, + 6.1756e-01, 6.1558e-01, 5.1946e-01, 3.7586e-01, + 7.9960e-01, 9.4788e-01, 5.8479e-02, 8.1758e-01, + 1.0844e-01, 6.5197e-01, 6.9786e-01, 7.0444e-01, + 1.1409e-01, 4.5295e-01, 2.3132e-01, 9.6105e-01, + 1.7126e-01, 1.5977e-01, 6.7439e-01, 4.9423e-01, + 5.9848e-01, 3.7000e-01, 9.2792e-01, 2.8565e-01, + 4.9052e-01, 6.2456e-01, 6.0144e-01, 6.7402e-01, + 5.2520e-01, 5.1904e-01, 1.7123e-01, 1.7574e-01, + 5.1374e-01, 4.7803e-02, 3.7040e-01, 8.5162e-01, + 1.9813e-01, 7.4990e-01, 3.5188e-01, 9.9631e-02, + 3.8064e-01, 6.9207e-01, 1.3196e-01, 8.7248e-01, + 7.4460e-01, 7.7849e-02, 9.2453e-01, 2.7564e-01, + 9.4749e-01, 4.7632e-01, 5.8892e-01, 8.6200e-01, + 2.7858e-01, 2.4776e-01, 2.3953e-01, 2.8346e-01, + 7.7608e-01, 3.5583e-01, 6.4390e-01, 5.0393e-01, + 5.2838e-01, 6.0690e-01, 8.9440e-01, 5.7217e-01, + 8.1939e-01, 9.5907e-01, 9.8495e-01, 8.3958e-01, + 6.5237e-01, 1.3036e-01, 8.8983e-01, 2.1372e-01, + 2.6750e-01, 4.1958e-01, 7.4189e-01, 2.7326e-01, + 8.9967e-01, 6.8523e-01, 2.1589e-01, 4.2844e-01, + 9.6983e-01, 6.1399e-01, 6.2247e-01, 7.8241e-02, + 4.9567e-01, 6.9988e-01, 2.0647e-01, 8.8775e-01, + 9.7469e-01, 2.4890e-01, 6.3162e-01, 5.7063e-01, + 9.9026e-01, 8.1827e-01, 4.3918e-02, 6.5583e-02, + 9.3028e-01, 3.0040e-01, 8.9397e-02, 9.2410e-01, + 9.8820e-01, 4.1131e-01, 6.5320e-02, 5.2211e-01, + 1.1657e-01, 4.1395e-01, 9.2667e-01, 3.8039e-01, + 6.0454e-01, 7.5260e-01, 2.8980e-01, 4.0425e-01, + 1.1440e-01, 8.1706e-01, 1.6108e-01, 6.4378e-01, + 6.1024e-01, 7.3011e-01, 1.8247e-01, 7.2259e-01, + 8.5112e-01, 8.0473e-01, 6.4230e-01, 3.7048e-01, + 2.9053e-01, 9.6763e-01, 2.7425e-01, 5.6426e-01, + 9.8254e-01, 9.1592e-01, 2.0548e-01, 7.9210e-02, + 2.4414e-01, 6.0082e-02, 6.8170e-02, 3.3937e-01, + 3.4001e-01, 7.0646e-01, 6.9797e-01, 5.4520e-01, + 1.4137e-01, 9.9426e-01, 3.4954e-01, 9.9650e-01, + 2.7306e-01, 6.7992e-01, 1.2041e-01, 6.6471e-01, + 2.3938e-01, 3.1122e-01, 4.5743e-01, 1.4852e-01, + 6.9910e-01, 1.0113e-01, 7.9302e-01, 7.3545e-01, + 3.1563e-01, 1.4512e-01, 7.0647e-01, 8.7140e-01, + 9.1965e-01, 1.4186e-01, 2.8393e-02, 9.7708e-01, + 5.8513e-01, 9.3481e-01, 6.7558e-01, 8.9500e-01, + 9.0003e-02, 8.9775e-01, 8.4167e-01, 2.1818e-02, + 1.8609e-01, 5.8508e-01, 3.0947e-01, 6.0761e-01, + 3.6254e-01, 8.2974e-01, 9.9355e-01, 5.4378e-02, + 3.3947e-01, 7.5909e-02, 9.1135e-01, 1.0430e-02, + 8.7321e-02, 7.7744e-01, 1.9790e-01, 4.6172e-01, + 7.3318e-01, 5.0106e-02, 5.5228e-01, 2.9738e-01, + 3.3039e-01, 8.1165e-01, 9.8748e-01, 5.8300e-01, + 7.3523e-01, 5.2394e-02, 8.1360e-01, 7.4104e-01, + 5.7121e-01, 8.8552e-01, 8.8784e-01, 7.1876e-01, + 5.8136e-01, 3.9530e-01, 3.8115e-01, 2.1594e-01, + 8.0066e-01, 1.6795e-01, 3.6684e-01, 5.8371e-01, + 8.4887e-01, 9.4641e-02, 1.8288e-01, 1.5935e-01, + 7.1104e-02, 3.8324e-02, 1.4557e-02, 3.3003e-01, + 1.6650e-01, 9.7656e-01, 7.4992e-01, 4.5991e-01, + 5.0462e-01, 1.4413e-01, 3.0839e-01, 9.9849e-01, + 8.5491e-01, 1.4405e-01, 4.9426e-01, 2.4395e-01, + 3.7398e-01, 3.6176e-01, 5.4007e-01, 8.6105e-01, + 7.2086e-01, 4.6801e-01, 4.7844e-02, 7.7902e-03, + 7.7455e-01, 6.2883e-01, 7.0898e-03, 6.7850e-01, + 3.1714e-01, 4.7251e-01, 2.2450e-01, 9.0123e-01, + 4.9847e-02, 7.4752e-01, 1.2487e-01, 1.3041e-01, + 6.3166e-01, 4.9554e-02, 3.6541e-01, 1.5774e-03, + 3.3968e-01, 1.2319e-01, 5.3567e-01, 5.5351e-01, + 4.3618e-01, 4.2525e-01, 1.4155e-01, 7.3161e-01, + 6.2485e-01, 4.6709e-01, 1.4876e-01, 3.3483e-01, + 1.4932e-01, 7.7303e-01, 6.3207e-01, 1.2562e-01, + 1.3108e-01, 4.7283e-01, 1.9793e-01, 2.3952e-01, + 6.8768e-01, 1.8916e-01, 7.2788e-01, 6.7333e-01, + 7.0169e-01, 5.8876e-01, 3.3174e-01, 4.3460e-01, + 8.7772e-01, 1.0461e-01, 9.9017e-01, 3.6264e-01, + 4.6641e-01, 6.0481e-01, 7.8528e-01, 6.9758e-02, + 1.3203e-01, 3.3813e-01, 6.9587e-01, 7.9392e-01, + 6.3101e-01, 7.4237e-01, 2.3833e-01, 4.4577e-01, + 1.2353e-01, 4.9956e-02, 7.6642e-01, 9.1417e-01, + 7.7560e-01, 8.5817e-01, 2.4853e-01, 9.9014e-01, + 2.2743e-01, 7.3631e-01, 7.5091e-01, 8.2808e-01, + 2.7309e-01, 7.5095e-01, 1.2653e-01, 2.2765e-01, + 6.8022e-01, 3.8368e-01, 7.3961e-01, 5.6540e-01, + 3.7841e-01, 5.2990e-01, 7.2884e-01, 6.9300e-01, + 8.2386e-01, 6.6427e-01, 3.3618e-01, 9.9200e-01, + 6.2470e-01, 4.5833e-01, 2.7161e-01, 3.9472e-01, + 4.0491e-01, 3.9032e-01, 2.7888e-01, 8.7694e-01, + 5.1462e-01, 8.2352e-02, 7.7431e-01, 1.5667e-01, + 3.0758e-01, 3.9598e-01, 7.3692e-01, 8.8800e-01, + 6.3257e-01, 7.9905e-01, 1.9757e-01, 3.7481e-01, + 3.9508e-01, 5.0595e-02, 5.6589e-01, 1.7036e-01, + 7.5594e-01, 9.5069e-01, 9.4936e-01, 1.7508e-01, + 6.8394e-01, 5.3056e-01, 2.1254e-01, 8.4106e-01, + 9.9549e-01, 8.0636e-01, 8.5248e-01, 2.0504e-01, + 3.6483e-01, 6.5467e-01, 5.5258e-01, 2.2799e-01, + 1.0442e-01, 6.6789e-01, 2.6148e-01, 3.0575e-01, + 8.8862e-01, 6.8539e-01, 1.3239e-01, 2.2736e-01, + 5.3108e-01, 1.1433e-01, 7.5717e-01, 5.6507e-02, + 9.7215e-01, 8.1763e-01, 4.9474e-01, 6.6409e-01, + 9.8648e-02, 1.2658e-01, 3.6398e-02, 8.8992e-01, + 6.1677e-01, 6.2160e-01, 3.7350e-01, 2.7875e-01, + 9.8345e-01, 6.4174e-01, 9.2495e-02, 1.5332e-01, + 9.5105e-01, 2.3525e-01, 1.7796e-01, 8.5492e-01, + 5.4722e-01, 4.7154e-01, 6.7081e-01, 2.1261e-01, + 5.2561e-01, 2.3949e-01, 8.3256e-01, 5.8994e-02, + 5.5763e-01, 1.2102e-01, 5.5056e-01, 8.8141e-01, + 4.1634e-01, 4.8507e-01, 5.0130e-01, 5.5949e-01, + 2.4877e-01, 4.0674e-02, 5.8669e-01, 1.1644e-01, + 4.6171e-02, 4.1344e-01, 6.6066e-02, 6.6950e-01, + 3.5460e-01, 2.1220e-01, 9.2831e-01, 5.4601e-01, + 9.1261e-01, 6.8221e-01, 8.3089e-01, 9.7705e-01, + 5.0187e-01, 1.7175e-01, 6.5814e-01, 8.4571e-01, + 4.5138e-01, 1.2624e-01, 8.4142e-01, 9.7453e-01, + 6.0153e-01, 6.6171e-01, 3.4468e-01, 6.1526e-01, + 1.7076e-01, 5.8555e-01, 8.4470e-01, 5.9419e-01, + 3.2242e-01, 9.3308e-01, 6.6230e-01, 4.9998e-01, + 9.9167e-01, 6.4702e-01, 2.7641e-01, 7.3458e-01, + 2.0248e-01, 5.3550e-01, 6.0692e-01, 1.2875e-01, + 4.5059e-01, 6.2396e-01, 7.7281e-01, 1.8342e-01, + 2.6246e-01, 8.9389e-01, 4.2697e-01, 3.9648e-01, + 8.2698e-01, 5.4663e-01, 4.7922e-01, 3.0357e-03, + 3.8921e-01, 9.7708e-01, 2.7712e-01, 8.0466e-01, + 9.7230e-01, 3.2244e-01, 1.1846e-01, 7.2860e-01, + 6.0089e-01, 7.1125e-01, 5.7237e-02, 5.8015e-01, + 4.5166e-01, 1.9292e-01, 9.5705e-01, 1.5807e-01, + 8.6989e-01, 6.2471e-02, 2.9501e-02, 4.7247e-02, + 3.2791e-01, 9.3142e-01, 7.7352e-02, 5.7935e-01, + 3.5842e-01, 2.0744e-01, 7.7836e-01, 7.2019e-01, + 6.4434e-01, 8.5632e-01, 9.1666e-01, 8.9326e-02, + 4.9498e-01, 5.5369e-01, 3.2841e-02, 1.2522e-01, + 1.4327e-01, 2.5462e-01, 7.7178e-01, 6.6082e-01, + 9.0379e-01, 8.8557e-02, 9.4237e-01, 7.4741e-01, + 6.0992e-02, 5.0186e-02, 2.6914e-01, 7.0952e-01, + 2.5865e-01, 5.3132e-02, 2.6880e-01, 2.5089e-02, + 1.2712e-02, 9.2156e-01, 4.1951e-01, 1.7086e-01, + 7.9658e-01, 5.6186e-02, 2.2761e-01, 2.0472e-01, + 4.7993e-01, 5.6562e-01, 9.4194e-01, 8.2094e-01, + 6.5261e-01, 4.7094e-01, 3.8292e-02, 9.9779e-01, + 5.3916e-01, 2.4333e-01, 3.5925e-01, 7.0751e-01, + 5.6442e-01, 9.9979e-01, 2.4833e-01, 5.3667e-04, + 1.3273e-01, 8.0482e-01, 7.8942e-01, 3.3046e-01, + 5.3648e-01, 5.3137e-01, 9.0742e-01, 7.3540e-02, + 7.0616e-01, 5.8158e-01, 4.5235e-01, 6.1205e-02, + 1.1846e-01, 1.1400e-02, 9.2984e-01, 4.7889e-01, + 6.7780e-01, 3.4355e-01, 2.1503e-01, 2.8741e-01, + 5.2396e-01, 2.7170e-02, 8.6659e-01, 6.5162e-01, + 4.2836e-01, 6.4557e-01, 4.6836e-01, 3.9251e-01, + 6.3169e-02, 4.7721e-01, 4.5198e-01, 9.4583e-01, + 2.5670e-01, 8.6367e-01, 8.0301e-01, 5.6540e-01, + 1.2275e-01, 6.7538e-01, 7.8630e-01, 1.3301e-01, + 9.5714e-01, 8.1175e-04, 6.6861e-01, 7.4866e-01, + 9.6597e-02, 2.2323e-03, 2.1415e-01, 5.2451e-01, + 5.6467e-02, 5.1534e-01, 9.0306e-01, 2.6919e-01, + 1.8990e-01, 6.9750e-01, 3.6248e-01, 9.1221e-01, + 1.6548e-01, 7.4743e-01, 1.2102e-01, 3.4027e-02, + 6.4307e-01, 1.3740e-01, 9.6974e-01, 1.9220e-01, + 1.0194e-01, 6.4127e-01, 2.7749e-02, 2.8389e-01, + 5.4854e-01, 4.3292e-01, 1.1213e-01, 4.7669e-01, + 6.2121e-01, 2.8733e-01, 5.7691e-01, 4.1102e-01, + 8.3169e-01, 9.7701e-01, 4.8136e-01, 8.4949e-01, + 7.3493e-01, 3.0034e-01, 6.3975e-01, 7.2441e-01, + 6.6048e-02, 3.6236e-01, 4.8974e-01, 8.9768e-01, + 7.1274e-01, 3.4042e-01, 7.2374e-01, 5.2380e-01, + 9.3108e-01, 4.4617e-01, 1.0445e-01, 2.9912e-01, + 8.0795e-01, 8.4551e-01, 3.4207e-01, 5.8552e-01, + 4.1282e-01, 6.4154e-01, 9.3890e-01, 8.1135e-01, + 9.6445e-01, 8.1856e-01, 7.0867e-01, 1.1983e-01, + 1.5357e-02, 5.0553e-01, 5.2357e-01, 9.1204e-01, + 9.2089e-01, 8.6254e-01, 5.1382e-01, 7.8138e-01, + 7.7134e-01, 8.0806e-01, 4.0440e-01, 7.9203e-01, + 7.6575e-01, 5.1216e-01, 4.8368e-01, 3.8368e-01, + 7.7193e-01, 7.9025e-02, 9.9133e-01, 6.3104e-01, + 4.2101e-01, 7.5156e-01, 9.8417e-01, 2.0940e-01, + 2.1270e-01, 6.6799e-01, 8.9773e-01, 6.8893e-01, + 5.6065e-02, 7.2714e-01, 5.6206e-01, 8.5754e-01, + 4.8712e-01, 5.0712e-01, 3.5141e-01, 6.7838e-01, + 7.9974e-01, 8.9667e-01, 9.2216e-01, 5.5618e-01, + 5.1697e-01, 5.9385e-01, 4.2023e-01, 5.1671e-01, + 7.5104e-01, 6.0102e-01, 9.2901e-01, 6.6097e-01, + 2.0293e-01, 4.8836e-01, 1.0099e-02, 9.2603e-01, + 9.5249e-01, 8.6286e-01, 9.1517e-01, 3.6906e-01, + 9.6104e-01, 6.8823e-01, 9.8204e-01, 8.2582e-01]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.4983, 0.3444, 0.7600, ..., 0.8482, 0.3104, 0.4836]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 9.821086883544922 seconds + +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 141816 -ss 10000 -sd 1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.164389848709106} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), + col_indices=tensor([1810, 1856, 931, 2279, 4513, 5670, 4299, 1451, 4735, + 6521, 8634, 5493, 2604, 416, 4540, 2978, 6685, 9818, + 316, 767, 3433, 9310, 5118, 5536, 8136, 256, 5007, + 9151, 5614, 7335, 5950, 7216, 5695, 8824, 5574, 8028, + 9895, 2763, 3721, 6353, 4375, 393, 4695, 4114, 2940, + 9233, 9506, 5002, 9687, 9138, 8360, 7455, 1902, 6476, + 6018, 9078, 1607, 8332, 6637, 1057, 721, 3190, 9337, + 8872, 2095, 3714, 9220, 3100, 1647, 1733, 5119, 557, + 9473, 477, 8030, 5805, 9318, 3400, 7191, 1837, 2389, + 3821, 5362, 913, 1742, 7815, 3737, 6731, 1087, 8363, + 833, 8039, 7694, 5811, 4452, 6537, 8096, 9721, 7906, + 9466, 2451, 2361, 1224, 6931, 8635, 7881, 1988, 582, + 2422, 9410, 3064, 764, 9933, 6316, 5596, 8997, 8781, + 7963, 2462, 5618, 7101, 6035, 2718, 6507, 6397, 8696, + 1231, 5024, 7289, 7325, 4627, 7957, 8556, 9457, 8469, + 1043, 400, 9203, 2337, 6088, 6450, 5297, 9131, 397, + 4650, 9068, 3118, 9379, 183, 3638, 6795, 2673, 5425, + 3649, 2251, 386, 8750, 9749, 9815, 9857, 2491, 548, + 7332, 870, 4366, 7003, 5840, 4001, 7232, 493, 9185, + 1450, 4016, 5889, 9803, 8136, 3806, 4997, 2092, 5865, + 1283, 1288, 4177, 4695, 6708, 4768, 3634, 5753, 9458, + 4153, 5992, 9552, 362, 5136, 5952, 4357, 6044, 6531, + 7848, 3651, 1491, 3291, 6199, 3810, 9851, 4453, 573, + 5207, 5294, 8733, 2431, 4535, 2913, 2731, 1236, 8636, + 2221, 7544, 4435, 1981, 8442, 7395, 1867, 72, 1063, + 8996, 5199, 834, 4580, 906, 1579, 4963, 9505, 8722, + 759, 7337, 4330, 7322, 3927, 8749, 6201, 5819, 3314, + 1728, 979, 8398, 547, 1399, 9722, 7198, 6130, 1651, + 9224, 7134, 7178, 2300, 7252, 3738, 6753, 8700, 4027, + 4660, 1616, 5761, 9749, 8175, 9091, 5857, 850, 4133, + 6445, 9542, 5521, 3707, 501, 2454, 2733, 8580, 6779, + 4547, 3843, 9359, 9768, 9596, 5497, 2652, 1974, 934, + 2868, 643, 3680, 5565, 2740, 5926, 9245, 297, 5885, + 7332, 4786, 9103, 3064, 6549, 4286, 1165, 4952, 4434, + 6047, 6832, 8224, 2174, 9669, 5613, 92, 4381, 1935, + 8729, 8524, 3665, 9250, 881, 978, 7426, 214, 4381, + 9072, 7182, 9280, 9247, 3139, 4899, 5790, 8131, 5251, + 1945, 4451, 6820, 2480, 3728, 5141, 1006, 2084, 5510, + 7851, 3147, 280, 4766, 666, 3022, 5516, 62, 851, + 2617, 1208, 9039, 5500, 3894, 8214, 5791, 9173, 3794, + 9197, 8491, 3563, 9034, 6932, 2159, 6540, 6695, 5710, + 3701, 4010, 4892, 9604, 2787, 1559, 9207, 7948, 9910, + 7651, 9441, 2786, 5611, 7856, 780, 2409, 6611, 3028, + 2892, 4645, 7285, 6793, 2186, 7630, 8443, 4152, 9915, + 4301, 8517, 4370, 1937, 7168, 4699, 5667, 9090, 4697, + 7753, 3776, 2536, 2414, 849, 2750, 3568, 2331, 6088, + 4578, 2773, 5446, 8350, 58, 2640, 4319, 9666, 17, + 5678, 3420, 4634, 1241, 8722, 9054, 958, 8602, 7469, + 2692, 1737, 4604, 7250, 3682, 5105, 6794, 511, 200, + 2748, 5616, 2441, 8764, 2176, 2132, 2501, 6271, 7122, + 6825, 5910, 7394, 1413, 4046, 8556, 3307, 7999, 6117, + 136, 3329, 6583, 6397, 3117, 5562, 172, 7031, 3604, + 3778, 9349, 1380, 6106, 5738, 8078, 2759, 7054, 1000, + 9090, 9645, 4500, 2130, 6459, 4518, 8573, 7237, 8964, + 1058, 7216, 321, 4470, 8421, 3209, 1529, 1093, 5471, + 1648, 6187, 665, 1916, 3569, 8936, 4606, 7181, 1035, + 7655, 8639, 69, 6816, 473, 2761, 4406, 5451, 5659, + 2977, 7560, 8606, 9549, 5893, 7706, 8223, 5677, 1005, + 2082, 9957, 1028, 4827, 3540, 3354, 6748, 9990, 785, + 5380, 8309, 3006, 2550, 7674, 3028, 201, 5759, 6945, + 8400, 5908, 5641, 3104, 188, 8136, 2319, 4660, 3971, + 5048, 7804, 2519, 2680, 6795, 5335, 4837, 7700, 9088, + 2631, 1592, 1189, 2012, 8241, 5397, 5890, 301, 5350, + 8109, 4551, 7974, 3627, 3176, 9488, 5900, 2093, 6017, + 8155, 7066, 9159, 4950, 5821, 8787, 5297, 6212, 9674, + 5892, 9764, 4869, 6527, 3772, 9250, 3915, 7057, 2066, + 776, 2058, 536, 3836, 2276, 3119, 9771, 6981, 1557, + 3152, 7989, 4943, 908, 3893, 5867, 5751, 2670, 3300, + 1333, 456, 4978, 7244, 6587, 1413, 7491, 8838, 3245, + 2823, 4557, 2336, 9507, 6703, 5382, 5989, 8187, 4846, + 1379, 7329, 2895, 3755, 789, 4156, 7015, 2001, 7794, + 9724, 106, 6678, 1270, 870, 2287, 1171, 6963, 9681, + 5390, 2761, 8932, 9364, 62, 804, 3515, 7687, 2532, + 8090, 9047, 5660, 1726, 4838, 1887, 2558, 7861, 4629, + 2768, 6071, 1636, 2194, 3356, 323, 808, 5194, 4156, + 4843, 3619, 4136, 8024, 2003, 3759, 5309, 8654, 6344, + 8097, 7018, 700, 4124, 9984, 875, 4417, 277, 1439, + 4346, 1616, 8339, 8550, 235, 4963, 6446, 9405, 5699, + 7561, 820, 3489, 4243, 5511, 7457, 3168, 6565, 7884, + 8513, 7357, 155, 9743, 8038, 1450, 8771, 4684, 9678, + 1784, 756, 7286, 5655, 2184, 7686, 6558, 9894, 2199, + 6800, 1205, 214, 3125, 963, 5379, 2608, 8434, 9677, + 8270, 5214, 1299, 8433, 9372, 4124, 8888, 2011, 2113, + 6354, 4807, 8546, 2110, 5520, 384, 6426, 6575, 6564, + 1390, 2433, 1505, 2722, 88, 4635, 4428, 6839, 7408, + 8050, 5826, 8959, 7096, 3081, 3080, 7686, 1331, 8565, + 7693, 9348, 292, 6130, 8809, 6301, 7956, 1983, 1907, + 7186, 1820, 8616, 9283, 2455, 140, 6679, 5156, 1774, + 1712, 9243, 5561, 8196, 944, 8632, 2385, 3424, 9448, + 8082, 2162, 5310, 6544, 1094, 2786, 7082, 5011, 9221, + 3773, 8258, 4870, 3431, 6655, 7055, 1419, 339, 1377, + 8494, 1974, 4038, 7018, 9098, 3701, 7826, 2779, 8163, + 8543, 7815, 6923, 2804, 1690, 4707, 676, 7163, 8410, + 9359, 929, 1202, 2632, 8972, 1668, 6980, 7195, 1951, + 5754, 9735, 8716, 8066, 9339, 4502, 7781, 2962, 9864, + 2935, 2818, 1369, 8993, 3859, 4694, 5956, 5879, 8042, + 3649, 5653, 8964, 4085, 8658, 1438, 3412, 4666, 4822, + 7011, 6520, 1596, 2472, 2945, 5559, 9517, 6060, 1482, + 5581, 4794, 920, 1911, 8883, 1952, 2387, 3314, 7049, + 5952, 9066, 9847, 1846, 3233, 143, 1181, 7109, 1398, + 2396, 1676, 6911, 442, 3879, 8274, 5165, 8071, 8656, + 6961, 7229, 9025, 3470, 7036, 3654, 2383, 637, 1637, + 3509, 6294, 8342, 7867, 2855, 4117, 3596, 2252, 7724, + 1591, 2221, 9186, 877, 4114, 477, 6322, 2667, 7693, + 8444, 1638, 8721, 472, 1976, 9959, 6980, 3171, 4887, + 2038, 2562, 9386, 9361, 3719, 1289, 9961, 8417, 3223, + 4861, 2375, 8977, 6396, 9866, 3342, 8327, 5726, 4452, + 5350, 9941, 8254, 9351, 5780, 6640, 4731, 8661, 5704, + 2606, 7600, 4119, 1364, 333, 1408, 3800, 8150, 9778, + 5408, 2234, 9215, 76, 9479, 2233, 1268, 5179, 868, + 9805, 4840, 1357, 335, 7091, 2257, 1253, 3554, 2744, + 1420]), + values=tensor([1.2669e-01, 8.7393e-01, 8.1661e-01, 4.0787e-01, + 2.6982e-01, 7.1775e-01, 9.8153e-01, 1.5123e-01, + 1.7162e-01, 6.5592e-01, 5.3835e-01, 9.5599e-01, + 9.6014e-01, 7.6631e-01, 2.6202e-01, 6.6482e-01, + 5.4833e-01, 1.9027e-01, 4.5359e-01, 2.1409e-01, + 7.9491e-02, 6.8437e-01, 4.9517e-01, 4.4702e-01, + 2.7025e-01, 7.9112e-02, 3.0727e-01, 3.3256e-01, + 8.9558e-01, 5.9045e-01, 8.6208e-02, 2.3611e-01, + 6.3933e-01, 1.2532e-01, 7.7999e-01, 3.9650e-01, + 9.1520e-01, 2.8599e-01, 9.8139e-01, 3.0200e-01, + 4.1650e-02, 6.8925e-01, 7.1861e-01, 7.0927e-01, + 3.3385e-01, 4.3698e-01, 5.8834e-01, 2.0230e-01, + 7.3991e-01, 3.4908e-01, 6.5491e-01, 1.5128e-02, + 4.1229e-01, 7.1760e-01, 8.9114e-01, 3.2176e-01, + 7.5048e-01, 1.5471e-01, 4.8574e-01, 7.1400e-01, + 3.9874e-01, 4.9790e-02, 6.7377e-01, 5.2447e-01, + 9.5955e-01, 8.2373e-01, 2.7976e-01, 8.0827e-01, + 3.5445e-01, 8.7547e-01, 2.4819e-01, 5.7891e-01, + 1.7842e-01, 9.9633e-01, 2.0344e-01, 5.5228e-01, + 3.2819e-01, 9.4763e-01, 7.8439e-01, 1.3606e-01, + 7.7341e-01, 8.6243e-01, 2.3202e-01, 9.9464e-01, + 4.5853e-01, 1.8634e-01, 4.2896e-01, 4.9027e-01, + 8.9351e-01, 3.3378e-01, 4.0627e-01, 4.1185e-01, + 6.3928e-01, 9.6280e-01, 1.7920e-01, 2.0803e-01, + 5.5008e-02, 7.4580e-02, 9.4528e-01, 4.9813e-01, + 9.0883e-01, 7.1517e-01, 6.3946e-01, 1.7988e-01, + 4.8656e-02, 3.7757e-01, 5.0139e-01, 5.4126e-01, + 3.2256e-01, 8.7845e-01, 8.5856e-01, 5.2275e-01, + 1.0808e-01, 8.9153e-01, 7.1791e-01, 8.9698e-01, + 4.0713e-01, 4.4172e-01, 3.0770e-01, 7.3007e-01, + 4.4634e-01, 9.3715e-01, 2.8418e-01, 2.6231e-01, + 9.4816e-01, 1.0540e-02, 4.5361e-01, 8.4126e-01, + 8.5753e-01, 7.5409e-01, 7.0734e-01, 1.9791e-01, + 1.7291e-01, 6.6092e-01, 5.8409e-01, 7.5187e-01, + 3.5966e-01, 9.8459e-02, 8.7200e-01, 5.0893e-02, + 4.9743e-01, 3.0398e-02, 6.0787e-01, 6.1896e-01, + 5.4418e-01, 5.6134e-01, 7.5484e-01, 8.2147e-02, + 5.5628e-01, 9.8056e-01, 5.2700e-01, 3.7724e-01, + 2.5510e-01, 3.5734e-01, 6.0300e-01, 8.5641e-01, + 1.6978e-01, 3.1856e-01, 5.3176e-03, 4.6888e-01, + 2.5591e-01, 1.7626e-01, 5.1990e-01, 5.3558e-01, + 6.1758e-01, 6.4691e-01, 9.5777e-01, 7.0400e-02, + 7.5579e-01, 4.5386e-01, 5.5198e-02, 3.9878e-01, + 1.2664e-01, 7.6396e-01, 2.8470e-01, 4.9434e-01, + 3.0702e-01, 6.8774e-01, 2.7310e-01, 2.6016e-01, + 6.2440e-01, 9.5555e-01, 8.2495e-01, 3.3464e-01, + 1.5315e-01, 4.5941e-01, 1.5110e-01, 7.9281e-01, + 1.9727e-01, 2.9202e-01, 1.2270e-02, 4.1303e-01, + 3.1626e-01, 3.4680e-01, 8.2967e-01, 7.7487e-01, + 6.0472e-01, 4.2670e-01, 5.1644e-01, 3.3165e-01, + 7.3877e-01, 1.7731e-01, 6.0793e-01, 5.8154e-01, + 1.9342e-01, 5.4986e-01, 2.4134e-01, 6.4498e-01, + 8.7501e-01, 7.3630e-01, 4.6071e-01, 7.8664e-01, + 5.3966e-01, 6.2202e-01, 8.9457e-01, 4.1110e-01, + 9.9926e-01, 6.6711e-01, 3.9496e-01, 5.8353e-01, + 5.9854e-01, 9.8342e-01, 8.8288e-01, 4.7062e-01, + 6.0286e-01, 3.3123e-01, 4.2946e-01, 6.8966e-01, + 9.7649e-01, 6.3504e-01, 2.7886e-01, 1.7738e-01, + 9.1002e-01, 1.7273e-02, 8.5873e-01, 7.4755e-01, + 9.6283e-02, 8.8306e-01, 6.0624e-01, 5.1544e-01, + 8.9322e-01, 7.0187e-01, 6.5332e-01, 5.7367e-01, + 3.1488e-01, 7.5282e-01, 8.7148e-01, 6.3232e-02, + 9.4629e-01, 8.8039e-01, 3.3352e-01, 7.6588e-01, + 3.2974e-01, 4.2399e-01, 6.8394e-01, 7.5248e-01, + 2.5822e-01, 5.8647e-01, 7.3684e-01, 7.3199e-01, + 2.1290e-01, 1.3727e-01, 6.2815e-01, 2.1737e-02, + 8.5861e-01, 4.6935e-01, 1.6690e-02, 4.2346e-01, + 2.4551e-01, 6.5316e-01, 3.9505e-01, 1.4802e-01, + 5.9363e-01, 8.0643e-01, 9.8503e-01, 7.3261e-01, + 9.6675e-01, 8.7076e-01, 6.8400e-02, 3.5968e-01, + 3.5093e-01, 7.4507e-01, 3.7687e-01, 4.4083e-01, + 8.9130e-01, 7.7598e-01, 9.9040e-01, 9.3688e-01, + 2.0552e-01, 5.0793e-01, 5.9538e-01, 5.4962e-01, + 7.9509e-01, 1.3750e-01, 1.7177e-02, 6.7863e-01, + 7.3264e-01, 9.6215e-01, 8.1209e-01, 5.9917e-01, + 9.9758e-01, 1.0184e-02, 1.3805e-01, 4.0914e-01, + 4.4068e-01, 9.0888e-02, 1.2403e-01, 2.7014e-01, + 8.3471e-01, 6.6512e-01, 8.9411e-01, 2.7876e-01, + 3.9486e-01, 3.2953e-01, 7.6349e-01, 6.6362e-01, + 8.7638e-01, 7.0782e-01, 3.8536e-01, 3.2754e-02, + 1.7659e-01, 3.1028e-01, 4.0587e-01, 6.0771e-01, + 2.3400e-01, 1.3235e-01, 6.4474e-01, 8.6121e-01, + 4.0888e-01, 2.5669e-01, 8.1427e-02, 1.0228e-01, + 7.6945e-01, 8.4433e-01, 9.3924e-01, 6.2411e-01, + 4.8252e-02, 5.7566e-01, 6.5033e-01, 4.0115e-01, + 8.6214e-01, 7.1450e-01, 6.7169e-01, 8.1160e-01, + 2.4782e-01, 6.1569e-01, 1.4264e-01, 5.3882e-01, + 3.0175e-01, 2.1447e-01, 8.2910e-01, 7.1263e-01, + 4.1041e-01, 7.2068e-01, 8.4498e-01, 5.2096e-02, + 9.5888e-01, 7.9916e-02, 6.4003e-01, 6.0626e-01, + 3.3487e-01, 1.9126e-01, 8.2271e-01, 5.8379e-01, + 5.6910e-01, 6.6284e-02, 9.9075e-01, 9.6108e-01, + 8.1421e-01, 8.9408e-03, 4.7697e-01, 1.4288e-01, + 4.3262e-01, 1.2967e-01, 9.4186e-01, 9.9199e-01, + 4.3357e-01, 6.1622e-01, 5.7557e-01, 3.5405e-01, + 6.9167e-01, 8.5568e-01, 4.3381e-01, 8.4869e-01, + 2.1798e-01, 2.4886e-01, 2.0942e-01, 2.6149e-01, + 8.5653e-01, 1.5770e-01, 3.8634e-01, 4.9710e-01, + 7.4703e-01, 4.5228e-01, 3.0141e-01, 9.7591e-01, + 7.5096e-01, 8.1526e-01, 5.8201e-01, 1.4188e-01, + 4.6956e-02, 1.5967e-01, 9.8820e-01, 4.6653e-01, + 9.8081e-01, 2.8229e-01, 7.7183e-01, 1.6760e-01, + 6.5027e-01, 9.6884e-01, 1.9788e-01, 8.5793e-01, + 6.0644e-01, 4.0800e-01, 2.5730e-01, 3.9003e-01, + 1.7666e-01, 8.0375e-02, 3.4927e-01, 9.6081e-01, + 2.3696e-01, 8.5889e-01, 8.6890e-01, 2.1566e-01, + 6.7472e-01, 7.3409e-01, 3.6598e-01, 6.4398e-01, + 6.0834e-01, 2.2605e-01, 9.6430e-01, 3.1620e-01, + 4.2307e-01, 2.9137e-01, 3.7774e-02, 3.2640e-01, + 7.8393e-01, 1.2873e-01, 1.8067e-01, 3.4296e-01, + 5.8599e-01, 1.8457e-01, 2.8466e-01, 1.6284e-01, + 3.8473e-01, 3.7876e-01, 7.5374e-01, 2.2498e-01, + 1.0433e-01, 9.8092e-01, 5.2731e-01, 4.5361e-01, + 4.3056e-01, 5.9834e-02, 9.8079e-01, 5.3458e-01, + 7.7131e-02, 1.6104e-01, 2.2237e-01, 5.4361e-01, + 5.1495e-01, 4.2570e-01, 6.6160e-01, 5.8793e-01, + 3.6340e-01, 9.8347e-01, 2.7024e-01, 2.1522e-01, + 3.3250e-01, 7.9908e-01, 2.6481e-01, 3.5391e-01, + 8.3857e-01, 8.7019e-01, 8.7277e-01, 3.2002e-01, + 5.3592e-01, 1.0393e-01, 3.3628e-02, 1.4102e-01, + 3.8307e-01, 9.9468e-01, 2.2920e-01, 1.6939e-01, + 5.4000e-01, 6.7492e-01, 3.1163e-01, 9.0707e-01, + 1.4558e-01, 4.4107e-01, 9.1161e-01, 2.9585e-01, + 8.9864e-01, 5.7575e-01, 8.0033e-01, 1.8430e-01, + 2.6406e-01, 2.8590e-01, 4.5809e-01, 3.0343e-01, + 1.6994e-01, 7.0324e-01, 8.4510e-01, 6.1950e-01, + 6.1401e-01, 5.4919e-01, 2.5461e-01, 2.3646e-01, + 4.0097e-03, 5.3325e-01, 1.7385e-01, 1.9099e-01, + 7.6460e-01, 4.9279e-01, 2.3519e-01, 4.4248e-01, + 1.8583e-01, 7.0388e-01, 9.0522e-01, 6.9809e-01, + 4.8338e-01, 6.8957e-01, 7.8366e-01, 1.2459e-01, + 5.5699e-01, 4.4103e-01, 2.1030e-01, 9.5385e-01, + 9.1934e-01, 5.2540e-01, 5.4072e-01, 7.4035e-01, + 1.1919e-01, 8.7267e-01, 5.0507e-01, 1.3004e-01, + 6.5324e-01, 2.4884e-01, 6.1389e-01, 6.0188e-01, + 5.4507e-01, 5.1591e-01, 6.9854e-01, 3.3306e-01, + 1.0301e-01, 8.1510e-01, 3.2515e-01, 8.7804e-01, + 9.9064e-01, 5.8741e-01, 6.9486e-01, 2.9900e-01, + 8.9103e-01, 4.2348e-01, 6.3428e-01, 3.3684e-02, + 4.1931e-01, 2.9892e-01, 4.6109e-01, 2.7567e-01, + 9.3564e-01, 5.2654e-01, 1.0018e-01, 8.4790e-01, + 5.7012e-01, 5.4810e-01, 3.4658e-01, 7.4770e-01, + 9.4877e-01, 5.1453e-01, 8.3770e-01, 2.2628e-01, + 2.8297e-01, 9.3592e-01, 9.9443e-01, 7.3418e-01, + 7.7762e-02, 3.2115e-01, 2.8077e-01, 2.4932e-03, + 7.7722e-01, 9.3033e-02, 2.8306e-01, 9.0197e-01, + 3.8358e-01, 2.3377e-01, 2.8415e-01, 9.6665e-01, + 4.5076e-01, 5.8332e-01, 5.3551e-01, 1.4427e-01, + 9.7314e-01, 9.5072e-01, 9.6080e-01, 6.9839e-01, + 7.7003e-01, 2.9602e-02, 1.5625e-02, 9.6492e-01, + 5.5545e-01, 4.6314e-02, 4.0823e-01, 3.4010e-01, + 7.9200e-01, 3.6788e-01, 2.6052e-02, 8.1153e-01, + 9.0067e-01, 4.6863e-01, 6.3271e-01, 2.4893e-01, + 1.4957e-01, 7.2187e-01, 3.2709e-01, 9.9022e-02, + 6.5922e-01, 5.9406e-01, 3.3545e-01, 9.9067e-02, + 3.3824e-01, 9.2845e-01, 5.0255e-02, 2.2726e-01, + 3.4047e-01, 1.9861e-01, 1.4552e-01, 8.7986e-01, + 9.7482e-01, 4.1268e-01, 5.3799e-01, 5.9400e-01, + 7.4292e-01, 9.3075e-01, 3.9928e-01, 4.1655e-01, + 4.2639e-01, 7.7034e-01, 8.0540e-01, 3.1683e-01, + 2.3456e-01, 8.4488e-01, 3.7461e-01, 1.9023e-01, + 3.2398e-01, 6.2931e-01, 7.9000e-01, 2.9367e-01, + 6.8792e-01, 2.5211e-01, 6.9874e-01, 6.6391e-02, + 3.9713e-01, 6.5888e-01, 9.5501e-01, 5.4415e-01, + 5.5479e-01, 1.8311e-01, 3.5347e-01, 1.1535e-01, + 8.4727e-02, 3.7156e-02, 2.1737e-01, 3.9178e-01, + 4.3687e-01, 5.7922e-01, 7.1261e-01, 9.3706e-01, + 3.1458e-01, 5.7745e-01, 9.5299e-01, 5.8225e-01, + 6.4173e-02, 6.8551e-01, 9.5133e-01, 9.7228e-01, + 1.2820e-01, 1.3996e-01, 9.9997e-01, 9.2530e-01, + 8.5804e-01, 3.2017e-01, 1.4546e-01, 5.6185e-01, + 7.3055e-01, 5.3408e-01, 6.1432e-01, 2.1717e-01, + 8.6165e-01, 1.0379e-01, 6.0844e-01, 6.0791e-01, + 9.6595e-01, 3.1142e-01, 8.5742e-01, 1.0143e-01, + 2.0557e-01, 2.5530e-02, 5.2649e-01, 2.9851e-01, + 3.0730e-01, 3.2053e-01, 5.2734e-01, 8.8573e-01, + 4.1562e-01, 8.5644e-01, 1.1528e-01, 4.7387e-01, + 3.6684e-01, 6.5894e-01, 5.6719e-01, 6.4520e-01, + 2.5761e-01, 9.5989e-01, 7.8963e-01, 6.8385e-01, + 7.8112e-01, 6.4983e-01, 7.3846e-02, 9.9274e-01, + 7.8711e-01, 2.1382e-01, 6.0371e-01, 6.0743e-01, + 5.6459e-01, 6.4106e-02, 3.6125e-01, 8.0174e-01, + 8.1660e-01, 5.0011e-02, 3.1920e-01, 6.8889e-01, + 5.1944e-01, 7.9207e-01, 9.5144e-01, 3.0550e-01, + 8.9033e-01, 1.1908e-01, 4.7515e-01, 7.3463e-02, + 8.5474e-01, 7.5163e-01, 4.4201e-01, 8.9693e-01, + 8.0204e-01, 9.5888e-01, 3.0000e-01, 7.3653e-01, + 2.4941e-01, 9.0498e-01, 4.0852e-01, 9.1876e-01, + 3.2672e-01, 2.0116e-01, 9.6205e-01, 1.3782e-01, + 1.8651e-01, 4.1469e-01, 9.9287e-01, 3.3236e-01, + 8.4546e-01, 4.9708e-01, 6.1721e-01, 1.3183e-02, + 1.1176e-01, 7.7549e-01, 9.1833e-01, 8.2602e-01, + 8.8564e-01, 8.1683e-01, 9.4631e-01, 5.3871e-01, + 9.2475e-01, 7.5219e-01, 5.5456e-01, 5.8932e-01, + 6.0369e-01, 8.7860e-01, 7.8732e-01, 3.3553e-01, + 1.4227e-01, 7.2320e-02, 9.1130e-01, 2.7576e-01, + 1.9227e-01, 5.8261e-01, 5.7597e-01, 5.2942e-01, + 8.0195e-01, 7.5532e-01, 7.3289e-01, 7.3481e-01, + 1.5441e-01, 2.6307e-01, 3.8647e-01, 4.7675e-01, + 5.4830e-01, 3.3849e-01, 2.7906e-01, 2.0740e-02, + 5.7538e-01, 1.6988e-01, 5.3493e-01, 6.4440e-01, + 4.3749e-01, 1.6581e-01, 3.9710e-02, 2.9556e-01, + 2.7617e-01, 6.3054e-01, 4.6486e-01, 2.3433e-01, + 9.4185e-01, 2.6274e-01, 8.2593e-02, 9.5403e-01, + 7.0567e-01, 3.2809e-01, 6.7833e-01, 6.0174e-01, + 9.4228e-01, 8.9392e-01, 7.5028e-01, 5.3536e-01, + 8.1596e-01, 7.2865e-02, 7.6011e-02, 6.6139e-02, + 8.9616e-01, 3.0205e-01, 2.0969e-01, 7.2103e-01, + 1.4867e-01, 3.5570e-01, 9.6596e-02, 7.1176e-01, + 3.2679e-01, 6.5342e-04, 6.5438e-01, 3.4126e-01, + 4.7895e-01, 6.8964e-01, 6.8851e-01, 1.1205e-02, + 4.9141e-01, 3.0960e-01, 6.7523e-01, 3.4067e-01, + 6.0303e-01, 7.5867e-02, 5.9892e-01, 1.5932e-01, + 3.8413e-01, 7.0884e-01, 1.1522e-01, 8.3082e-01, + 9.2526e-01, 6.1693e-01, 1.2340e-01, 7.9432e-01, + 1.2029e-01, 1.5355e-01, 8.0700e-01, 1.8975e-01, + 2.8623e-01, 3.2111e-01, 7.9519e-01, 9.2948e-01, + 4.0853e-01, 4.7139e-02, 3.8241e-02, 1.6226e-01, + 1.4393e-01, 6.6874e-02, 9.4315e-01, 6.3129e-01, + 7.4798e-01, 4.7261e-03, 5.4673e-01, 8.9635e-02, + 8.8321e-02, 8.3158e-01, 5.7913e-01, 1.7580e-01, + 9.4173e-01, 5.0281e-01, 2.1334e-01, 2.4799e-01, + 8.1771e-01, 9.2260e-01, 3.2236e-01, 4.1922e-01, + 6.3245e-02, 2.7162e-01, 7.0913e-01, 4.4175e-01, + 8.4221e-01, 9.1147e-01, 5.9522e-01, 2.1069e-01, + 9.7237e-01, 4.6063e-01, 6.0893e-01, 9.1593e-01, + 5.5942e-01, 8.9949e-01, 1.5959e-01, 5.1028e-01, + 5.8067e-01, 5.0040e-01, 7.5637e-01, 5.0051e-01, + 1.3529e-01, 1.6889e-01, 3.7566e-01, 7.6014e-01, + 6.9943e-01, 4.3676e-02, 4.9197e-01, 7.5237e-01, + 5.2776e-01, 8.1006e-01, 4.0253e-01, 1.3341e-01, + 5.7251e-01, 8.5232e-01, 1.3314e-01, 4.7442e-01, + 1.0458e-01, 7.8215e-01, 8.6254e-01, 7.8172e-01, + 7.5658e-01, 3.7316e-01, 4.9245e-01, 2.0250e-01, + 2.9283e-01, 4.9418e-01, 8.3756e-01, 7.9447e-01, + 2.5860e-02, 8.6507e-01, 3.3105e-01, 7.4279e-01, + 6.9986e-01, 2.4197e-01, 8.4334e-01, 6.3321e-02, + 1.5450e-01, 3.6323e-01, 9.1984e-01, 2.5840e-01, + 6.8977e-01, 9.3757e-01, 3.4717e-01, 4.3387e-01, + 1.1786e-01, 9.0562e-01, 7.6327e-02, 9.9274e-01, + 9.3539e-01, 3.4387e-01, 7.6361e-01, 1.6568e-01, + 9.7903e-01, 2.7082e-01, 1.0756e-01, 7.6346e-01, + 7.1179e-01, 7.6705e-01, 6.9893e-01, 4.3779e-01, + 6.1936e-01, 1.2852e-01, 7.0319e-01, 4.1450e-01, + 9.3806e-01, 9.4660e-01, 5.1220e-01, 6.6328e-01, + 1.6919e-01, 1.5555e-01, 1.4095e-02, 5.4087e-01, + 1.9144e-01, 4.5731e-01, 6.9006e-01, 4.7231e-01, + 1.8945e-01, 9.9883e-01, 4.1069e-01, 2.3659e-01, + 9.8239e-01, 3.1741e-01, 7.2376e-01, 8.4620e-01, + 6.8221e-01, 4.3839e-01, 8.3264e-01, 3.0102e-01]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.7176, 0.7209, 0.4421, ..., 0.7861, 0.0630, 0.0040]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 10.164389848709106 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), + col_indices=tensor([1810, 1856, 931, 2279, 4513, 5670, 4299, 1451, 4735, + 6521, 8634, 5493, 2604, 416, 4540, 2978, 6685, 9818, + 316, 767, 3433, 9310, 5118, 5536, 8136, 256, 5007, + 9151, 5614, 7335, 5950, 7216, 5695, 8824, 5574, 8028, + 9895, 2763, 3721, 6353, 4375, 393, 4695, 4114, 2940, + 9233, 9506, 5002, 9687, 9138, 8360, 7455, 1902, 6476, + 6018, 9078, 1607, 8332, 6637, 1057, 721, 3190, 9337, + 8872, 2095, 3714, 9220, 3100, 1647, 1733, 5119, 557, + 9473, 477, 8030, 5805, 9318, 3400, 7191, 1837, 2389, + 3821, 5362, 913, 1742, 7815, 3737, 6731, 1087, 8363, + 833, 8039, 7694, 5811, 4452, 6537, 8096, 9721, 7906, + 9466, 2451, 2361, 1224, 6931, 8635, 7881, 1988, 582, + 2422, 9410, 3064, 764, 9933, 6316, 5596, 8997, 8781, + 7963, 2462, 5618, 7101, 6035, 2718, 6507, 6397, 8696, + 1231, 5024, 7289, 7325, 4627, 7957, 8556, 9457, 8469, + 1043, 400, 9203, 2337, 6088, 6450, 5297, 9131, 397, + 4650, 9068, 3118, 9379, 183, 3638, 6795, 2673, 5425, + 3649, 2251, 386, 8750, 9749, 9815, 9857, 2491, 548, + 7332, 870, 4366, 7003, 5840, 4001, 7232, 493, 9185, + 1450, 4016, 5889, 9803, 8136, 3806, 4997, 2092, 5865, + 1283, 1288, 4177, 4695, 6708, 4768, 3634, 5753, 9458, + 4153, 5992, 9552, 362, 5136, 5952, 4357, 6044, 6531, + 7848, 3651, 1491, 3291, 6199, 3810, 9851, 4453, 573, + 5207, 5294, 8733, 2431, 4535, 2913, 2731, 1236, 8636, + 2221, 7544, 4435, 1981, 8442, 7395, 1867, 72, 1063, + 8996, 5199, 834, 4580, 906, 1579, 4963, 9505, 8722, + 759, 7337, 4330, 7322, 3927, 8749, 6201, 5819, 3314, + 1728, 979, 8398, 547, 1399, 9722, 7198, 6130, 1651, + 9224, 7134, 7178, 2300, 7252, 3738, 6753, 8700, 4027, + 4660, 1616, 5761, 9749, 8175, 9091, 5857, 850, 4133, + 6445, 9542, 5521, 3707, 501, 2454, 2733, 8580, 6779, + 4547, 3843, 9359, 9768, 9596, 5497, 2652, 1974, 934, + 2868, 643, 3680, 5565, 2740, 5926, 9245, 297, 5885, + 7332, 4786, 9103, 3064, 6549, 4286, 1165, 4952, 4434, + 6047, 6832, 8224, 2174, 9669, 5613, 92, 4381, 1935, + 8729, 8524, 3665, 9250, 881, 978, 7426, 214, 4381, + 9072, 7182, 9280, 9247, 3139, 4899, 5790, 8131, 5251, + 1945, 4451, 6820, 2480, 3728, 5141, 1006, 2084, 5510, + 7851, 3147, 280, 4766, 666, 3022, 5516, 62, 851, + 2617, 1208, 9039, 5500, 3894, 8214, 5791, 9173, 3794, + 9197, 8491, 3563, 9034, 6932, 2159, 6540, 6695, 5710, + 3701, 4010, 4892, 9604, 2787, 1559, 9207, 7948, 9910, + 7651, 9441, 2786, 5611, 7856, 780, 2409, 6611, 3028, + 2892, 4645, 7285, 6793, 2186, 7630, 8443, 4152, 9915, + 4301, 8517, 4370, 1937, 7168, 4699, 5667, 9090, 4697, + 7753, 3776, 2536, 2414, 849, 2750, 3568, 2331, 6088, + 4578, 2773, 5446, 8350, 58, 2640, 4319, 9666, 17, + 5678, 3420, 4634, 1241, 8722, 9054, 958, 8602, 7469, + 2692, 1737, 4604, 7250, 3682, 5105, 6794, 511, 200, + 2748, 5616, 2441, 8764, 2176, 2132, 2501, 6271, 7122, + 6825, 5910, 7394, 1413, 4046, 8556, 3307, 7999, 6117, + 136, 3329, 6583, 6397, 3117, 5562, 172, 7031, 3604, + 3778, 9349, 1380, 6106, 5738, 8078, 2759, 7054, 1000, + 9090, 9645, 4500, 2130, 6459, 4518, 8573, 7237, 8964, + 1058, 7216, 321, 4470, 8421, 3209, 1529, 1093, 5471, + 1648, 6187, 665, 1916, 3569, 8936, 4606, 7181, 1035, + 7655, 8639, 69, 6816, 473, 2761, 4406, 5451, 5659, + 2977, 7560, 8606, 9549, 5893, 7706, 8223, 5677, 1005, + 2082, 9957, 1028, 4827, 3540, 3354, 6748, 9990, 785, + 5380, 8309, 3006, 2550, 7674, 3028, 201, 5759, 6945, + 8400, 5908, 5641, 3104, 188, 8136, 2319, 4660, 3971, + 5048, 7804, 2519, 2680, 6795, 5335, 4837, 7700, 9088, + 2631, 1592, 1189, 2012, 8241, 5397, 5890, 301, 5350, + 8109, 4551, 7974, 3627, 3176, 9488, 5900, 2093, 6017, + 8155, 7066, 9159, 4950, 5821, 8787, 5297, 6212, 9674, + 5892, 9764, 4869, 6527, 3772, 9250, 3915, 7057, 2066, + 776, 2058, 536, 3836, 2276, 3119, 9771, 6981, 1557, + 3152, 7989, 4943, 908, 3893, 5867, 5751, 2670, 3300, + 1333, 456, 4978, 7244, 6587, 1413, 7491, 8838, 3245, + 2823, 4557, 2336, 9507, 6703, 5382, 5989, 8187, 4846, + 1379, 7329, 2895, 3755, 789, 4156, 7015, 2001, 7794, + 9724, 106, 6678, 1270, 870, 2287, 1171, 6963, 9681, + 5390, 2761, 8932, 9364, 62, 804, 3515, 7687, 2532, + 8090, 9047, 5660, 1726, 4838, 1887, 2558, 7861, 4629, + 2768, 6071, 1636, 2194, 3356, 323, 808, 5194, 4156, + 4843, 3619, 4136, 8024, 2003, 3759, 5309, 8654, 6344, + 8097, 7018, 700, 4124, 9984, 875, 4417, 277, 1439, + 4346, 1616, 8339, 8550, 235, 4963, 6446, 9405, 5699, + 7561, 820, 3489, 4243, 5511, 7457, 3168, 6565, 7884, + 8513, 7357, 155, 9743, 8038, 1450, 8771, 4684, 9678, + 1784, 756, 7286, 5655, 2184, 7686, 6558, 9894, 2199, + 6800, 1205, 214, 3125, 963, 5379, 2608, 8434, 9677, + 8270, 5214, 1299, 8433, 9372, 4124, 8888, 2011, 2113, + 6354, 4807, 8546, 2110, 5520, 384, 6426, 6575, 6564, + 1390, 2433, 1505, 2722, 88, 4635, 4428, 6839, 7408, + 8050, 5826, 8959, 7096, 3081, 3080, 7686, 1331, 8565, + 7693, 9348, 292, 6130, 8809, 6301, 7956, 1983, 1907, + 7186, 1820, 8616, 9283, 2455, 140, 6679, 5156, 1774, + 1712, 9243, 5561, 8196, 944, 8632, 2385, 3424, 9448, + 8082, 2162, 5310, 6544, 1094, 2786, 7082, 5011, 9221, + 3773, 8258, 4870, 3431, 6655, 7055, 1419, 339, 1377, + 8494, 1974, 4038, 7018, 9098, 3701, 7826, 2779, 8163, + 8543, 7815, 6923, 2804, 1690, 4707, 676, 7163, 8410, + 9359, 929, 1202, 2632, 8972, 1668, 6980, 7195, 1951, + 5754, 9735, 8716, 8066, 9339, 4502, 7781, 2962, 9864, + 2935, 2818, 1369, 8993, 3859, 4694, 5956, 5879, 8042, + 3649, 5653, 8964, 4085, 8658, 1438, 3412, 4666, 4822, + 7011, 6520, 1596, 2472, 2945, 5559, 9517, 6060, 1482, + 5581, 4794, 920, 1911, 8883, 1952, 2387, 3314, 7049, + 5952, 9066, 9847, 1846, 3233, 143, 1181, 7109, 1398, + 2396, 1676, 6911, 442, 3879, 8274, 5165, 8071, 8656, + 6961, 7229, 9025, 3470, 7036, 3654, 2383, 637, 1637, + 3509, 6294, 8342, 7867, 2855, 4117, 3596, 2252, 7724, + 1591, 2221, 9186, 877, 4114, 477, 6322, 2667, 7693, + 8444, 1638, 8721, 472, 1976, 9959, 6980, 3171, 4887, + 2038, 2562, 9386, 9361, 3719, 1289, 9961, 8417, 3223, + 4861, 2375, 8977, 6396, 9866, 3342, 8327, 5726, 4452, + 5350, 9941, 8254, 9351, 5780, 6640, 4731, 8661, 5704, + 2606, 7600, 4119, 1364, 333, 1408, 3800, 8150, 9778, + 5408, 2234, 9215, 76, 9479, 2233, 1268, 5179, 868, + 9805, 4840, 1357, 335, 7091, 2257, 1253, 3554, 2744, + 1420]), + values=tensor([1.2669e-01, 8.7393e-01, 8.1661e-01, 4.0787e-01, + 2.6982e-01, 7.1775e-01, 9.8153e-01, 1.5123e-01, + 1.7162e-01, 6.5592e-01, 5.3835e-01, 9.5599e-01, + 9.6014e-01, 7.6631e-01, 2.6202e-01, 6.6482e-01, + 5.4833e-01, 1.9027e-01, 4.5359e-01, 2.1409e-01, + 7.9491e-02, 6.8437e-01, 4.9517e-01, 4.4702e-01, + 2.7025e-01, 7.9112e-02, 3.0727e-01, 3.3256e-01, + 8.9558e-01, 5.9045e-01, 8.6208e-02, 2.3611e-01, + 6.3933e-01, 1.2532e-01, 7.7999e-01, 3.9650e-01, + 9.1520e-01, 2.8599e-01, 9.8139e-01, 3.0200e-01, + 4.1650e-02, 6.8925e-01, 7.1861e-01, 7.0927e-01, + 3.3385e-01, 4.3698e-01, 5.8834e-01, 2.0230e-01, + 7.3991e-01, 3.4908e-01, 6.5491e-01, 1.5128e-02, + 4.1229e-01, 7.1760e-01, 8.9114e-01, 3.2176e-01, + 7.5048e-01, 1.5471e-01, 4.8574e-01, 7.1400e-01, + 3.9874e-01, 4.9790e-02, 6.7377e-01, 5.2447e-01, + 9.5955e-01, 8.2373e-01, 2.7976e-01, 8.0827e-01, + 3.5445e-01, 8.7547e-01, 2.4819e-01, 5.7891e-01, + 1.7842e-01, 9.9633e-01, 2.0344e-01, 5.5228e-01, + 3.2819e-01, 9.4763e-01, 7.8439e-01, 1.3606e-01, + 7.7341e-01, 8.6243e-01, 2.3202e-01, 9.9464e-01, + 4.5853e-01, 1.8634e-01, 4.2896e-01, 4.9027e-01, + 8.9351e-01, 3.3378e-01, 4.0627e-01, 4.1185e-01, + 6.3928e-01, 9.6280e-01, 1.7920e-01, 2.0803e-01, + 5.5008e-02, 7.4580e-02, 9.4528e-01, 4.9813e-01, + 9.0883e-01, 7.1517e-01, 6.3946e-01, 1.7988e-01, + 4.8656e-02, 3.7757e-01, 5.0139e-01, 5.4126e-01, + 3.2256e-01, 8.7845e-01, 8.5856e-01, 5.2275e-01, + 1.0808e-01, 8.9153e-01, 7.1791e-01, 8.9698e-01, + 4.0713e-01, 4.4172e-01, 3.0770e-01, 7.3007e-01, + 4.4634e-01, 9.3715e-01, 2.8418e-01, 2.6231e-01, + 9.4816e-01, 1.0540e-02, 4.5361e-01, 8.4126e-01, + 8.5753e-01, 7.5409e-01, 7.0734e-01, 1.9791e-01, + 1.7291e-01, 6.6092e-01, 5.8409e-01, 7.5187e-01, + 3.5966e-01, 9.8459e-02, 8.7200e-01, 5.0893e-02, + 4.9743e-01, 3.0398e-02, 6.0787e-01, 6.1896e-01, + 5.4418e-01, 5.6134e-01, 7.5484e-01, 8.2147e-02, + 5.5628e-01, 9.8056e-01, 5.2700e-01, 3.7724e-01, + 2.5510e-01, 3.5734e-01, 6.0300e-01, 8.5641e-01, + 1.6978e-01, 3.1856e-01, 5.3176e-03, 4.6888e-01, + 2.5591e-01, 1.7626e-01, 5.1990e-01, 5.3558e-01, + 6.1758e-01, 6.4691e-01, 9.5777e-01, 7.0400e-02, + 7.5579e-01, 4.5386e-01, 5.5198e-02, 3.9878e-01, + 1.2664e-01, 7.6396e-01, 2.8470e-01, 4.9434e-01, + 3.0702e-01, 6.8774e-01, 2.7310e-01, 2.6016e-01, + 6.2440e-01, 9.5555e-01, 8.2495e-01, 3.3464e-01, + 1.5315e-01, 4.5941e-01, 1.5110e-01, 7.9281e-01, + 1.9727e-01, 2.9202e-01, 1.2270e-02, 4.1303e-01, + 3.1626e-01, 3.4680e-01, 8.2967e-01, 7.7487e-01, + 6.0472e-01, 4.2670e-01, 5.1644e-01, 3.3165e-01, + 7.3877e-01, 1.7731e-01, 6.0793e-01, 5.8154e-01, + 1.9342e-01, 5.4986e-01, 2.4134e-01, 6.4498e-01, + 8.7501e-01, 7.3630e-01, 4.6071e-01, 7.8664e-01, + 5.3966e-01, 6.2202e-01, 8.9457e-01, 4.1110e-01, + 9.9926e-01, 6.6711e-01, 3.9496e-01, 5.8353e-01, + 5.9854e-01, 9.8342e-01, 8.8288e-01, 4.7062e-01, + 6.0286e-01, 3.3123e-01, 4.2946e-01, 6.8966e-01, + 9.7649e-01, 6.3504e-01, 2.7886e-01, 1.7738e-01, + 9.1002e-01, 1.7273e-02, 8.5873e-01, 7.4755e-01, + 9.6283e-02, 8.8306e-01, 6.0624e-01, 5.1544e-01, + 8.9322e-01, 7.0187e-01, 6.5332e-01, 5.7367e-01, + 3.1488e-01, 7.5282e-01, 8.7148e-01, 6.3232e-02, + 9.4629e-01, 8.8039e-01, 3.3352e-01, 7.6588e-01, + 3.2974e-01, 4.2399e-01, 6.8394e-01, 7.5248e-01, + 2.5822e-01, 5.8647e-01, 7.3684e-01, 7.3199e-01, + 2.1290e-01, 1.3727e-01, 6.2815e-01, 2.1737e-02, + 8.5861e-01, 4.6935e-01, 1.6690e-02, 4.2346e-01, + 2.4551e-01, 6.5316e-01, 3.9505e-01, 1.4802e-01, + 5.9363e-01, 8.0643e-01, 9.8503e-01, 7.3261e-01, + 9.6675e-01, 8.7076e-01, 6.8400e-02, 3.5968e-01, + 3.5093e-01, 7.4507e-01, 3.7687e-01, 4.4083e-01, + 8.9130e-01, 7.7598e-01, 9.9040e-01, 9.3688e-01, + 2.0552e-01, 5.0793e-01, 5.9538e-01, 5.4962e-01, + 7.9509e-01, 1.3750e-01, 1.7177e-02, 6.7863e-01, + 7.3264e-01, 9.6215e-01, 8.1209e-01, 5.9917e-01, + 9.9758e-01, 1.0184e-02, 1.3805e-01, 4.0914e-01, + 4.4068e-01, 9.0888e-02, 1.2403e-01, 2.7014e-01, + 8.3471e-01, 6.6512e-01, 8.9411e-01, 2.7876e-01, + 3.9486e-01, 3.2953e-01, 7.6349e-01, 6.6362e-01, + 8.7638e-01, 7.0782e-01, 3.8536e-01, 3.2754e-02, + 1.7659e-01, 3.1028e-01, 4.0587e-01, 6.0771e-01, + 2.3400e-01, 1.3235e-01, 6.4474e-01, 8.6121e-01, + 4.0888e-01, 2.5669e-01, 8.1427e-02, 1.0228e-01, + 7.6945e-01, 8.4433e-01, 9.3924e-01, 6.2411e-01, + 4.8252e-02, 5.7566e-01, 6.5033e-01, 4.0115e-01, + 8.6214e-01, 7.1450e-01, 6.7169e-01, 8.1160e-01, + 2.4782e-01, 6.1569e-01, 1.4264e-01, 5.3882e-01, + 3.0175e-01, 2.1447e-01, 8.2910e-01, 7.1263e-01, + 4.1041e-01, 7.2068e-01, 8.4498e-01, 5.2096e-02, + 9.5888e-01, 7.9916e-02, 6.4003e-01, 6.0626e-01, + 3.3487e-01, 1.9126e-01, 8.2271e-01, 5.8379e-01, + 5.6910e-01, 6.6284e-02, 9.9075e-01, 9.6108e-01, + 8.1421e-01, 8.9408e-03, 4.7697e-01, 1.4288e-01, + 4.3262e-01, 1.2967e-01, 9.4186e-01, 9.9199e-01, + 4.3357e-01, 6.1622e-01, 5.7557e-01, 3.5405e-01, + 6.9167e-01, 8.5568e-01, 4.3381e-01, 8.4869e-01, + 2.1798e-01, 2.4886e-01, 2.0942e-01, 2.6149e-01, + 8.5653e-01, 1.5770e-01, 3.8634e-01, 4.9710e-01, + 7.4703e-01, 4.5228e-01, 3.0141e-01, 9.7591e-01, + 7.5096e-01, 8.1526e-01, 5.8201e-01, 1.4188e-01, + 4.6956e-02, 1.5967e-01, 9.8820e-01, 4.6653e-01, + 9.8081e-01, 2.8229e-01, 7.7183e-01, 1.6760e-01, + 6.5027e-01, 9.6884e-01, 1.9788e-01, 8.5793e-01, + 6.0644e-01, 4.0800e-01, 2.5730e-01, 3.9003e-01, + 1.7666e-01, 8.0375e-02, 3.4927e-01, 9.6081e-01, + 2.3696e-01, 8.5889e-01, 8.6890e-01, 2.1566e-01, + 6.7472e-01, 7.3409e-01, 3.6598e-01, 6.4398e-01, + 6.0834e-01, 2.2605e-01, 9.6430e-01, 3.1620e-01, + 4.2307e-01, 2.9137e-01, 3.7774e-02, 3.2640e-01, + 7.8393e-01, 1.2873e-01, 1.8067e-01, 3.4296e-01, + 5.8599e-01, 1.8457e-01, 2.8466e-01, 1.6284e-01, + 3.8473e-01, 3.7876e-01, 7.5374e-01, 2.2498e-01, + 1.0433e-01, 9.8092e-01, 5.2731e-01, 4.5361e-01, + 4.3056e-01, 5.9834e-02, 9.8079e-01, 5.3458e-01, + 7.7131e-02, 1.6104e-01, 2.2237e-01, 5.4361e-01, + 5.1495e-01, 4.2570e-01, 6.6160e-01, 5.8793e-01, + 3.6340e-01, 9.8347e-01, 2.7024e-01, 2.1522e-01, + 3.3250e-01, 7.9908e-01, 2.6481e-01, 3.5391e-01, + 8.3857e-01, 8.7019e-01, 8.7277e-01, 3.2002e-01, + 5.3592e-01, 1.0393e-01, 3.3628e-02, 1.4102e-01, + 3.8307e-01, 9.9468e-01, 2.2920e-01, 1.6939e-01, + 5.4000e-01, 6.7492e-01, 3.1163e-01, 9.0707e-01, + 1.4558e-01, 4.4107e-01, 9.1161e-01, 2.9585e-01, + 8.9864e-01, 5.7575e-01, 8.0033e-01, 1.8430e-01, + 2.6406e-01, 2.8590e-01, 4.5809e-01, 3.0343e-01, + 1.6994e-01, 7.0324e-01, 8.4510e-01, 6.1950e-01, + 6.1401e-01, 5.4919e-01, 2.5461e-01, 2.3646e-01, + 4.0097e-03, 5.3325e-01, 1.7385e-01, 1.9099e-01, + 7.6460e-01, 4.9279e-01, 2.3519e-01, 4.4248e-01, + 1.8583e-01, 7.0388e-01, 9.0522e-01, 6.9809e-01, + 4.8338e-01, 6.8957e-01, 7.8366e-01, 1.2459e-01, + 5.5699e-01, 4.4103e-01, 2.1030e-01, 9.5385e-01, + 9.1934e-01, 5.2540e-01, 5.4072e-01, 7.4035e-01, + 1.1919e-01, 8.7267e-01, 5.0507e-01, 1.3004e-01, + 6.5324e-01, 2.4884e-01, 6.1389e-01, 6.0188e-01, + 5.4507e-01, 5.1591e-01, 6.9854e-01, 3.3306e-01, + 1.0301e-01, 8.1510e-01, 3.2515e-01, 8.7804e-01, + 9.9064e-01, 5.8741e-01, 6.9486e-01, 2.9900e-01, + 8.9103e-01, 4.2348e-01, 6.3428e-01, 3.3684e-02, + 4.1931e-01, 2.9892e-01, 4.6109e-01, 2.7567e-01, + 9.3564e-01, 5.2654e-01, 1.0018e-01, 8.4790e-01, + 5.7012e-01, 5.4810e-01, 3.4658e-01, 7.4770e-01, + 9.4877e-01, 5.1453e-01, 8.3770e-01, 2.2628e-01, + 2.8297e-01, 9.3592e-01, 9.9443e-01, 7.3418e-01, + 7.7762e-02, 3.2115e-01, 2.8077e-01, 2.4932e-03, + 7.7722e-01, 9.3033e-02, 2.8306e-01, 9.0197e-01, + 3.8358e-01, 2.3377e-01, 2.8415e-01, 9.6665e-01, + 4.5076e-01, 5.8332e-01, 5.3551e-01, 1.4427e-01, + 9.7314e-01, 9.5072e-01, 9.6080e-01, 6.9839e-01, + 7.7003e-01, 2.9602e-02, 1.5625e-02, 9.6492e-01, + 5.5545e-01, 4.6314e-02, 4.0823e-01, 3.4010e-01, + 7.9200e-01, 3.6788e-01, 2.6052e-02, 8.1153e-01, + 9.0067e-01, 4.6863e-01, 6.3271e-01, 2.4893e-01, + 1.4957e-01, 7.2187e-01, 3.2709e-01, 9.9022e-02, + 6.5922e-01, 5.9406e-01, 3.3545e-01, 9.9067e-02, + 3.3824e-01, 9.2845e-01, 5.0255e-02, 2.2726e-01, + 3.4047e-01, 1.9861e-01, 1.4552e-01, 8.7986e-01, + 9.7482e-01, 4.1268e-01, 5.3799e-01, 5.9400e-01, + 7.4292e-01, 9.3075e-01, 3.9928e-01, 4.1655e-01, + 4.2639e-01, 7.7034e-01, 8.0540e-01, 3.1683e-01, + 2.3456e-01, 8.4488e-01, 3.7461e-01, 1.9023e-01, + 3.2398e-01, 6.2931e-01, 7.9000e-01, 2.9367e-01, + 6.8792e-01, 2.5211e-01, 6.9874e-01, 6.6391e-02, + 3.9713e-01, 6.5888e-01, 9.5501e-01, 5.4415e-01, + 5.5479e-01, 1.8311e-01, 3.5347e-01, 1.1535e-01, + 8.4727e-02, 3.7156e-02, 2.1737e-01, 3.9178e-01, + 4.3687e-01, 5.7922e-01, 7.1261e-01, 9.3706e-01, + 3.1458e-01, 5.7745e-01, 9.5299e-01, 5.8225e-01, + 6.4173e-02, 6.8551e-01, 9.5133e-01, 9.7228e-01, + 1.2820e-01, 1.3996e-01, 9.9997e-01, 9.2530e-01, + 8.5804e-01, 3.2017e-01, 1.4546e-01, 5.6185e-01, + 7.3055e-01, 5.3408e-01, 6.1432e-01, 2.1717e-01, + 8.6165e-01, 1.0379e-01, 6.0844e-01, 6.0791e-01, + 9.6595e-01, 3.1142e-01, 8.5742e-01, 1.0143e-01, + 2.0557e-01, 2.5530e-02, 5.2649e-01, 2.9851e-01, + 3.0730e-01, 3.2053e-01, 5.2734e-01, 8.8573e-01, + 4.1562e-01, 8.5644e-01, 1.1528e-01, 4.7387e-01, + 3.6684e-01, 6.5894e-01, 5.6719e-01, 6.4520e-01, + 2.5761e-01, 9.5989e-01, 7.8963e-01, 6.8385e-01, + 7.8112e-01, 6.4983e-01, 7.3846e-02, 9.9274e-01, + 7.8711e-01, 2.1382e-01, 6.0371e-01, 6.0743e-01, + 5.6459e-01, 6.4106e-02, 3.6125e-01, 8.0174e-01, + 8.1660e-01, 5.0011e-02, 3.1920e-01, 6.8889e-01, + 5.1944e-01, 7.9207e-01, 9.5144e-01, 3.0550e-01, + 8.9033e-01, 1.1908e-01, 4.7515e-01, 7.3463e-02, + 8.5474e-01, 7.5163e-01, 4.4201e-01, 8.9693e-01, + 8.0204e-01, 9.5888e-01, 3.0000e-01, 7.3653e-01, + 2.4941e-01, 9.0498e-01, 4.0852e-01, 9.1876e-01, + 3.2672e-01, 2.0116e-01, 9.6205e-01, 1.3782e-01, + 1.8651e-01, 4.1469e-01, 9.9287e-01, 3.3236e-01, + 8.4546e-01, 4.9708e-01, 6.1721e-01, 1.3183e-02, + 1.1176e-01, 7.7549e-01, 9.1833e-01, 8.2602e-01, + 8.8564e-01, 8.1683e-01, 9.4631e-01, 5.3871e-01, + 9.2475e-01, 7.5219e-01, 5.5456e-01, 5.8932e-01, + 6.0369e-01, 8.7860e-01, 7.8732e-01, 3.3553e-01, + 1.4227e-01, 7.2320e-02, 9.1130e-01, 2.7576e-01, + 1.9227e-01, 5.8261e-01, 5.7597e-01, 5.2942e-01, + 8.0195e-01, 7.5532e-01, 7.3289e-01, 7.3481e-01, + 1.5441e-01, 2.6307e-01, 3.8647e-01, 4.7675e-01, + 5.4830e-01, 3.3849e-01, 2.7906e-01, 2.0740e-02, + 5.7538e-01, 1.6988e-01, 5.3493e-01, 6.4440e-01, + 4.3749e-01, 1.6581e-01, 3.9710e-02, 2.9556e-01, + 2.7617e-01, 6.3054e-01, 4.6486e-01, 2.3433e-01, + 9.4185e-01, 2.6274e-01, 8.2593e-02, 9.5403e-01, + 7.0567e-01, 3.2809e-01, 6.7833e-01, 6.0174e-01, + 9.4228e-01, 8.9392e-01, 7.5028e-01, 5.3536e-01, + 8.1596e-01, 7.2865e-02, 7.6011e-02, 6.6139e-02, + 8.9616e-01, 3.0205e-01, 2.0969e-01, 7.2103e-01, + 1.4867e-01, 3.5570e-01, 9.6596e-02, 7.1176e-01, + 3.2679e-01, 6.5342e-04, 6.5438e-01, 3.4126e-01, + 4.7895e-01, 6.8964e-01, 6.8851e-01, 1.1205e-02, + 4.9141e-01, 3.0960e-01, 6.7523e-01, 3.4067e-01, + 6.0303e-01, 7.5867e-02, 5.9892e-01, 1.5932e-01, + 3.8413e-01, 7.0884e-01, 1.1522e-01, 8.3082e-01, + 9.2526e-01, 6.1693e-01, 1.2340e-01, 7.9432e-01, + 1.2029e-01, 1.5355e-01, 8.0700e-01, 1.8975e-01, + 2.8623e-01, 3.2111e-01, 7.9519e-01, 9.2948e-01, + 4.0853e-01, 4.7139e-02, 3.8241e-02, 1.6226e-01, + 1.4393e-01, 6.6874e-02, 9.4315e-01, 6.3129e-01, + 7.4798e-01, 4.7261e-03, 5.4673e-01, 8.9635e-02, + 8.8321e-02, 8.3158e-01, 5.7913e-01, 1.7580e-01, + 9.4173e-01, 5.0281e-01, 2.1334e-01, 2.4799e-01, + 8.1771e-01, 9.2260e-01, 3.2236e-01, 4.1922e-01, + 6.3245e-02, 2.7162e-01, 7.0913e-01, 4.4175e-01, + 8.4221e-01, 9.1147e-01, 5.9522e-01, 2.1069e-01, + 9.7237e-01, 4.6063e-01, 6.0893e-01, 9.1593e-01, + 5.5942e-01, 8.9949e-01, 1.5959e-01, 5.1028e-01, + 5.8067e-01, 5.0040e-01, 7.5637e-01, 5.0051e-01, + 1.3529e-01, 1.6889e-01, 3.7566e-01, 7.6014e-01, + 6.9943e-01, 4.3676e-02, 4.9197e-01, 7.5237e-01, + 5.2776e-01, 8.1006e-01, 4.0253e-01, 1.3341e-01, + 5.7251e-01, 8.5232e-01, 1.3314e-01, 4.7442e-01, + 1.0458e-01, 7.8215e-01, 8.6254e-01, 7.8172e-01, + 7.5658e-01, 3.7316e-01, 4.9245e-01, 2.0250e-01, + 2.9283e-01, 4.9418e-01, 8.3756e-01, 7.9447e-01, + 2.5860e-02, 8.6507e-01, 3.3105e-01, 7.4279e-01, + 6.9986e-01, 2.4197e-01, 8.4334e-01, 6.3321e-02, + 1.5450e-01, 3.6323e-01, 9.1984e-01, 2.5840e-01, + 6.8977e-01, 9.3757e-01, 3.4717e-01, 4.3387e-01, + 1.1786e-01, 9.0562e-01, 7.6327e-02, 9.9274e-01, + 9.3539e-01, 3.4387e-01, 7.6361e-01, 1.6568e-01, + 9.7903e-01, 2.7082e-01, 1.0756e-01, 7.6346e-01, + 7.1179e-01, 7.6705e-01, 6.9893e-01, 4.3779e-01, + 6.1936e-01, 1.2852e-01, 7.0319e-01, 4.1450e-01, + 9.3806e-01, 9.4660e-01, 5.1220e-01, 6.6328e-01, + 1.6919e-01, 1.5555e-01, 1.4095e-02, 5.4087e-01, + 1.9144e-01, 4.5731e-01, 6.9006e-01, 4.7231e-01, + 1.8945e-01, 9.9883e-01, 4.1069e-01, 2.3659e-01, + 9.8239e-01, 3.1741e-01, 7.2376e-01, 8.4620e-01, + 6.8221e-01, 4.3839e-01, 8.3264e-01, 3.0102e-01]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.7176, 0.7209, 0.4421, ..., 0.7861, 0.0630, 0.0040]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 10.164389848709106 seconds + +[20.48, 20.52, 20.52, 20.52, 20.2, 20.28, 20.28, 20.24, 20.08, 20.24] +[20.36, 20.52, 21.96, 22.92, 24.08, 24.08, 24.4, 25.08, 24.4, 23.76, 24.0, 23.72, 23.4] +13.186760663986206 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 141816, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.164389848709106, 'TIME_S_1KI': 0.07167308236524163, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 285.17019953727726, 'W': 21.625492932171987} +[20.48, 20.52, 20.52, 20.52, 20.2, 20.28, 20.28, 20.24, 20.08, 20.24, 20.16, 20.28, 20.28, 20.28, 20.12, 20.12, 20.0, 20.12, 20.52, 20.8] +365.2 +18.259999999999998 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 141816, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.164389848709106, 'TIME_S_1KI': 0.07167308236524163, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 285.17019953727726, 'W': 21.625492932171987, 'J_1KI': 2.010846445656888, 'W_1KI': 0.1524897961596152, 'W_D': 3.365492932171989, 'J_D': 44.37994981288918, 'W_D_1KI': 0.023731405004879483, 'J_D_1KI': 0.00016733940461499043} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_500000_1e-05.json b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_500000_1e-05.json new file mode 100644 index 0000000..cb5e414 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_500000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 80, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 39.37885141372681, "TIME_S_1KI": 39.37885141372681, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 3668.398367080688, "W": 77.07751960335096, "J_1KI": 3668.398367080688, "W_1KI": 77.07751960335096, "W_D": 57.18851960335097, "J_D": 2721.8088102509973, "W_D_1KI": 57.18851960335097, "J_D_1KI": 57.18851960335097} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_500000_1e-05.output b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_500000_1e-05.output new file mode 100644 index 0000000..56c2844 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_500000_1e-05.output @@ -0,0 +1,47 @@ +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 500000 -sd 1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 39.37885141372681} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 7, 10, ..., 2499992, + 2499996, 2500000]), + col_indices=tensor([ 4222, 120413, 177881, ..., 234997, 318812, + 370543]), + values=tensor([0.6429, 0.8175, 0.9231, ..., 0.8720, 0.9829, 0.6195]), + size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.7836, 0.9661, 0.9943, ..., 0.1995, 0.6325, 0.8613]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 2500000 +Density: 1e-05 +Time: 39.37885141372681 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 7, 10, ..., 2499992, + 2499996, 2500000]), + col_indices=tensor([ 4222, 120413, 177881, ..., 234997, 318812, + 370543]), + values=tensor([0.6429, 0.8175, 0.9231, ..., 0.8720, 0.9829, 0.6195]), + size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.7836, 0.9661, 0.9943, ..., 0.1995, 0.6325, 0.8613]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 2500000 +Density: 1e-05 +Time: 39.37885141372681 seconds + +[21.56, 21.8, 21.92, 21.8, 21.8, 21.72, 21.76, 21.96, 22.0, 22.0] +[22.12, 21.92, 21.96, 23.24, 24.64, 30.88, 42.28, 55.2, 68.48, 80.52, 87.0, 88.04, 90.88, 91.16, 92.4, 93.96, 93.96, 94.68, 93.52, 94.04, 94.08, 94.16, 93.04, 90.92, 89.84, 90.08, 89.76, 89.56, 91.4, 89.32, 89.44, 89.84, 89.84, 90.68, 89.76, 89.96, 89.52, 87.76, 87.84, 90.36, 91.92, 93.44, 92.0, 91.96, 92.36, 91.2] +47.59362244606018 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 39.37885141372681, 'TIME_S_1KI': 39.37885141372681, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 3668.398367080688, 'W': 77.07751960335096} +[21.56, 21.8, 21.92, 21.8, 21.8, 21.72, 21.76, 21.96, 22.0, 22.0, 23.68, 23.6, 22.52, 21.8, 21.8, 21.84, 22.16, 22.32, 22.24, 22.24] +397.78 +19.889 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 39.37885141372681, 'TIME_S_1KI': 39.37885141372681, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 3668.398367080688, 'W': 77.07751960335096, 'J_1KI': 3668.398367080688, 'W_1KI': 77.07751960335096, 'W_D': 57.18851960335097, 'J_D': 2721.8088102509973, 'W_D_1KI': 57.18851960335097, 'J_D_1KI': 57.18851960335097} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_50000_0.0001.json b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_50000_0.0001.json new file mode 100644 index 0000000..47ee4ee --- /dev/null +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_50000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 80, "ITERATIONS": 1525, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.375513792037964, "TIME_S_1KI": 6.80361560133637, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1039.7556144714354, "W": 59.41096095809724, "J_1KI": 681.8069603091379, "W_1KI": 38.958007185637534, "W_D": 40.714960958097244, "J_D": 712.5555380096434, "W_D_1KI": 26.698335054489995, "J_D_1KI": 17.507104953763932} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_50000_0.0001.output b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_50000_0.0001.output new file mode 100644 index 0000000..b2aa093 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_50000_0.0001.output @@ -0,0 +1,65 @@ +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 50000 -sd 0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 6.884527921676636} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 4, 12, ..., 249988, 249997, + 250000]), + col_indices=tensor([ 1848, 28763, 31705, ..., 4981, 22506, 45960]), + values=tensor([0.8493, 0.0534, 0.5342, ..., 0.4299, 0.9704, 0.1142]), + size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) +tensor([0.1630, 0.3141, 0.8980, ..., 0.6818, 0.2617, 0.8646]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 250000 +Density: 0.0001 +Time: 6.884527921676636 seconds + +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1525 -ss 50000 -sd 0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.375513792037964} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 4, 12, ..., 249992, 249994, + 250000]), + col_indices=tensor([ 3205, 25770, 28303, ..., 16579, 33459, 36956]), + values=tensor([0.6871, 0.0301, 0.1880, ..., 0.0850, 0.6966, 0.8839]), + size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) +tensor([0.3970, 0.9447, 0.7491, ..., 0.5145, 0.9554, 0.9707]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 250000 +Density: 0.0001 +Time: 10.375513792037964 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 4, 12, ..., 249992, 249994, + 250000]), + col_indices=tensor([ 3205, 25770, 28303, ..., 16579, 33459, 36956]), + values=tensor([0.6871, 0.0301, 0.1880, ..., 0.0850, 0.6966, 0.8839]), + size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) +tensor([0.3970, 0.9447, 0.7491, ..., 0.5145, 0.9554, 0.9707]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 250000 +Density: 0.0001 +Time: 10.375513792037964 seconds + +[20.84, 20.72, 20.68, 20.6, 20.64, 20.4, 20.52, 20.48, 20.44, 20.84] +[21.0, 20.96, 21.88, 23.12, 23.12, 32.08, 50.16, 64.0, 76.16, 91.92, 90.6, 89.16, 89.36, 89.52, 88.8, 89.28, 89.04] +17.501073837280273 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 1525, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.375513792037964, 'TIME_S_1KI': 6.80361560133637, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1039.7556144714354, 'W': 59.41096095809724} +[20.84, 20.72, 20.68, 20.6, 20.64, 20.4, 20.52, 20.48, 20.44, 20.84, 20.92, 20.84, 20.84, 20.72, 21.0, 21.0, 21.28, 21.24, 20.92, 20.6] +373.91999999999996 +18.695999999999998 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 1525, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.375513792037964, 'TIME_S_1KI': 6.80361560133637, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1039.7556144714354, 'W': 59.41096095809724, 'J_1KI': 681.8069603091379, 'W_1KI': 38.958007185637534, 'W_D': 40.714960958097244, 'J_D': 712.5555380096434, 'W_D_1KI': 26.698335054489995, 'J_D_1KI': 17.507104953763932} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_50000_0.001.json b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_50000_0.001.json new file mode 100644 index 0000000..c30df0a --- /dev/null +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_50000_0.001.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 80, "ITERATIONS": 1000, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 60.445369720458984, "TIME_S_1KI": 60.445369720458984, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 5178.136594352722, "W": 75.0095899661512, "J_1KI": 5178.136594352722, "W_1KI": 75.0095899661512, "W_D": 55.72458996615119, "J_D": 3846.835299849509, "W_D_1KI": 55.72458996615119, "J_D_1KI": 55.72458996615119} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_50000_0.001.output b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_50000_0.001.output new file mode 100644 index 0000000..1aeb456 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_50000_0.001.output @@ -0,0 +1,45 @@ +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 50000 -sd 0.001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 60.445369720458984} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 42, 88, ..., 2499911, + 2499959, 2500000]), + col_indices=tensor([ 784, 2104, 3070, ..., 44692, 45478, 45799]), + values=tensor([0.0569, 0.3731, 0.2156, ..., 0.1856, 0.5823, 0.7517]), + size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.7969, 0.4843, 0.4078, ..., 0.5644, 0.6126, 0.7864]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 2500000 +Density: 0.001 +Time: 60.445369720458984 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 42, 88, ..., 2499911, + 2499959, 2500000]), + col_indices=tensor([ 784, 2104, 3070, ..., 44692, 45478, 45799]), + values=tensor([0.0569, 0.3731, 0.2156, ..., 0.1856, 0.5823, 0.7517]), + size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.7969, 0.4843, 0.4078, ..., 0.5644, 0.6126, 0.7864]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 2500000 +Density: 0.001 +Time: 60.445369720458984 seconds + +[21.52, 21.76, 21.6, 21.68, 21.68, 21.48, 21.52, 21.52, 21.72, 22.04] +[22.08, 22.0, 22.16, 23.24, 24.16, 35.0, 49.88, 62.44, 76.6, 76.6, 84.16, 86.2, 86.12, 85.64, 84.84, 83.12, 82.96, 81.88, 81.44, 81.36, 81.2, 82.36, 83.24, 83.28, 84.08, 84.08, 84.48, 84.24, 83.64, 83.96, 83.6, 83.68, 83.56, 84.48, 83.84, 84.08, 84.36, 84.48, 84.04, 84.4, 85.08, 85.08, 84.88, 84.76, 84.72, 84.08, 83.2, 83.08, 83.4, 83.56, 83.6, 83.56, 83.72, 83.4, 84.96, 85.84, 86.72, 86.72, 87.6, 88.08, 87.2, 87.32, 87.24, 86.88, 86.4, 85.96, 84.76] +69.0329942703247 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 60.445369720458984, 'TIME_S_1KI': 60.445369720458984, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 5178.136594352722, 'W': 75.0095899661512} +[21.52, 21.76, 21.6, 21.68, 21.68, 21.48, 21.52, 21.52, 21.72, 22.04, 21.4, 21.44, 21.4, 21.2, 21.2, 21.2, 21.2, 21.04, 20.96, 21.24] +385.70000000000005 +19.285000000000004 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 1000, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 60.445369720458984, 'TIME_S_1KI': 60.445369720458984, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 5178.136594352722, 'W': 75.0095899661512, 'J_1KI': 5178.136594352722, 'W_1KI': 75.0095899661512, 'W_D': 55.72458996615119, 'J_D': 3846.835299849509, 'W_D_1KI': 55.72458996615119, 'J_D_1KI': 55.72458996615119} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_50000_1e-05.json b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_50000_1e-05.json new file mode 100644 index 0000000..0a48909 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_50000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Altra", "CORES": 80, "ITERATIONS": 8439, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 16.30658531188965, "TIME_S_1KI": 1.9322888152493953, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 993.3751641559601, "W": 60.56268692312065, "J_1KI": 117.71242613531936, "W_1KI": 7.176524105121538, "W_D": 41.768686923120654, "J_D": 685.1079160590172, "W_D_1KI": 4.949482986505588, "J_D_1KI": 0.5865011241267435} diff --git a/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_50000_1e-05.output b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_50000_1e-05.output new file mode 100644 index 0000000..ee322a5 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/altra_max_csr_10_10_10_synthetic_50000_1e-05.output @@ -0,0 +1,81 @@ +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 1000 -ss 50000 -sd 1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 3.2654190063476562} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 24998, 25000, 25000]), + col_indices=tensor([ 6514, 22496, 11789, ..., 40007, 5149, 28458]), + values=tensor([0.4327, 0.6473, 0.1491, ..., 0.8954, 0.9190, 0.6593]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.4414, 0.3955, 0.1417, ..., 0.3292, 0.0955, 0.0474]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 3.2654190063476562 seconds + +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 3215 -ss 50000 -sd 1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 4.000005722045898} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 1, ..., 25000, 25000, 25000]), + col_indices=tensor([27536, 25934, 37963, ..., 3997, 32688, 28318]), + values=tensor([0.1759, 0.2893, 0.0177, ..., 0.2344, 0.0283, 0.5475]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.4720, 0.7633, 0.9347, ..., 0.8863, 0.6224, 0.2346]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 4.000005722045898 seconds + +['apptainer', 'run', 'pytorch-altra.sif', '-c', 'numactl --cpunodebind=0 --membind=0 python3 spmv.py synthetic csr 8439 -ss 50000 -sd 1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 16.30658531188965} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 1, ..., 24999, 24999, 25000]), + col_indices=tensor([22959, 5139, 40799, ..., 46493, 8579, 7673]), + values=tensor([0.4149, 0.3641, 0.9895, ..., 0.4042, 0.1062, 0.3479]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.8723, 0.6408, 0.2457, ..., 0.3733, 0.2625, 0.6379]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 16.30658531188965 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 1, ..., 24999, 24999, 25000]), + col_indices=tensor([22959, 5139, 40799, ..., 46493, 8579, 7673]), + values=tensor([0.4149, 0.3641, 0.9895, ..., 0.4042, 0.1062, 0.3479]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.8723, 0.6408, 0.2457, ..., 0.3733, 0.2625, 0.6379]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 16.30658531188965 seconds + +[21.24, 20.92, 20.92, 21.08, 20.72, 20.88, 21.0, 21.0, 20.68, 20.92] +[21.0, 20.72, 20.88, 25.2, 27.52, 41.48, 58.76, 70.32, 84.16, 91.04, 91.68, 91.84, 91.84, 92.08, 92.44, 91.88] +16.40242886543274 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 8439, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 16.30658531188965, 'TIME_S_1KI': 1.9322888152493953, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 993.3751641559601, 'W': 60.56268692312065} +[21.24, 20.92, 20.92, 21.08, 20.72, 20.88, 21.0, 21.0, 20.68, 20.92, 20.8, 20.96, 20.92, 20.92, 20.76, 20.88, 20.8, 20.92, 20.76, 20.56] +375.88 +18.794 +{'CPU': 'Altra', 'CORES': 80, 'ITERATIONS': 8439, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 16.30658531188965, 'TIME_S_1KI': 1.9322888152493953, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 993.3751641559601, 'W': 60.56268692312065, 'J_1KI': 117.71242613531936, 'W_1KI': 7.176524105121538, 'W_D': 41.768686923120654, 'J_D': 685.1079160590172, 'W_D_1KI': 4.949482986505588, 'J_D_1KI': 0.5865011241267435} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_100000_0.0001.json b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_100000_0.0001.json new file mode 100644 index 0000000..87aabb6 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_100000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 66395, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.71402621269226, "TIME_S_1KI": 0.16136796765859268, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1809.3928852605818, "W": 143.23, "J_1KI": 27.251944954598716, "W_1KI": 2.15724075608103, "W_D": 107.452, "J_D": 1357.417330915451, "W_D_1KI": 1.6183748776263271, "J_D_1KI": 0.02437495109008701} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_100000_0.0001.output b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_100000_0.0001.output new file mode 100644 index 0000000..bc4163e --- /dev/null +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_100000_0.0001.output @@ -0,0 +1,85 @@ +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '100000', '-sd', '0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.2295377254486084} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 9, 19, ..., 999980, + 999992, 1000000]), + col_indices=tensor([ 2595, 16687, 29551, ..., 82666, 84305, 92330]), + values=tensor([0.2399, 0.6496, 0.1067, ..., 0.4780, 0.9034, 0.0304]), + size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.9784, 0.5709, 0.3671, ..., 0.6067, 0.7821, 0.8363]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 1000000 +Density: 0.0001 +Time: 0.2295377254486084 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '45744', '-ss', '100000', '-sd', '0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 7.2341063022613525} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 10, 18, ..., 999977, + 999994, 1000000]), + col_indices=tensor([ 464, 33291, 41816, ..., 39255, 78479, 83666]), + values=tensor([0.4695, 0.4859, 0.9230, ..., 0.6746, 0.1683, 0.8174]), + size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.0937, 0.3379, 0.3499, ..., 0.6520, 0.3862, 0.7030]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 1000000 +Density: 0.0001 +Time: 7.2341063022613525 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '66395', '-ss', '100000', '-sd', '0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.71402621269226} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 6, 21, ..., 999982, + 999990, 1000000]), + col_indices=tensor([ 7090, 12502, 14648, ..., 47720, 74306, 81506]), + values=tensor([0.0325, 0.8127, 0.1017, ..., 0.2993, 0.6676, 0.4101]), + size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.9849, 0.0117, 0.6257, ..., 0.6699, 0.0244, 0.0988]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 1000000 +Density: 0.0001 +Time: 10.71402621269226 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 6, 21, ..., 999982, + 999990, 1000000]), + col_indices=tensor([ 7090, 12502, 14648, ..., 47720, 74306, 81506]), + values=tensor([0.0325, 0.8127, 0.1017, ..., 0.2993, 0.6676, 0.4101]), + size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.9849, 0.0117, 0.6257, ..., 0.6699, 0.0244, 0.0988]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 1000000 +Density: 0.0001 +Time: 10.71402621269226 seconds + +[41.74, 39.92, 40.13, 39.36, 40.44, 39.29, 39.29, 39.23, 40.06, 40.03] +[143.23] +12.632778644561768 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 66395, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.71402621269226, 'TIME_S_1KI': 0.16136796765859268, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1809.3928852605818, 'W': 143.23} +[41.74, 39.92, 40.13, 39.36, 40.44, 39.29, 39.29, 39.23, 40.06, 40.03, 39.88, 40.13, 39.21, 40.07, 39.16, 39.33, 39.33, 40.09, 39.55, 40.29] +715.56 +35.778 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 66395, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.71402621269226, 'TIME_S_1KI': 0.16136796765859268, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1809.3928852605818, 'W': 143.23, 'J_1KI': 27.251944954598716, 'W_1KI': 2.15724075608103, 'W_D': 107.452, 'J_D': 1357.417330915451, 'W_D_1KI': 1.6183748776263271, 'J_D_1KI': 0.02437495109008701} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_100000_1e-05.json b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_100000_1e-05.json new file mode 100644 index 0000000..9f14449 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_100000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 102925, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 11.207890748977661, "TIME_S_1KI": 0.10889376486740501, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1545.566165971756, "W": 113.81, "J_1KI": 15.016431051462288, "W_1KI": 1.1057566188972554, "W_D": 78.15, "J_D": 1061.2951047420502, "W_D_1KI": 0.7592907456886082, "J_D_1KI": 0.007377126506568941} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_100000_1e-05.output b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_100000_1e-05.output new file mode 100644 index 0000000..73316f3 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_100000_1e-05.output @@ -0,0 +1,85 @@ +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '100000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.1461803913116455} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2, 3, ..., 99996, 99998, + 100000]), + col_indices=tensor([53462, 64739, 8211, ..., 77032, 12066, 66338]), + values=tensor([0.7526, 0.8412, 0.0484, ..., 0.1652, 0.9362, 0.7970]), + size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) +tensor([0.2578, 0.3705, 0.8367, ..., 0.6623, 0.7950, 0.3656]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 100000 +Density: 1e-05 +Time: 0.1461803913116455 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '71829', '-ss', '100000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 7.327654123306274} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 2, ..., 99999, 99999, + 100000]), + col_indices=tensor([53445, 61427, 55256, ..., 99710, 79743, 76910]), + values=tensor([0.2043, 0.7921, 0.3637, ..., 0.3183, 0.9272, 0.3273]), + size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) +tensor([0.6989, 0.9157, 0.2952, ..., 0.1186, 0.5845, 0.8882]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 100000 +Density: 1e-05 +Time: 7.327654123306274 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '102925', '-ss', '100000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 11.207890748977661} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 2, ..., 100000, 100000, + 100000]), + col_indices=tensor([13249, 39443, 49972, ..., 18781, 78628, 93775]), + values=tensor([0.7488, 0.1329, 0.0380, ..., 0.8918, 0.6119, 0.7720]), + size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) +tensor([0.5554, 0.6245, 0.8914, ..., 0.6605, 0.7651, 0.7091]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 100000 +Density: 1e-05 +Time: 11.207890748977661 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 2, ..., 100000, 100000, + 100000]), + col_indices=tensor([13249, 39443, 49972, ..., 18781, 78628, 93775]), + values=tensor([0.7488, 0.1329, 0.0380, ..., 0.8918, 0.6119, 0.7720]), + size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) +tensor([0.5554, 0.6245, 0.8914, ..., 0.6605, 0.7651, 0.7091]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 100000 +Density: 1e-05 +Time: 11.207890748977661 seconds + +[41.24, 39.24, 40.12, 39.1, 40.04, 39.21, 39.63, 39.07, 40.14, 39.14] +[113.81] +13.580231666564941 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 102925, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 11.207890748977661, 'TIME_S_1KI': 0.10889376486740501, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1545.566165971756, 'W': 113.81} +[41.24, 39.24, 40.12, 39.1, 40.04, 39.21, 39.63, 39.07, 40.14, 39.14, 41.44, 39.12, 40.01, 39.13, 39.64, 39.12, 40.27, 39.05, 39.93, 38.94] +713.2 +35.660000000000004 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 102925, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 11.207890748977661, 'TIME_S_1KI': 0.10889376486740501, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1545.566165971756, 'W': 113.81, 'J_1KI': 15.016431051462288, 'W_1KI': 1.1057566188972554, 'W_D': 78.15, 'J_D': 1061.2951047420502, 'W_D_1KI': 0.7592907456886082, 'J_D_1KI': 0.007377126506568941} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.0001.json b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.0001.json new file mode 100644 index 0000000..5c9115a --- /dev/null +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 289350, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.562561988830566, "TIME_S_1KI": 0.036504447861864756, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1275.0872325897217, "W": 96.48, "J_1KI": 4.406729678900023, "W_1KI": 0.3334370139968896, "W_D": 61.3225, "J_D": 810.4429604113102, "W_D_1KI": 0.21193191636426473, "J_D_1KI": 0.0007324413905797986} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.0001.output b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.0001.output new file mode 100644 index 0000000..1a5d3e8 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.0001.output @@ -0,0 +1,81 @@ +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.052317142486572266} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 3, 4, ..., 9999, 10000, 10000]), + col_indices=tensor([1023, 5622, 6334, ..., 8476, 7727, 1588]), + values=tensor([0.9992, 0.3273, 0.0949, ..., 0.9070, 0.7782, 0.9129]), + size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) +tensor([0.3589, 0.4614, 0.1782, ..., 0.3543, 0.5532, 0.1489]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000 +Density: 0.0001 +Time: 0.052317142486572266 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '200699', '-ss', '10000', '-sd', '0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 7.282996416091919} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 3, ..., 9998, 10000, 10000]), + col_indices=tensor([5654, 2010, 6092, ..., 8357, 4618, 8765]), + values=tensor([0.6548, 0.7548, 0.4241, ..., 0.2252, 0.7987, 0.4358]), + size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) +tensor([0.1881, 0.6615, 0.7402, ..., 0.4130, 0.3712, 0.1085]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000 +Density: 0.0001 +Time: 7.282996416091919 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '289350', '-ss', '10000', '-sd', '0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.562561988830566} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 3, ..., 9997, 9999, 10000]), + col_indices=tensor([ 41, 4057, 4525, ..., 395, 6429, 4913]), + values=tensor([0.6795, 0.3093, 0.3215, ..., 0.9868, 0.7022, 0.9945]), + size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) +tensor([0.0893, 0.5810, 0.8251, ..., 0.0535, 0.5355, 0.1364]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000 +Density: 0.0001 +Time: 10.562561988830566 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 3, ..., 9997, 9999, 10000]), + col_indices=tensor([ 41, 4057, 4525, ..., 395, 6429, 4913]), + values=tensor([0.6795, 0.3093, 0.3215, ..., 0.9868, 0.7022, 0.9945]), + size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) +tensor([0.0893, 0.5810, 0.8251, ..., 0.0535, 0.5355, 0.1364]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000 +Density: 0.0001 +Time: 10.562561988830566 seconds + +[40.18, 38.78, 39.39, 38.64, 39.47, 38.59, 40.17, 38.45, 39.45, 38.53] +[96.48] +13.216078281402588 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 289350, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.562561988830566, 'TIME_S_1KI': 0.036504447861864756, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1275.0872325897217, 'W': 96.48} +[40.18, 38.78, 39.39, 38.64, 39.47, 38.59, 40.17, 38.45, 39.45, 38.53, 39.33, 38.72, 38.74, 39.53, 38.66, 39.45, 38.52, 39.57, 38.65, 38.7] +703.1500000000001 +35.157500000000006 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 289350, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.562561988830566, 'TIME_S_1KI': 0.036504447861864756, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1275.0872325897217, 'W': 96.48, 'J_1KI': 4.406729678900023, 'W_1KI': 0.3334370139968896, 'W_D': 61.3225, 'J_D': 810.4429604113102, 'W_D_1KI': 0.21193191636426473, 'J_D_1KI': 0.0007324413905797986} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.001.json b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.001.json new file mode 100644 index 0000000..b5102bb --- /dev/null +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.001.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 187965, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.065882205963135, "TIME_S_1KI": 0.053551896395409436, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1344.2036644935608, "W": 106.8, "J_1KI": 7.1513508604982885, "W_1KI": 0.568190886601229, "W_D": 70.53074999999998, "J_D": 887.7124776168464, "W_D_1KI": 0.3752334211156331, "J_D_1KI": 0.001996294103240673} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.001.output b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.001.output new file mode 100644 index 0000000..81bf5e6 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.001.output @@ -0,0 +1,85 @@ +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.07673120498657227} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 12, 16, ..., 99979, 99991, + 100000]), + col_indices=tensor([ 168, 470, 1159, ..., 7824, 8386, 8755]), + values=tensor([0.2770, 0.4979, 0.7971, ..., 0.1786, 0.3153, 0.6794]), + size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) +tensor([0.8782, 0.5630, 0.5978, ..., 0.9864, 0.4940, 0.0083]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 100000 +Density: 0.001 +Time: 0.07673120498657227 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '136841', '-ss', '10000', '-sd', '0.001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 7.644104957580566} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 11, 23, ..., 99978, 99990, + 100000]), + col_indices=tensor([1562, 4109, 4242, ..., 5789, 5816, 7878]), + values=tensor([0.3397, 0.5295, 0.0107, ..., 0.2250, 0.1834, 0.1775]), + size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) +tensor([0.8704, 0.9073, 0.5102, ..., 0.5120, 0.6818, 0.6416]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 100000 +Density: 0.001 +Time: 7.644104957580566 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '187965', '-ss', '10000', '-sd', '0.001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.065882205963135} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 13, 25, ..., 99981, 99991, + 100000]), + col_indices=tensor([ 564, 1289, 1589, ..., 8514, 9743, 9976]), + values=tensor([0.9535, 0.4673, 0.4047, ..., 0.1356, 0.2907, 0.4698]), + size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) +tensor([0.6755, 0.5642, 0.0135, ..., 0.9982, 0.6342, 0.7704]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 100000 +Density: 0.001 +Time: 10.065882205963135 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 13, 25, ..., 99981, 99991, + 100000]), + col_indices=tensor([ 564, 1289, 1589, ..., 8514, 9743, 9976]), + values=tensor([0.9535, 0.4673, 0.4047, ..., 0.1356, 0.2907, 0.4698]), + size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) +tensor([0.6755, 0.5642, 0.0135, ..., 0.9982, 0.6342, 0.7704]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 100000 +Density: 0.001 +Time: 10.065882205963135 seconds + +[45.4, 39.59, 38.94, 38.84, 38.95, 40.73, 38.79, 39.87, 38.85, 39.58] +[106.8] +12.586176633834839 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 187965, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.065882205963135, 'TIME_S_1KI': 0.053551896395409436, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1344.2036644935608, 'W': 106.8} +[45.4, 39.59, 38.94, 38.84, 38.95, 40.73, 38.79, 39.87, 38.85, 39.58, 39.31, 39.68, 39.37, 39.04, 45.6, 48.05, 38.82, 39.58, 38.6, 39.88] +725.3850000000001 +36.26925000000001 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 187965, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.065882205963135, 'TIME_S_1KI': 0.053551896395409436, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1344.2036644935608, 'W': 106.8, 'J_1KI': 7.1513508604982885, 'W_1KI': 0.568190886601229, 'W_D': 70.53074999999998, 'J_D': 887.7124776168464, 'W_D_1KI': 0.3752334211156331, 'J_D_1KI': 0.001996294103240673} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.01.json b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.01.json new file mode 100644 index 0000000..be0819d --- /dev/null +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.01.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 105478, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.5971040725708, "TIME_S_1KI": 0.10046743465529115, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1740.769259557724, "W": 131.98, "J_1KI": 16.503624069073396, "W_1KI": 1.2512561861241205, "W_D": 96.29974999999999, "J_D": 1270.159452213168, "W_D_1KI": 0.912984224198411, "J_D_1KI": 0.008655683879087687} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.01.output b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.01.output new file mode 100644 index 0000000..1731635 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.01.output @@ -0,0 +1,85 @@ +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.01'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 0.16547083854675293} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 96, 207, ..., 999810, + 999906, 1000000]), + col_indices=tensor([ 26, 37, 76, ..., 9653, 9723, 9999]), + values=tensor([0.3241, 0.3803, 0.4811, ..., 0.7106, 0.6386, 0.1440]), + size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.9687, 0.4748, 0.5344, ..., 0.6395, 0.7779, 0.2708]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000000 +Density: 0.01 +Time: 0.16547083854675293 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '63455', '-ss', '10000', '-sd', '0.01'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 6.316709756851196} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 90, 176, ..., 999794, + 999890, 1000000]), + col_indices=tensor([ 23, 147, 291, ..., 9810, 9851, 9893]), + values=tensor([0.8158, 0.9343, 0.8649, ..., 0.9539, 0.1935, 0.2240]), + size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.7787, 0.2300, 0.4854, ..., 0.5355, 0.5696, 0.8377]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000000 +Density: 0.01 +Time: 6.316709756851196 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '105478', '-ss', '10000', '-sd', '0.01'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.5971040725708} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 112, 216, ..., 999816, + 999921, 1000000]), + col_indices=tensor([ 50, 64, 228, ..., 9846, 9935, 9998]), + values=tensor([0.2081, 0.8355, 0.6203, ..., 0.0415, 0.1924, 0.6602]), + size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.3579, 0.4434, 0.7372, ..., 0.2272, 0.7887, 0.7519]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000000 +Density: 0.01 +Time: 10.5971040725708 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 112, 216, ..., 999816, + 999921, 1000000]), + col_indices=tensor([ 50, 64, 228, ..., 9846, 9935, 9998]), + values=tensor([0.2081, 0.8355, 0.6203, ..., 0.0415, 0.1924, 0.6602]), + size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.3579, 0.4434, 0.7372, ..., 0.2272, 0.7887, 0.7519]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000000 +Density: 0.01 +Time: 10.5971040725708 seconds + +[41.21, 38.88, 39.8, 38.81, 39.92, 39.04, 39.53, 38.73, 39.74, 38.85] +[131.98] +13.18964433670044 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 105478, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.5971040725708, 'TIME_S_1KI': 0.10046743465529115, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1740.769259557724, 'W': 131.98} +[41.21, 38.88, 39.8, 38.81, 39.92, 39.04, 39.53, 38.73, 39.74, 38.85, 39.66, 39.98, 38.99, 40.02, 39.22, 39.28, 39.07, 41.17, 38.93, 45.27] +713.6050000000001 +35.68025000000001 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 105478, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.5971040725708, 'TIME_S_1KI': 0.10046743465529115, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1740.769259557724, 'W': 131.98, 'J_1KI': 16.503624069073396, 'W_1KI': 1.2512561861241205, 'W_D': 96.29974999999999, 'J_D': 1270.159452213168, 'W_D_1KI': 0.912984224198411, 'J_D_1KI': 0.008655683879087687} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.05.json b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.05.json new file mode 100644 index 0000000..2c99a83 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.05.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 28261, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.545162916183472, "TIME_S_1KI": 0.37313481179659147, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2163.6921325206754, "W": 147.39, "J_1KI": 76.56106056122131, "W_1KI": 5.2153143908566575, "W_D": 111.76774999999999, "J_D": 1640.7558270204065, "W_D_1KI": 3.9548405930434165, "J_D_1KI": 0.13993986741599437} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.05.output b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.05.output new file mode 100644 index 0000000..d58d64d --- /dev/null +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_0.05.output @@ -0,0 +1,85 @@ +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 0.4614067077636719} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 523, 1040, ..., 4999055, + 4999519, 5000000]), + col_indices=tensor([ 1, 5, 26, ..., 9948, 9962, 9996]), + values=tensor([0.6869, 0.8475, 0.6936, ..., 0.3132, 0.2618, 0.7215]), + size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.5929, 0.6414, 0.0366, ..., 0.9216, 0.5044, 0.3359]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000000 +Density: 0.05 +Time: 0.4614067077636719 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '22756', '-ss', '10000', '-sd', '0.05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 8.454672574996948} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 518, 995, ..., 4998951, + 4999482, 5000000]), + col_indices=tensor([ 3, 5, 12, ..., 9960, 9985, 9990]), + values=tensor([0.0194, 0.0116, 0.2988, ..., 0.0510, 0.2477, 0.0241]), + size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.8184, 0.3974, 0.7641, ..., 0.0303, 0.5906, 0.4265]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000000 +Density: 0.05 +Time: 8.454672574996948 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '28261', '-ss', '10000', '-sd', '0.05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.545162916183472} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 472, 967, ..., 4998984, + 4999479, 5000000]), + col_indices=tensor([ 28, 36, 55, ..., 9923, 9953, 9987]), + values=tensor([0.3537, 0.0932, 0.3681, ..., 0.2268, 0.3044, 0.8997]), + size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.5459, 0.4301, 0.8105, ..., 0.9349, 0.4459, 0.6946]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000000 +Density: 0.05 +Time: 10.545162916183472 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 472, 967, ..., 4998984, + 4999479, 5000000]), + col_indices=tensor([ 28, 36, 55, ..., 9923, 9953, 9987]), + values=tensor([0.3537, 0.0932, 0.3681, ..., 0.2268, 0.3044, 0.8997]), + size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.5459, 0.4301, 0.8105, ..., 0.9349, 0.4459, 0.6946]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000000 +Density: 0.05 +Time: 10.545162916183472 seconds + +[39.85, 40.19, 39.24, 39.5, 39.23, 40.01, 39.26, 40.01, 39.09, 39.94] +[147.39] +14.680047035217285 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 28261, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.545162916183472, 'TIME_S_1KI': 0.37313481179659147, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2163.6921325206754, 'W': 147.39} +[39.85, 40.19, 39.24, 39.5, 39.23, 40.01, 39.26, 40.01, 39.09, 39.94, 39.9, 39.27, 40.14, 39.15, 40.0, 39.07, 39.99, 39.51, 39.37, 39.14] +712.4449999999999 +35.622249999999994 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 28261, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.545162916183472, 'TIME_S_1KI': 0.37313481179659147, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2163.6921325206754, 'W': 147.39, 'J_1KI': 76.56106056122131, 'W_1KI': 5.2153143908566575, 'W_D': 111.76774999999999, 'J_D': 1640.7558270204065, 'W_D_1KI': 3.9548405930434165, 'J_D_1KI': 0.13993986741599437} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_1e-05.json b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_1e-05.json new file mode 100644 index 0000000..e9f145d --- /dev/null +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 352057, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.363084554672241, "TIME_S_1KI": 0.029435814526262056, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1223.9154741740226, "W": 94.69, "J_1KI": 3.4764696460346554, "W_1KI": 0.2689621282917255, "W_D": 59.05925, "J_D": 763.3702605144381, "W_D_1KI": 0.1677547953882468, "J_D_1KI": 0.0004764989629186376} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_1e-05.output b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_1e-05.output new file mode 100644 index 0000000..f1c1f4f --- /dev/null +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_10000_1e-05.output @@ -0,0 +1,1414 @@ +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.05632638931274414} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), + col_indices=tensor([6812, 5345, 3814, 3851, 1180, 2370, 9747, 9157, 9309, + 1844, 451, 6602, 4443, 8006, 5413, 9948, 6902, 4781, + 5273, 3102, 9193, 6090, 9660, 8598, 9786, 3453, 7823, + 8095, 5864, 1933, 5014, 3401, 1663, 8599, 9714, 5815, + 973, 4504, 306, 2971, 7185, 220, 7724, 5778, 2532, + 0, 8277, 8525, 5899, 2513, 5457, 8721, 2772, 4422, + 997, 2101, 9163, 4690, 3655, 646, 1228, 2676, 5080, + 9204, 4653, 8512, 580, 9554, 3549, 201, 5889, 9262, + 3348, 7948, 7695, 1711, 5747, 7743, 1681, 5808, 2747, + 7029, 7665, 8165, 7858, 569, 2064, 4739, 7568, 177, + 9310, 4386, 8240, 6642, 4389, 3996, 4876, 1054, 4163, + 3621, 8213, 1627, 3052, 4037, 3228, 47, 4120, 8716, + 1140, 654, 1138, 8841, 9286, 6853, 8247, 7250, 6739, + 1808, 169, 5660, 5955, 2424, 5623, 268, 7108, 2287, + 739, 2574, 9748, 9883, 2172, 4242, 8003, 2617, 6886, + 7295, 7725, 4620, 498, 2580, 442, 5852, 4654, 5268, + 6076, 7672, 5783, 3582, 3254, 3994, 929, 1878, 4949, + 400, 6765, 9975, 779, 4319, 980, 2110, 2886, 8932, + 3, 9221, 5560, 5736, 9363, 3301, 2015, 4960, 9665, + 6658, 7513, 8632, 1117, 8631, 3102, 6495, 3285, 5928, + 5063, 2953, 415, 9325, 6645, 1813, 4912, 9756, 1834, + 6588, 7867, 7612, 8434, 3793, 6053, 5323, 8947, 265, + 2804, 6632, 4473, 4355, 2581, 2353, 7271, 4824, 4144, + 6126, 4560, 5442, 4479, 555, 2007, 6423, 5193, 6710, + 6829, 1599, 2342, 3108, 3317, 3816, 713, 4617, 7607, + 6987, 4294, 1833, 4504, 3983, 4882, 6215, 2108, 4859, + 168, 3488, 619, 9439, 3067, 7601, 4742, 6465, 3039, + 9230, 7199, 4541, 3988, 1559, 4055, 8422, 7652, 2090, + 8489, 4261, 7601, 530, 9082, 2933, 9378, 585, 2209, + 353, 9325, 2381, 8704, 6565, 7086, 807, 7854, 8680, + 5552, 8266, 6318, 725, 6560, 2538, 6556, 9098, 566, + 7395, 4316, 1599, 6631, 2981, 4986, 5873, 8559, 6556, + 9629, 7512, 6636, 8262, 8317, 4749, 6563, 215, 5397, + 9055, 3143, 2265, 4227, 1735, 9879, 4387, 9710, 7805, + 9768, 2516, 6943, 7878, 4239, 2682, 5508, 5275, 427, + 5011, 4823, 1510, 3965, 7563, 828, 1786, 3737, 1515, + 269, 2676, 8151, 6784, 6882, 1125, 302, 4605, 1945, + 6282, 2720, 7960, 9965, 9839, 8018, 2892, 8630, 8988, + 8058, 2636, 1587, 7889, 7520, 9635, 2793, 7912, 1905, + 631, 3576, 1928, 6739, 9503, 9116, 9690, 2391, 8077, + 9638, 818, 5239, 8992, 8413, 8946, 9291, 434, 4760, + 600, 2737, 3702, 2860, 2917, 4958, 1280, 1230, 5019, + 5065, 5289, 5197, 4954, 2386, 5251, 792, 7396, 8666, + 4922, 8408, 7875, 5791, 6075, 4833, 2748, 2161, 7484, + 5145, 7287, 9831, 9820, 3198, 2650, 3260, 5083, 6023, + 8121, 870, 833, 5254, 3774, 8535, 3595, 4463, 1952, + 5991, 1993, 6152, 6091, 5087, 5581, 5515, 3210, 6360, + 2597, 277, 5906, 3480, 439, 7815, 4775, 7398, 6551, + 5541, 9773, 2181, 9106, 3626, 5171, 7202, 6895, 23, + 9676, 9138, 9156, 7516, 1167, 2814, 2329, 7570, 6770, + 7617, 5385, 9773, 9980, 5735, 9957, 7645, 5947, 8994, + 7638, 2770, 6308, 5051, 7910, 6205, 4570, 9838, 3952, + 9132, 6570, 5996, 5683, 6764, 5338, 6161, 136, 3045, + 3151, 6038, 9806, 8969, 2182, 180, 1821, 8019, 320, + 1345, 1010, 2232, 3381, 4659, 4538, 8452, 3930, 6824, + 7217, 1062, 3414, 6613, 6887, 6460, 1275, 344, 8115, + 257, 6494, 9814, 229, 4222, 1492, 9380, 7766, 1297, + 7423, 9312, 6124, 9696, 2437, 9460, 8453, 7101, 9822, + 5976, 7507, 8207, 5249, 6225, 2059, 7406, 1310, 3009, + 606, 4670, 434, 9941, 370, 6664, 1036, 40, 7277, + 3524, 7462, 1087, 3313, 1832, 8546, 5657, 8955, 3723, + 6681, 222, 7634, 737, 4866, 8322, 6756, 1757, 4703, + 8794, 8179, 2766, 2134, 7836, 7352, 1539, 736, 6655, + 1396, 8908, 3976, 2995, 1799, 6890, 978, 3082, 6123, + 8796, 9842, 2267, 6370, 5889, 9113, 5728, 7437, 5990, + 7086, 2210, 9180, 5982, 6894, 8136, 1156, 2679, 7661, + 3787, 217, 3916, 5807, 7734, 7922, 9303, 1765, 2858, + 4216, 8125, 5252, 4569, 5310, 3783, 16, 3025, 4295, + 578, 1594, 1672, 1050, 9822, 2615, 6707, 4468, 6027, + 66, 1328, 8431, 257, 9880, 3598, 9767, 2821, 2303, + 5492, 1720, 3408, 358, 3996, 1997, 6771, 4735, 8558, + 4531, 7842, 6311, 7016, 1679, 779, 2052, 8915, 1176, + 522, 3533, 138, 654, 3578, 1043, 7210, 8571, 276, + 5147, 8019, 2085, 1401, 5462, 9199, 79, 9311, 9605, + 4460, 1609, 4637, 6624, 934, 4056, 799, 7810, 2936, + 3852, 4770, 9470, 816, 3382, 4532, 733, 1595, 7053, + 1819, 8446, 7918, 2571, 2414, 3053, 306, 303, 2633, + 4471, 48, 7302, 9747, 7430, 4452, 4601, 6494, 2373, + 3478, 3671, 723, 7454, 6441, 9325, 5380, 5725, 8477, + 334, 678, 1476, 3512, 8513, 1554, 8955, 7700, 1680, + 6637, 2048, 4501, 208, 7677, 7361, 1726, 3061, 4484, + 6212, 2667, 4315, 5569, 9793, 7424, 1358, 4019, 7298, + 7707, 5875, 8612, 3636, 4969, 6955, 7099, 3862, 675, + 138, 6876, 7840, 3119, 3123, 437, 66, 7091, 9180, + 9545, 1727, 6209, 9333, 9620, 8522, 5749, 403, 8954, + 2903, 6312, 6118, 7115, 4062, 4160, 9841, 9152, 1571, + 890, 7281, 7826, 6454, 2498, 2667, 3964, 2183, 2545, + 1284, 6164, 2551, 8365, 7699, 152, 4082, 7241, 6902, + 9468, 1940, 3235, 5919, 7405, 2523, 7892, 4383, 4211, + 6857, 3014, 1436, 1295, 1132, 3473, 4321, 8486, 3395, + 6627, 7213, 9218, 3796, 1200, 414, 7109, 1218, 4318, + 6987, 1038, 6709, 1934, 1437, 3938, 6293, 1025, 3363, + 1011, 133, 8158, 2737, 6168, 9466, 8847, 1359, 9492, + 7373, 9376, 2753, 5234, 5071, 7674, 2438, 8408, 7454, + 4445, 6836, 1319, 1378, 8765, 9038, 326, 9536, 6715, + 3944, 4572, 4151, 3843, 604, 6969, 7925, 5459, 960, + 6925, 1149, 5386, 2457, 9589, 6754, 7120, 9840, 180, + 9588, 5227, 5482, 1931, 6657, 5746, 1036, 1419, 9953, + 1811, 5316, 2608, 4058, 6786, 2888, 1007, 7074, 8740, + 3707, 6549, 26, 7217, 949, 9048, 6325, 6499, 2844, + 7971, 1510, 4139, 8131, 1772, 6475, 9754, 3482, 3690, + 4507, 6256, 5350, 1093, 3151, 4904, 9667, 8010, 2247, + 9532, 8943, 5825, 3800, 4476, 2175, 7472, 983, 6432, + 9871, 743, 2957, 6994, 3585, 8225, 9704, 5945, 7595, + 9840, 9738, 7080, 2140, 9449, 7134, 4148, 4201, 2192, + 6737, 7193, 5551, 1830, 6330, 7422, 940, 2419, 6922, + 4018, 9800, 6974, 6399, 2872, 9185, 6325, 4933, 8102, + 8215, 7611, 7799, 8985, 3813, 1167, 1876, 2700, 7140, + 7771, 9155, 8383, 2171, 4826, 8725, 198, 5196, 9408, + 1796, 8747, 3124, 9094, 9219, 2538, 9372, 4142, 4310, + 4925, 362, 482, 6434, 5850, 7726, 9623, 7875, 7573, + 1683]), + values=tensor([0.9501, 0.0608, 0.4582, 0.8648, 0.4288, 0.3335, 0.2990, + 0.8436, 0.9595, 0.9570, 0.4546, 0.7255, 0.7472, 0.1665, + 0.5384, 0.4888, 0.2254, 0.1459, 0.3427, 0.7837, 0.8071, + 0.3083, 0.0792, 0.9156, 0.9593, 0.7189, 0.7561, 0.5744, + 0.7648, 0.8494, 0.2755, 0.2656, 0.9565, 0.5722, 0.0439, + 0.9058, 0.6108, 0.8943, 0.2506, 0.1078, 0.4612, 0.6801, + 0.2129, 0.5436, 0.7432, 0.2689, 0.4989, 0.4374, 0.9920, + 0.6987, 0.6555, 0.1657, 0.9034, 0.6618, 0.5497, 0.4722, + 0.4870, 0.3130, 0.6841, 0.0160, 0.0667, 0.1192, 0.6321, + 0.4472, 0.3518, 0.0174, 0.6075, 0.4096, 0.2354, 0.9944, + 0.8872, 0.2447, 0.1414, 0.1605, 0.9779, 0.0801, 0.5806, + 0.3669, 0.8238, 0.4501, 0.1242, 0.6765, 0.2581, 0.2555, + 0.4602, 0.6776, 0.5934, 0.8778, 0.6683, 0.6033, 0.0971, + 0.6110, 0.9804, 0.0413, 0.6737, 0.0124, 0.0974, 0.9284, + 0.8495, 0.6575, 0.0455, 0.3926, 0.1639, 0.9218, 0.1724, + 0.4834, 0.4166, 0.4979, 0.8689, 0.5628, 0.7445, 0.3148, + 0.3835, 0.4200, 0.3005, 0.7375, 0.8154, 0.8606, 0.8039, + 0.3336, 0.7976, 0.3820, 0.0327, 0.4339, 0.8626, 0.2111, + 0.9953, 0.8857, 0.6352, 0.7180, 0.3906, 0.1555, 0.5752, + 0.5025, 0.1237, 0.5353, 0.4418, 0.1988, 0.3485, 0.0728, + 0.7377, 0.3950, 0.3193, 0.6902, 0.7110, 0.4650, 0.7603, + 0.2230, 0.8474, 0.2803, 0.4197, 0.2239, 0.1180, 0.9181, + 0.2889, 0.4630, 0.2764, 0.3214, 0.0669, 0.6944, 0.8943, + 0.2833, 0.1402, 0.9137, 0.7784, 0.7725, 0.6923, 0.9892, + 0.0023, 0.5435, 0.0759, 0.9832, 0.3443, 0.5451, 0.3963, + 0.8994, 0.8230, 0.6172, 0.6757, 0.7087, 0.2645, 0.4790, + 0.2866, 0.9954, 0.7031, 0.4779, 0.8509, 0.2411, 0.9041, + 0.3087, 0.6675, 0.1882, 0.5192, 0.8350, 0.0060, 0.4196, + 0.9462, 0.4085, 0.2819, 0.6113, 0.3422, 0.4358, 0.8406, + 0.6092, 0.5703, 0.4865, 0.5577, 0.1766, 0.5094, 0.2001, + 0.9448, 0.8781, 0.0070, 0.3887, 0.5298, 0.9320, 0.4934, + 0.9483, 0.7212, 0.3137, 0.0083, 0.0885, 0.8131, 0.5107, + 0.4082, 0.6527, 0.6567, 0.2803, 0.1468, 0.8474, 0.7485, + 0.3926, 0.0191, 0.2248, 0.4033, 0.8399, 0.8619, 0.8824, + 0.0033, 0.8254, 0.8480, 0.2757, 0.7649, 0.7908, 0.0886, + 0.9820, 0.9088, 0.6185, 0.8805, 0.2926, 0.8590, 0.6755, + 0.4517, 0.7710, 0.7408, 0.0482, 0.0098, 0.3668, 0.5847, + 0.2808, 0.0515, 0.2714, 0.4954, 0.8899, 0.4432, 0.5186, + 0.4362, 0.4363, 0.9279, 0.3383, 0.3890, 0.5320, 0.0925, + 0.9077, 0.3611, 0.3517, 0.3097, 0.5473, 0.9561, 0.5761, + 0.7688, 0.1131, 0.4757, 0.3798, 0.4153, 0.0408, 0.1497, + 0.5965, 0.7398, 0.0723, 0.1293, 0.2633, 0.9885, 0.2993, + 0.4042, 0.3044, 0.4369, 0.6707, 0.3228, 0.1104, 0.1811, + 0.7410, 0.5294, 0.4691, 0.0753, 0.1968, 0.2229, 0.0496, + 0.2775, 0.1441, 0.7398, 0.9927, 0.6779, 0.3495, 0.2171, + 0.5931, 0.1314, 0.7589, 0.5741, 0.7003, 0.4931, 0.6617, + 0.0465, 0.8797, 0.9432, 0.2718, 0.6102, 0.5730, 0.7091, + 0.9230, 0.7483, 0.9933, 0.4006, 0.9655, 0.1924, 0.1673, + 0.2167, 0.6767, 0.7325, 0.0967, 0.8262, 0.5445, 0.5750, + 0.8056, 0.7511, 0.2635, 0.4773, 0.0086, 0.4549, 0.1287, + 0.6574, 0.3479, 0.5748, 0.7003, 0.4796, 0.3264, 0.7746, + 0.0992, 0.1274, 0.7083, 0.4710, 0.5040, 0.3106, 0.8949, + 0.5875, 0.8904, 0.1259, 0.9984, 0.1215, 0.1287, 0.7359, + 0.9667, 0.3807, 0.0084, 0.9446, 0.1267, 0.7260, 0.3622, + 0.3648, 0.3971, 0.8243, 0.3290, 0.1302, 0.2602, 0.1594, + 0.2818, 0.9563, 0.5028, 0.0674, 0.7184, 0.7897, 0.3423, + 0.7642, 0.8709, 0.7777, 0.6086, 0.0773, 0.7051, 0.2099, + 0.9218, 0.4964, 0.3211, 0.8454, 0.9153, 0.7265, 0.8799, + 0.4445, 0.6706, 0.5465, 0.4843, 0.4900, 0.6685, 0.1600, + 0.5873, 0.7582, 0.9589, 0.3086, 0.2822, 0.7154, 0.8235, + 0.4883, 0.4282, 0.2481, 0.3159, 0.8125, 0.4767, 0.5842, + 0.8266, 0.4464, 0.2498, 0.0198, 0.1142, 0.9760, 0.7470, + 0.2814, 0.3180, 0.6628, 0.5393, 0.8968, 0.7089, 0.7283, + 0.5978, 0.9504, 0.7784, 0.4140, 0.0453, 0.3982, 0.7121, + 0.8387, 0.3073, 0.2971, 0.0644, 0.3933, 0.3265, 0.5892, + 0.9306, 0.6032, 0.6663, 0.2458, 0.4183, 0.2601, 0.1482, + 0.7875, 0.6715, 0.9037, 0.6264, 0.1359, 0.3737, 0.8124, + 0.5579, 0.8032, 0.5250, 0.0484, 0.3798, 0.9181, 0.6990, + 0.4709, 0.3607, 0.2263, 0.9491, 0.1381, 0.9349, 0.5587, + 0.9109, 0.9521, 0.5111, 0.0699, 0.3049, 0.9282, 0.2051, + 0.7337, 0.5531, 0.0461, 0.4793, 0.7666, 0.5729, 0.3304, + 0.5870, 0.0631, 0.1734, 0.9830, 0.0209, 0.9070, 0.2915, + 0.5223, 0.8838, 0.3301, 0.9421, 0.7594, 0.3115, 0.3740, + 0.1248, 0.4019, 0.5655, 0.5416, 0.7264, 0.5093, 0.1844, + 0.8141, 0.2982, 0.7382, 0.1835, 0.6278, 0.2811, 0.6067, + 0.4478, 0.8684, 0.7412, 0.6892, 0.4335, 0.3843, 0.1013, + 0.1866, 0.2359, 0.1912, 0.1664, 0.4983, 0.0451, 0.5779, + 0.1237, 0.6607, 0.8235, 0.3279, 0.3369, 0.1857, 0.8737, + 0.2822, 0.5874, 0.7770, 0.0168, 0.7548, 0.3960, 0.3835, + 0.4930, 0.3962, 0.3565, 0.6311, 0.9203, 0.1599, 0.6197, + 0.2004, 0.7715, 0.5383, 0.1841, 0.1164, 0.3781, 0.9012, + 0.9637, 0.8161, 0.0173, 0.2396, 0.0018, 0.0564, 0.8961, + 0.2930, 0.3621, 0.6069, 0.6097, 0.9727, 0.1807, 0.3231, + 0.0985, 0.1124, 0.5749, 0.4352, 0.8638, 0.0775, 0.9958, + 0.9205, 0.3899, 0.5787, 0.8568, 0.9382, 0.5573, 0.3192, + 0.0969, 0.4291, 0.7158, 0.4234, 0.1267, 0.1115, 0.5998, + 0.1213, 0.6955, 0.1359, 0.9242, 0.6837, 0.5104, 0.9705, + 0.6553, 0.7854, 0.7712, 0.8039, 0.8374, 0.2432, 0.9642, + 0.1087, 0.0239, 0.1412, 0.9577, 0.0364, 0.2602, 0.8651, + 0.7740, 0.6630, 0.1925, 0.3806, 0.0865, 0.3012, 0.5681, + 0.5340, 0.7079, 0.9004, 0.2913, 0.0786, 0.7160, 0.5092, + 0.6040, 0.2622, 0.1213, 0.1900, 0.5959, 0.6840, 0.5618, + 0.1670, 0.6118, 0.0943, 0.7556, 0.4326, 0.7941, 0.7922, + 0.3595, 0.6876, 0.3649, 0.5637, 0.9793, 0.2075, 0.6261, + 0.6043, 0.5454, 0.2742, 0.8353, 0.0427, 0.9110, 0.0773, + 0.2275, 0.2893, 0.1109, 0.9398, 0.4773, 0.7822, 0.6599, + 0.8032, 0.2465, 0.6896, 0.2226, 0.7912, 0.1714, 0.2888, + 0.1580, 0.9505, 0.0239, 0.6042, 0.7302, 0.1773, 0.5926, + 0.7722, 0.9857, 0.0965, 0.2226, 0.3385, 0.7909, 0.1570, + 0.6213, 0.2582, 0.1411, 0.9172, 0.4810, 0.6713, 0.9545, + 0.2919, 0.5330, 0.3979, 0.6047, 0.4614, 0.2037, 0.3751, + 0.3804, 0.5338, 0.3579, 0.2743, 0.0279, 0.9402, 0.0896, + 0.2399, 0.2231, 0.8045, 0.3911, 0.5905, 0.3294, 0.4349, + 0.9493, 0.9307, 0.9703, 0.4125, 0.6181, 0.4712, 0.4453, + 0.7656, 0.1164, 0.8896, 0.1964, 0.5785, 0.3681, 0.2471, + 0.4770, 0.5765, 0.6602, 0.0472, 0.6495, 0.2061, 0.8543, + 0.1225, 0.1309, 0.5365, 0.4901, 0.0481, 0.6811, 0.7748, + 0.2448, 0.4898, 0.3279, 0.8044, 0.4603, 0.5675, 0.8174, + 0.0475, 0.7111, 0.2962, 0.6540, 0.1502, 0.9524, 0.6459, + 0.8307, 0.7436, 0.4830, 0.4934, 0.8352, 0.9155, 0.5324, + 0.0716, 0.6763, 0.2247, 0.5415, 0.1357, 0.5307, 0.8078, + 0.8984, 0.3881, 0.5658, 0.5823, 0.2814, 0.5909, 0.5695, + 0.8610, 0.0475, 0.7103, 0.5588, 0.7810, 0.8470, 0.1132, + 0.2900, 0.1215, 0.9552, 0.1865, 0.5326, 0.0328, 0.4792, + 0.8894, 0.2639, 0.9686, 0.4319, 0.0369, 0.9923, 0.0728, + 0.2198, 0.9344, 0.7460, 0.9579, 0.3310, 0.7836, 0.5089, + 0.4401, 0.2425, 0.8688, 0.4712, 0.7084, 0.7189, 0.8725, + 0.1089, 0.5361, 0.8040, 0.9835, 0.0427, 0.8268, 0.6240, + 0.7359, 0.9360, 0.0588, 0.6040, 0.6846, 0.5540, 0.8911, + 0.2481, 0.3308, 0.1302, 0.3592, 0.4975, 0.4257, 0.7631, + 0.7628, 0.4599, 0.4029, 0.1705, 0.8311, 0.9296, 0.4533, + 0.1348, 0.5456, 0.6201, 0.9648, 0.0545, 0.5193, 0.2471, + 0.2210, 0.2370, 0.3579, 0.2466, 0.5527, 0.6228, 0.6627, + 0.7269, 0.0903, 0.8297, 0.0509, 0.1170, 0.4501, 0.6621, + 0.1975, 0.2451, 0.1701, 0.6420, 0.1514, 0.6671, 0.2545, + 0.2709, 0.8417, 0.6213, 0.5493, 0.8651, 0.2899, 0.0951, + 0.6363, 0.7119, 0.4153, 0.0773, 0.9973, 0.1388, 0.4317, + 0.1078, 0.8822, 0.9970, 0.3666, 0.0927, 0.7775, 0.8304, + 0.2413, 0.5245, 0.6703, 0.8672, 0.4345, 0.0666, 0.8826, + 0.4126, 0.0784, 0.6126, 0.5949, 0.2504, 0.5274, 0.4519, + 0.0299, 0.0111, 0.6969, 0.1507, 0.3909, 0.1643, 0.1775, + 0.3897, 0.2487, 0.8730, 0.9548, 0.3712, 0.6117, 0.5145, + 0.9949, 0.9666, 0.2569, 0.1800, 0.1693, 0.8375, 0.7579, + 0.4954, 0.4402, 0.3809, 0.3091, 0.6158, 0.3376, 0.8918, + 0.9671, 0.0821, 0.0024, 0.4326, 0.7265, 0.2154, 0.3397, + 0.1050, 0.9196, 0.3493, 0.1140, 0.8209, 0.4116, 0.2822, + 0.0376, 0.2910, 0.3166, 0.8309, 0.3734, 0.7911, 0.3928, + 0.4582, 0.8401, 0.4956, 0.4572, 0.7388, 0.5463, 0.4520, + 0.6132, 0.2139, 0.5397, 0.2963, 0.4168, 0.3965, 0.2486, + 0.9508, 0.7409, 0.1439, 0.2506, 0.7678, 0.8150, 0.8213, + 0.8256, 0.1807, 0.2787, 0.4611, 0.6676, 0.3133, 0.4539, + 0.1453, 0.1562, 0.7073, 0.4390, 0.9597, 0.3174, 0.0943, + 0.0190, 0.1803, 0.6325, 0.6661, 0.9783, 0.3584]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.8769, 0.8902, 0.3074, ..., 0.5063, 0.6820, 0.8149]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 0.05632638931274414 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '186413', '-ss', '10000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 5.5597083568573} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), + col_indices=tensor([ 875, 2191, 8400, 7819, 1359, 1371, 2712, 1430, 699, + 6200, 2366, 7177, 863, 6066, 3455, 4404, 1664, 5210, + 4431, 2329, 8118, 7744, 8468, 6759, 56, 4135, 8355, + 1937, 8979, 8770, 7419, 5776, 718, 8064, 3859, 6591, + 2824, 3492, 4055, 3388, 2836, 5059, 5536, 4952, 4131, + 4038, 8683, 413, 5705, 359, 3435, 651, 1108, 9531, + 6875, 4330, 1115, 5593, 2969, 6345, 1365, 6966, 630, + 8757, 209, 7065, 9539, 2263, 5307, 3566, 6539, 5643, + 3281, 4970, 9273, 8736, 4719, 8846, 4254, 1009, 7367, + 2015, 364, 1240, 851, 7365, 8720, 4893, 9717, 9512, + 3001, 5085, 106, 3869, 9655, 8756, 4703, 6792, 2300, + 7273, 7994, 8012, 1150, 5161, 4585, 4463, 3174, 2598, + 1009, 114, 1091, 647, 6685, 1799, 5606, 4368, 8317, + 6800, 8461, 2401, 9532, 5943, 3524, 9561, 3530, 7573, + 7996, 276, 5910, 6640, 4231, 1916, 2785, 7726, 6194, + 1776, 6505, 2164, 6449, 4656, 9015, 7814, 4827, 3917, + 3607, 9242, 3409, 6093, 262, 3208, 6492, 5483, 2604, + 3740, 4527, 7351, 9717, 7470, 9592, 9912, 2180, 6243, + 8654, 8860, 7580, 2576, 509, 8078, 9320, 4728, 2358, + 3282, 9417, 3258, 2239, 2184, 7436, 647, 717, 8607, + 6893, 6043, 8574, 2094, 5465, 401, 4875, 9843, 9045, + 5958, 3312, 5152, 4044, 9669, 4185, 7058, 4759, 8962, + 2462, 88, 9585, 3409, 9818, 8176, 5753, 7934, 5454, + 1148, 7035, 3186, 0, 4081, 8603, 4226, 8008, 896, + 2469, 8717, 8384, 8025, 8100, 4427, 6199, 3161, 1565, + 8235, 1384, 4572, 6887, 9773, 6728, 6068, 1124, 956, + 6662, 8166, 2878, 9898, 5224, 3909, 511, 6289, 2609, + 9128, 8137, 4634, 8801, 8051, 4380, 3761, 3506, 2819, + 7524, 2480, 9729, 678, 558, 5135, 1217, 4049, 4198, + 5027, 8235, 5566, 1689, 9558, 573, 4726, 6916, 3817, + 902, 4701, 4498, 7662, 1264, 4117, 7339, 8578, 1497, + 2979, 1063, 8848, 7439, 6969, 2604, 102, 1953, 9761, + 631, 9833, 5901, 1619, 2348, 4477, 6574, 1941, 7421, + 1129, 9581, 1641, 1965, 1376, 529, 8173, 6747, 2286, + 6617, 6144, 2870, 9378, 9440, 1879, 7318, 3940, 5956, + 3401, 4134, 6690, 4400, 4747, 6413, 1901, 7559, 5381, + 7441, 5451, 4111, 9589, 4650, 2125, 3387, 9269, 9830, + 3416, 252, 1858, 7212, 7715, 7344, 7407, 1539, 3712, + 6759, 1085, 3754, 7800, 9271, 5280, 8962, 737, 6966, + 9246, 5155, 517, 2074, 659, 9633, 7292, 569, 2735, + 8793, 5355, 4476, 7675, 6188, 2279, 7778, 7430, 2472, + 8991, 357, 5469, 2634, 1768, 4874, 44, 1737, 564, + 644, 4054, 1837, 5927, 6265, 7759, 2627, 7859, 9465, + 521, 9843, 3170, 6972, 7535, 6527, 6037, 7706, 2994, + 3807, 6183, 756, 2600, 5196, 5717, 8193, 1298, 1699, + 582, 3997, 5609, 1668, 1765, 6916, 281, 4330, 160, + 4705, 1344, 6842, 9978, 4604, 4273, 4905, 6049, 8421, + 8347, 6760, 9083, 9481, 1707, 9273, 5708, 3542, 2477, + 5961, 4872, 6068, 3407, 3069, 617, 8754, 2697, 3152, + 5209, 6551, 8372, 9769, 2646, 6596, 6730, 7481, 9516, + 1955, 6123, 6732, 4820, 6751, 1603, 4273, 4958, 2988, + 6085, 2769, 273, 7086, 7391, 4646, 2787, 5440, 1079, + 9620, 1741, 2523, 1361, 3708, 3885, 5156, 9784, 249, + 4165, 1632, 4836, 4522, 5739, 2937, 4923, 8601, 3396, + 7650, 4326, 4289, 4952, 5072, 6736, 363, 400, 1127, + 4916, 2930, 9184, 9058, 5628, 7736, 7746, 4660, 3924, + 9186, 781, 9323, 5772, 3836, 3137, 8984, 7622, 4390, + 5833, 8822, 8970, 7549, 8138, 4086, 4203, 6758, 9660, + 986, 9295, 2758, 6699, 9576, 8154, 9732, 2023, 1156, + 1924, 8698, 3129, 1105, 1459, 8280, 5513, 3034, 3112, + 721, 8883, 4235, 5945, 2895, 2222, 6126, 3912, 204, + 831, 4512, 3475, 3689, 3223, 711, 3915, 3961, 1023, + 4584, 3349, 5279, 8282, 8462, 804, 8791, 8899, 7858, + 8814, 2036, 7234, 9675, 7983, 8715, 543, 8593, 6977, + 1286, 3463, 7404, 6174, 7685, 888, 4155, 705, 5999, + 7786, 1063, 5095, 7530, 68, 9840, 6177, 6766, 9918, + 6261, 7229, 7220, 7534, 9653, 723, 4326, 9036, 3583, + 4481, 9945, 179, 1856, 5905, 1419, 265, 9274, 4599, + 7087, 7826, 5652, 550, 292, 3541, 9483, 7398, 8507, + 1073, 8467, 7752, 5025, 9683, 7395, 2600, 5763, 4622, + 7020, 9742, 3286, 9825, 3653, 9323, 5588, 7236, 1106, + 8632, 2466, 283, 343, 972, 2360, 1711, 8346, 706, + 1332, 8979, 5805, 7157, 4196, 4735, 8857, 6601, 5750, + 6339, 3918, 4216, 5571, 4616, 1032, 2845, 3776, 2327, + 9450, 1965, 9946, 4465, 522, 9473, 5311, 9337, 4462, + 7078, 3494, 8206, 8425, 4248, 4611, 5953, 9335, 1844, + 8836, 4504, 5638, 7991, 332, 1584, 6745, 8345, 6272, + 8083, 6637, 7130, 8252, 1721, 1243, 1815, 8830, 3503, + 2165, 3040, 4401, 4947, 4350, 184, 4809, 7214, 1106, + 7456, 1433, 7277, 9911, 5801, 5683, 8320, 5474, 5269, + 4773, 2653, 5827, 6974, 2857, 7759, 7430, 7268, 2601, + 5394, 3148, 2404, 3087, 3002, 9373, 1521, 2161, 4611, + 8803, 151, 8213, 794, 1896, 9704, 9680, 1991, 6606, + 9066, 6483, 3050, 2396, 2478, 8644, 3992, 5127, 7375, + 9509, 2770, 7517, 3441, 8934, 3527, 3120, 8245, 3009, + 5028, 8665, 5585, 1615, 1348, 1997, 3092, 4901, 2240, + 2729, 5055, 9816, 8518, 6804, 2106, 2579, 2789, 5274, + 3414, 2765, 69, 5826, 1547, 9154, 9491, 77, 9428, + 5635, 7311, 1324, 9223, 6193, 500, 5582, 7469, 4868, + 8702, 8717, 6416, 4327, 994, 3209, 8411, 3081, 4656, + 6539, 6535, 3158, 3299, 2694, 5398, 2282, 819, 1258, + 5437, 8863, 3265, 8313, 9805, 1868, 3266, 6923, 2469, + 6940, 8333, 5961, 9285, 1171, 942, 7588, 3403, 147, + 938, 8591, 2575, 8884, 1578, 7427, 8963, 1628, 1615, + 5433, 2600, 3042, 5548, 5644, 6205, 6912, 2072, 278, + 4434, 1185, 848, 2825, 5403, 4224, 5882, 8129, 4066, + 457, 4125, 6160, 2360, 8281, 3873, 2558, 1746, 6178, + 673, 7395, 3653, 5624, 6198, 8956, 9762, 7818, 3895, + 9089, 8840, 7765, 9101, 1281, 3327, 4922, 7206, 4301, + 6377, 8689, 9716, 7497, 138, 4802, 6828, 1413, 1147, + 5428, 2131, 4545, 5482, 3780, 2412, 6542, 3301, 4457, + 4544, 6247, 6872, 7881, 5604, 8600, 9989, 4287, 6944, + 1696, 2143, 7963, 223, 3845, 5618, 5496, 4895, 1405, + 4589, 4357, 1735, 4892, 6286, 3791, 9809, 2423, 8481, + 8384, 9893, 9266, 5799, 1267, 9514, 9369, 4900, 1723, + 5667, 1311, 8170, 6128, 6274, 7478, 8044, 3520, 8012, + 8282, 9628, 3359, 5473, 7396, 4471, 5089, 1316, 4455, + 5377, 3589, 1907, 689, 3362, 3226, 3212, 9128, 3931, + 7092, 3938, 7099, 196, 5803, 4361, 6702, 9097, 9152, + 3210, 8486, 2335, 3639, 6311, 9682, 1127, 7240, 6077, + 8571, 1022, 6994, 5603, 368, 9701, 7690, 5927, 6899, + 6451]), + values=tensor([8.6823e-01, 8.0838e-01, 3.5925e-01, 3.4659e-01, + 4.4643e-01, 2.6828e-02, 2.5942e-01, 3.9894e-01, + 1.3286e-01, 2.1694e-01, 1.2839e-01, 3.5952e-01, + 4.9645e-01, 1.5584e-01, 8.7688e-01, 3.8371e-01, + 2.2200e-01, 3.6511e-01, 5.3234e-01, 8.5850e-01, + 9.1184e-01, 8.4884e-01, 4.0671e-01, 3.4884e-01, + 5.0292e-01, 9.0699e-01, 7.3125e-01, 9.8946e-01, + 1.1563e-01, 2.8604e-01, 7.8709e-01, 7.1484e-02, + 3.0525e-01, 6.5905e-02, 8.6657e-01, 2.3578e-01, + 2.9228e-02, 6.1915e-01, 9.3652e-01, 6.8170e-01, + 9.2965e-01, 8.9345e-02, 4.9184e-01, 3.2032e-01, + 7.6851e-02, 3.9652e-01, 8.6142e-01, 7.6478e-01, + 1.7582e-01, 4.6963e-02, 1.5046e-01, 8.1986e-01, + 5.4477e-01, 5.7408e-03, 5.1131e-02, 1.5540e-01, + 4.2340e-01, 9.2365e-01, 5.2370e-01, 2.0296e-01, + 7.9550e-01, 2.5466e-01, 3.1406e-01, 8.9008e-01, + 2.8862e-01, 1.5797e-02, 5.0832e-01, 6.4566e-01, + 8.0117e-01, 1.8690e-01, 5.8988e-01, 4.7315e-01, + 8.9811e-01, 3.3312e-01, 4.0122e-01, 2.3738e-01, + 7.5606e-01, 8.9915e-01, 5.0171e-01, 7.5482e-02, + 9.4091e-01, 4.0057e-01, 2.6338e-01, 6.3832e-01, + 1.5187e-01, 1.7096e-01, 4.0816e-01, 3.3366e-01, + 6.6848e-01, 6.8932e-01, 7.0927e-01, 3.7202e-01, + 4.6172e-01, 4.5465e-01, 6.7939e-01, 4.1346e-01, + 8.1922e-01, 2.2881e-01, 7.1333e-01, 5.7779e-01, + 3.4162e-01, 2.2802e-01, 2.0545e-01, 7.7277e-01, + 6.1202e-01, 5.6847e-01, 2.0299e-01, 3.4666e-01, + 5.5315e-01, 2.5050e-01, 8.9606e-01, 9.1408e-01, + 7.5587e-01, 9.4994e-01, 6.5977e-01, 7.6422e-01, + 9.6145e-01, 3.2171e-01, 6.8112e-02, 6.4014e-01, + 3.5231e-01, 3.8169e-01, 1.8803e-01, 2.5984e-01, + 9.0637e-01, 9.2001e-01, 2.8896e-01, 9.9356e-01, + 1.5912e-01, 1.9119e-02, 7.1265e-01, 1.7037e-01, + 4.9549e-01, 6.8698e-01, 2.1239e-01, 2.6894e-01, + 3.2673e-01, 4.4486e-01, 2.2637e-01, 5.3016e-01, + 8.5004e-01, 9.5408e-01, 2.5120e-01, 8.2596e-02, + 5.4658e-01, 6.0069e-01, 6.1749e-01, 5.8495e-01, + 9.3109e-01, 5.6752e-01, 1.4088e-03, 1.2196e-01, + 8.3150e-01, 9.8025e-01, 2.4247e-01, 1.9929e-01, + 3.7037e-01, 6.5461e-01, 9.9157e-01, 3.8166e-01, + 7.0380e-01, 9.1964e-01, 6.6890e-01, 3.7963e-01, + 3.2474e-01, 3.8677e-01, 6.2804e-01, 2.4271e-01, + 9.9426e-01, 4.8920e-01, 6.3728e-01, 4.2849e-01, + 3.7372e-02, 7.5664e-01, 9.8854e-03, 3.0092e-02, + 9.6458e-01, 2.1014e-01, 9.2310e-01, 9.2994e-01, + 9.3477e-01, 3.6325e-01, 2.4954e-01, 1.5830e-01, + 4.7563e-01, 9.2648e-01, 6.2576e-01, 3.6456e-01, + 7.7505e-01, 5.0781e-01, 1.0206e-01, 3.2541e-01, + 4.8536e-01, 1.0986e-01, 1.5449e-01, 1.6609e-03, + 7.3394e-01, 1.2150e-01, 6.5589e-01, 9.4379e-01, + 1.1052e-01, 3.7813e-01, 9.4771e-01, 3.5506e-01, + 1.8937e-01, 5.1782e-01, 6.9255e-01, 7.1767e-01, + 9.8335e-01, 8.5847e-02, 3.8291e-01, 4.4258e-01, + 3.7443e-01, 4.6126e-01, 2.2945e-01, 7.1867e-01, + 3.5091e-01, 7.4181e-01, 7.4380e-01, 1.5635e-01, + 9.4436e-01, 3.8751e-03, 1.7668e-01, 5.3526e-01, + 6.2800e-01, 2.6189e-02, 9.6565e-02, 4.4031e-01, + 6.3705e-01, 1.6700e-01, 3.8897e-01, 9.6611e-01, + 8.3920e-02, 1.7106e-03, 5.6651e-01, 3.3128e-01, + 4.6998e-01, 2.9336e-01, 2.7782e-01, 8.3681e-01, + 5.8036e-02, 1.8754e-01, 3.2847e-01, 2.5426e-01, + 2.1750e-01, 4.3550e-01, 2.0696e-01, 5.9888e-01, + 2.0671e-01, 4.7445e-01, 6.8661e-01, 3.2492e-01, + 7.0769e-01, 8.8945e-01, 9.9788e-02, 4.2536e-01, + 4.6303e-01, 4.1726e-01, 6.2259e-01, 5.2941e-01, + 8.3327e-01, 2.8592e-02, 1.7156e-01, 1.1841e-02, + 2.2064e-03, 9.1177e-01, 4.1595e-01, 7.9336e-01, + 1.6332e-01, 5.4941e-02, 5.1716e-01, 5.8288e-01, + 4.4116e-01, 5.9849e-01, 3.8445e-01, 7.7921e-02, + 5.4880e-01, 9.0920e-01, 4.5499e-01, 8.4591e-01, + 6.8422e-01, 8.8508e-01, 6.7336e-02, 2.8206e-01, + 8.0893e-01, 9.7383e-01, 1.2394e-01, 3.9040e-01, + 9.5451e-02, 8.4088e-01, 1.3274e-01, 9.6648e-01, + 2.1078e-01, 6.6015e-02, 7.6633e-01, 1.8833e-01, + 8.7447e-01, 9.2214e-01, 1.8891e-01, 4.5451e-01, + 5.1975e-01, 4.5763e-01, 7.6429e-01, 8.2877e-01, + 2.9124e-01, 2.2979e-01, 1.8860e-01, 5.0554e-01, + 2.8083e-01, 8.5323e-01, 7.9018e-01, 2.7397e-01, + 6.3370e-01, 3.3655e-01, 4.6997e-01, 2.9299e-01, + 7.5482e-01, 9.8765e-05, 3.0655e-01, 1.3551e-01, + 4.1364e-01, 8.1132e-01, 9.1918e-01, 3.0195e-01, + 4.7015e-01, 3.6947e-02, 9.1369e-01, 1.9491e-01, + 9.9299e-01, 3.0194e-01, 8.0375e-01, 4.1236e-01, + 4.3865e-01, 2.9378e-01, 8.9690e-01, 9.0520e-01, + 2.5893e-01, 3.0380e-03, 6.8688e-01, 2.4212e-01, + 9.0940e-01, 6.5713e-03, 2.7799e-01, 5.3894e-01, + 6.6940e-01, 8.5794e-01, 7.1849e-02, 9.3226e-02, + 2.9387e-01, 1.7970e-01, 4.6350e-01, 8.9238e-01, + 7.8405e-01, 1.2108e-01, 2.1542e-01, 4.1325e-01, + 8.3997e-02, 5.6381e-01, 4.5723e-01, 6.5296e-01, + 4.9396e-01, 7.8710e-02, 2.1202e-01, 5.9709e-02, + 8.5294e-01, 3.2965e-01, 9.0273e-01, 2.4342e-01, + 3.8813e-01, 5.5426e-01, 1.2201e-01, 8.0490e-01, + 5.6135e-01, 9.8410e-01, 8.4153e-01, 3.8538e-01, + 2.7735e-01, 2.5756e-01, 6.7348e-01, 5.4817e-01, + 6.5839e-01, 5.0202e-01, 7.1055e-01, 5.9718e-01, + 5.7839e-02, 8.2246e-01, 8.5368e-01, 1.6287e-01, + 7.6439e-01, 3.1435e-01, 7.8494e-02, 7.5294e-01, + 1.1713e-02, 3.2577e-01, 3.4662e-01, 2.9834e-01, + 3.4892e-02, 7.4952e-01, 6.7346e-01, 5.6097e-02, + 6.5681e-01, 6.2214e-01, 3.0840e-01, 5.4029e-01, + 7.6830e-01, 8.9474e-01, 1.1203e-03, 6.0920e-01, + 3.0628e-02, 1.6018e-01, 9.4952e-01, 2.4136e-02, + 4.6995e-01, 1.7886e-01, 5.6886e-01, 9.3589e-01, + 1.5264e-01, 6.1807e-01, 9.6887e-01, 2.4973e-01, + 8.0473e-01, 6.3057e-01, 7.8667e-01, 1.1876e-01, + 6.4951e-01, 5.2490e-01, 8.4754e-01, 4.2902e-01, + 2.8136e-01, 7.8637e-01, 9.2427e-01, 4.4727e-01, + 6.2224e-01, 7.7349e-01, 7.2505e-01, 2.2371e-01, + 8.9858e-01, 6.5900e-01, 7.5788e-01, 4.4778e-01, + 9.3813e-01, 7.0066e-01, 5.6034e-01, 9.0719e-01, + 4.1993e-01, 2.8675e-01, 5.4777e-02, 6.2620e-01, + 3.5535e-01, 3.8659e-01, 6.8676e-01, 7.2143e-01, + 9.7097e-01, 3.5291e-01, 8.1090e-01, 9.3145e-02, + 8.0229e-02, 4.7319e-01, 6.0536e-01, 8.7294e-01, + 6.9271e-02, 7.7699e-01, 4.1312e-01, 7.6671e-01, + 4.3717e-01, 3.1144e-01, 4.3115e-01, 2.0570e-01, + 4.6982e-01, 9.9040e-01, 7.7410e-01, 8.1383e-01, + 6.9968e-01, 7.5606e-01, 8.4827e-01, 7.4931e-01, + 9.2630e-01, 3.0011e-02, 5.6594e-01, 2.4683e-01, + 7.5008e-02, 1.5899e-01, 3.8436e-01, 1.1998e-01, + 1.5120e-01, 7.4443e-01, 7.1375e-01, 4.8409e-01, + 1.6347e-01, 3.5629e-01, 4.7552e-01, 1.2238e-01, + 9.4583e-01, 9.4965e-02, 4.5696e-01, 4.9948e-01, + 8.4516e-01, 6.9238e-01, 4.1051e-01, 7.6950e-01, + 6.6738e-01, 1.2959e-01, 5.9358e-01, 2.5385e-01, + 8.7385e-01, 2.4892e-01, 5.5343e-01, 3.2831e-02, + 1.3287e-01, 3.5450e-01, 2.4312e-01, 9.6476e-01, + 3.6688e-01, 1.1936e-01, 8.6777e-01, 3.6081e-01, + 1.9404e-01, 1.4007e-01, 7.2515e-01, 1.6285e-01, + 6.9766e-01, 4.9143e-01, 4.6157e-01, 3.6827e-02, + 8.6476e-01, 8.3028e-01, 6.2443e-01, 4.9638e-01, + 6.6335e-01, 2.1241e-01, 5.5259e-01, 2.8923e-01, + 9.8500e-01, 7.6373e-02, 9.0094e-01, 4.4490e-01, + 9.0619e-02, 7.1520e-01, 1.9875e-01, 3.5128e-01, + 2.2956e-02, 6.1218e-01, 8.5308e-03, 9.0570e-01, + 3.3745e-01, 7.6847e-01, 4.7549e-01, 8.3213e-01, + 7.8294e-02, 5.0841e-01, 9.5382e-01, 1.9742e-01, + 8.2324e-02, 2.2216e-01, 1.9371e-01, 1.2461e-01, + 4.0279e-01, 9.6868e-01, 5.3609e-01, 8.9643e-02, + 5.0920e-01, 5.3356e-01, 1.0316e-01, 8.9625e-01, + 9.4452e-01, 2.1535e-01, 8.7559e-01, 9.9424e-01, + 7.8689e-01, 7.3082e-01, 9.5592e-01, 1.1762e-01, + 7.2445e-01, 8.9376e-01, 3.0247e-01, 9.0417e-01, + 9.9781e-01, 6.4226e-01, 6.5839e-01, 4.3907e-01, + 3.5783e-01, 6.7715e-01, 8.0660e-01, 4.4092e-01, + 9.6004e-01, 3.7276e-01, 2.5706e-01, 9.0943e-01, + 3.8231e-01, 8.7580e-01, 2.8369e-01, 6.6827e-01, + 2.6682e-01, 9.7530e-01, 2.5133e-01, 8.0981e-01, + 2.0092e-01, 9.3491e-01, 2.6618e-01, 1.3305e-01, + 1.6010e-01, 8.4942e-01, 3.7032e-01, 4.8397e-01, + 4.4482e-01, 8.0967e-01, 7.8408e-01, 5.6654e-01, + 2.7509e-02, 7.4669e-01, 3.9983e-01, 6.4974e-01, + 8.3446e-01, 9.5686e-01, 4.1354e-01, 9.5231e-01, + 5.0327e-01, 1.1332e-01, 4.3525e-01, 9.4171e-01, + 5.4281e-01, 7.7540e-01, 8.3704e-01, 3.5103e-01, + 4.6514e-01, 7.7712e-01, 5.8921e-01, 6.4485e-01, + 3.2470e-03, 8.4354e-01, 9.5479e-01, 9.7374e-01, + 9.5765e-01, 7.7771e-01, 1.8261e-01, 9.7368e-01, + 9.6221e-01, 6.7167e-01, 8.6163e-02, 7.7590e-01, + 1.6935e-01, 5.3126e-01, 1.0190e-01, 1.1671e-01, + 2.2587e-01, 7.9488e-01, 3.6789e-01, 2.3882e-01, + 7.9196e-01, 7.7288e-01, 6.8921e-01, 4.0328e-01, + 7.7530e-01, 5.4991e-01, 7.7053e-01, 7.7949e-02, + 9.2810e-01, 3.6076e-01, 2.8750e-01, 4.1267e-01, + 1.2102e-01, 3.1089e-01, 3.8276e-01, 5.0000e-01, + 5.8007e-01, 4.5876e-01, 1.0952e-01, 5.1143e-01, + 9.5793e-01, 2.6761e-01, 4.0401e-01, 7.0621e-02, + 6.7728e-01, 7.4546e-01, 7.4395e-01, 8.1820e-02, + 3.6584e-01, 4.8464e-01, 9.5843e-01, 8.3990e-01, + 5.3420e-01, 2.7207e-01, 4.8800e-01, 3.4948e-01, + 8.9431e-01, 6.4763e-01, 6.8858e-01, 9.9632e-01, + 3.5685e-02, 2.6762e-01, 7.3524e-01, 9.7758e-01, + 4.0032e-01, 1.1419e-01, 7.1652e-01, 2.8270e-01, + 7.5806e-01, 6.7736e-01, 2.8778e-01, 6.7329e-01, + 2.1180e-01, 1.7115e-01, 4.4945e-01, 8.4053e-01, + 4.7580e-01, 2.1458e-01, 8.4256e-01, 5.0902e-01, + 9.7737e-01, 6.3393e-01, 1.3645e-01, 1.1261e-01, + 7.1418e-02, 2.4714e-01, 3.3308e-01, 4.7138e-01, + 7.2989e-02, 3.8588e-01, 4.2214e-01, 2.5460e-01, + 2.2665e-01, 5.5355e-01, 8.1486e-01, 3.6381e-01, + 7.2596e-01, 4.1389e-01, 7.4296e-01, 4.1512e-01, + 7.5823e-01, 2.2691e-03, 6.8333e-01, 9.3080e-01, + 7.4769e-01, 1.0677e-02, 3.6570e-01, 6.1797e-01, + 8.9560e-01, 7.4639e-01, 5.6766e-01, 4.1155e-01, + 3.0136e-01, 9.4942e-01, 1.6224e-01, 6.5030e-01, + 8.3076e-01, 9.4488e-01, 4.5760e-01, 6.2092e-01, + 7.2436e-01, 4.6680e-01, 2.0022e-01, 1.8419e-01, + 7.2754e-01, 6.9249e-01, 3.4890e-01, 2.1553e-01, + 7.6362e-01, 4.9520e-01, 8.5841e-01, 8.4086e-01, + 6.6675e-01, 6.1226e-01, 8.2278e-01, 1.3521e-01, + 9.3988e-01, 2.4260e-01, 6.8795e-01, 3.4746e-02, + 1.1162e-01, 4.0412e-01, 3.6938e-01, 6.8413e-01, + 1.2299e-01, 9.6572e-01, 9.4871e-01, 9.4283e-01, + 4.0019e-01, 1.0247e-01, 2.9433e-01, 6.1932e-01, + 1.5196e-01, 2.6071e-01, 5.3167e-01, 9.0583e-02, + 4.4687e-01, 5.2559e-01, 6.8484e-01, 9.7185e-01, + 8.2652e-01, 3.5938e-01, 9.1009e-01, 4.1691e-01, + 6.1293e-01, 6.5602e-01, 9.0801e-01, 2.8762e-01, + 8.3211e-02, 9.5942e-01, 5.9511e-01, 3.6537e-01, + 1.0256e-01, 9.0717e-01, 6.8129e-01, 4.9752e-01, + 1.1050e-01, 8.9068e-01, 3.5172e-01, 3.9319e-01, + 6.3711e-02, 8.1601e-01, 2.6251e-01, 8.6583e-01, + 7.0390e-01, 3.8546e-01, 8.4503e-01, 6.5384e-01, + 5.6251e-01, 3.5405e-01, 6.5455e-01, 5.1897e-02, + 5.7664e-03, 9.7974e-02, 8.1947e-01, 6.5030e-01, + 7.6138e-01, 3.6503e-01, 8.0648e-01, 6.5551e-02, + 1.5342e-01, 1.8734e-01, 9.1789e-01, 3.9419e-01, + 1.6961e-01, 6.4369e-01, 7.9296e-01, 8.9594e-01, + 4.6987e-01, 2.1132e-01, 4.1653e-01, 2.2758e-01, + 2.8067e-01, 3.1274e-01, 6.9985e-01, 2.5174e-01, + 8.7083e-01, 1.8551e-01, 1.8717e-01, 7.6623e-01, + 1.0544e-01, 4.9446e-01, 7.2296e-01, 7.2291e-01, + 5.0196e-01, 6.2705e-01, 9.2455e-01, 9.9366e-01, + 6.4828e-01, 7.0828e-01, 4.5896e-01, 1.2551e-01, + 4.1722e-02, 4.4457e-01, 9.1062e-01, 9.8465e-01, + 9.8026e-02, 8.3747e-03, 6.8958e-01, 8.0354e-01, + 5.0333e-01, 6.9085e-01, 2.7751e-01, 9.2407e-01, + 6.6256e-01, 5.1227e-01, 4.4411e-01, 2.0151e-01, + 7.1427e-01, 8.6322e-01, 2.6612e-01, 3.8776e-01, + 7.6834e-02, 2.0098e-01, 4.9222e-01, 2.7178e-01, + 2.9289e-01, 1.1752e-01, 6.5632e-01, 6.1338e-01, + 1.4060e-01, 3.3877e-03, 6.9068e-02, 4.7074e-01, + 1.1877e-01, 8.1229e-01, 5.9460e-01, 6.5360e-01, + 4.4669e-03, 6.5549e-01, 2.7101e-01, 1.1536e-01, + 7.9070e-01, 7.4375e-01, 1.5866e-01, 4.6603e-01, + 3.9363e-01, 1.9591e-01, 2.7552e-01, 9.7274e-01, + 2.6104e-01, 8.4903e-01, 4.4598e-01, 1.6572e-01, + 9.3086e-01, 8.2085e-01, 3.4182e-01, 8.7075e-01, + 4.8688e-01, 4.0946e-01, 2.5575e-01, 4.9407e-01, + 4.0802e-01, 4.7040e-01, 2.5398e-01, 6.5177e-01, + 9.9541e-01, 6.2947e-01, 6.2439e-01, 8.6083e-01, + 3.4055e-01, 7.6201e-02, 7.2483e-01, 7.2444e-02, + 3.8894e-01, 6.2772e-01, 5.1917e-01, 1.8216e-01, + 3.7472e-01, 3.8610e-01, 9.6840e-01, 6.8962e-01, + 5.4784e-01, 1.1673e-01, 9.3792e-01, 7.3859e-02, + 5.7796e-01, 8.5720e-01, 1.7075e-01, 4.0811e-01, + 9.9813e-01, 5.0100e-01, 8.1489e-01, 1.9691e-01, + 4.1673e-01, 3.8748e-01, 9.7778e-01, 6.7211e-01, + 8.8575e-01, 5.1648e-01, 3.2312e-01, 9.0133e-02, + 2.8324e-01, 5.8075e-01, 6.2420e-01, 8.0445e-01, + 1.2213e-01, 7.6901e-01, 2.9294e-01, 2.9660e-01, + 3.9362e-01, 1.6091e-02, 6.1394e-01, 4.1463e-01, + 5.4865e-02, 5.8005e-01, 8.2695e-01, 3.8065e-01, + 6.8066e-01, 6.0970e-01, 1.8976e-01, 9.5903e-01, + 2.9293e-01, 7.5231e-01, 3.9203e-01, 8.4501e-01, + 4.7513e-01, 3.8588e-01, 2.3397e-01, 7.8860e-01, + 3.8186e-01, 6.9218e-01, 9.5940e-02, 9.6027e-01, + 7.1292e-01, 6.2645e-01, 5.7711e-01, 5.1942e-01, + 2.0481e-01, 3.1942e-01, 7.5560e-01, 7.0764e-01]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.5451, 0.9325, 0.7234, ..., 0.9278, 0.0652, 0.2905]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 5.5597083568573 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '352057', '-ss', '10000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.363084554672241} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), + col_indices=tensor([5193, 2755, 2619, 8774, 5321, 6802, 9831, 2285, 7852, + 3999, 9956, 6338, 4303, 3557, 3117, 6782, 5048, 7592, + 3942, 736, 4361, 9482, 6490, 3337, 2778, 8169, 2811, + 209, 2573, 8564, 5262, 8591, 5293, 8927, 3544, 51, + 2528, 4507, 4161, 5578, 9752, 6784, 2306, 938, 2449, + 5328, 718, 7617, 6097, 864, 5625, 9977, 6328, 2206, + 1192, 3645, 3508, 3808, 3742, 5641, 1622, 4352, 9099, + 7155, 1778, 6225, 7403, 1744, 1586, 3123, 5186, 9952, + 4753, 6792, 5057, 2040, 1903, 4935, 4855, 6732, 8949, + 5033, 9687, 8172, 2973, 4285, 3263, 8170, 5631, 2665, + 2030, 1676, 7190, 9261, 1374, 5085, 6991, 7291, 5365, + 8790, 2603, 5128, 4726, 7347, 7445, 5508, 2405, 6862, + 927, 1040, 3233, 8284, 1163, 7143, 7742, 2101, 6504, + 7643, 3848, 7449, 288, 874, 4468, 4224, 1484, 7263, + 4340, 7167, 998, 8159, 8311, 1777, 3799, 3049, 6508, + 9603, 4316, 5196, 2183, 4727, 9055, 4438, 766, 1704, + 2955, 7889, 223, 603, 271, 3214, 3848, 7365, 3352, + 185, 1543, 1100, 7205, 5656, 8224, 7006, 460, 1632, + 5863, 1172, 5235, 1995, 4111, 11, 2411, 7389, 5139, + 7269, 8117, 8911, 1884, 4444, 8936, 4422, 7036, 5702, + 4252, 2130, 6704, 3313, 4857, 9399, 3363, 3509, 5493, + 2340, 4706, 9247, 8227, 7090, 7116, 226, 9056, 6722, + 8438, 5065, 7307, 1220, 7194, 705, 7096, 4679, 547, + 3971, 7573, 5105, 7215, 5944, 5393, 6667, 5458, 8429, + 275, 7814, 1025, 7237, 1604, 2929, 6126, 9253, 4344, + 4508, 267, 2777, 6034, 8761, 1834, 7748, 2674, 1367, + 9944, 6376, 1264, 5363, 2708, 3617, 3700, 5437, 4095, + 3959, 9704, 92, 9660, 9391, 3573, 2946, 813, 5316, + 3935, 7890, 4581, 6296, 7152, 6217, 3415, 6533, 2715, + 1688, 5201, 6175, 7050, 3595, 3662, 6840, 9726, 6036, + 7619, 5416, 6590, 7916, 4522, 6958, 8725, 6668, 2653, + 2628, 2565, 1650, 5630, 3465, 1488, 7827, 8886, 5742, + 4749, 648, 3505, 4220, 7748, 967, 839, 4075, 6270, + 6161, 5175, 1827, 7920, 1324, 2536, 3769, 8225, 5565, + 6328, 4306, 5393, 4486, 1932, 3230, 5293, 7471, 9723, + 8758, 373, 1054, 366, 7030, 2680, 6679, 3052, 3000, + 3826, 7135, 7573, 8624, 2094, 8253, 1679, 9255, 7782, + 2323, 4348, 3499, 8680, 5646, 838, 8871, 3174, 9682, + 8132, 4297, 756, 3636, 7385, 3221, 5036, 4653, 2075, + 2125, 9346, 9627, 6630, 4303, 6472, 8582, 3706, 7450, + 8033, 6481, 218, 2651, 3223, 6130, 1629, 8564, 9132, + 2060, 5147, 6339, 299, 2555, 4613, 3564, 8344, 6671, + 5893, 2906, 3816, 918, 1043, 2354, 6191, 6111, 6428, + 1535, 6205, 4349, 2774, 3014, 6169, 54, 7709, 3177, + 7317, 1857, 4166, 1657, 6193, 5261, 1312, 2305, 7110, + 6570, 2833, 5781, 7269, 8843, 6989, 8890, 1174, 6005, + 811, 1391, 1098, 636, 6355, 1696, 8042, 3865, 3213, + 262, 9122, 2345, 1147, 4236, 7137, 4556, 3780, 9838, + 7492, 7111, 529, 9470, 4720, 4229, 692, 9529, 7086, + 2082, 250, 1543, 289, 7190, 7172, 1560, 4019, 8975, + 1830, 1510, 9707, 2846, 3333, 9679, 8581, 2223, 2379, + 2778, 2110, 6343, 8400, 8819, 9110, 4987, 5901, 207, + 5848, 9965, 6853, 3891, 3084, 4227, 9187, 8352, 2804, + 244, 2773, 5879, 2163, 4413, 2823, 6063, 6812, 7469, + 3631, 6784, 6150, 9291, 1434, 4867, 7937, 8507, 4925, + 9859, 2433, 5664, 7328, 3053, 6754, 2086, 6555, 7886, + 1830, 8651, 582, 9396, 688, 2898, 4397, 1085, 4212, + 9690, 8597, 1017, 8482, 663, 1595, 2722, 495, 807, + 4378, 2814, 7029, 3658, 4499, 8945, 9032, 813, 7181, + 1952, 2910, 2796, 8972, 7959, 3329, 6355, 7208, 1762, + 701, 6311, 4802, 4644, 6623, 713, 2064, 6942, 593, + 2218, 7841, 6420, 5622, 2540, 1104, 8910, 7387, 7602, + 3882, 8077, 285, 6982, 278, 3095, 1513, 9909, 9182, + 3213, 7417, 6429, 2946, 4607, 9497, 8159, 9486, 5213, + 4740, 9629, 1996, 7823, 9038, 6968, 4206, 9366, 6179, + 4636, 7878, 248, 7209, 1504, 8559, 7776, 3701, 7946, + 1205, 4823, 3452, 2388, 2673, 5380, 9364, 1709, 3782, + 4596, 3539, 3609, 5046, 6692, 2716, 7354, 3756, 2031, + 3021, 2369, 8239, 4900, 649, 2495, 2736, 9221, 9307, + 3110, 2444, 5681, 9962, 658, 5969, 2802, 2529, 4596, + 9750, 5051, 7304, 1985, 1639, 8039, 31, 3676, 2155, + 3903, 9915, 8323, 2043, 9950, 4176, 8037, 391, 3433, + 7851, 4275, 2610, 5720, 6748, 793, 8339, 3679, 3153, + 2125, 5476, 6422, 6927, 8754, 7725, 2141, 1755, 7320, + 2935, 3107, 4817, 3917, 3837, 4030, 6563, 2811, 8883, + 8408, 3509, 6635, 4861, 2432, 7437, 506, 1386, 8922, + 5243, 9151, 2497, 8938, 6978, 2375, 7816, 1133, 9440, + 4511, 353, 8857, 951, 8442, 8719, 9229, 5886, 2784, + 867, 9558, 1353, 1986, 6386, 2976, 6556, 6466, 4952, + 8760, 6705, 3986, 248, 4939, 8572, 8033, 1694, 5483, + 1478, 924, 5915, 1868, 8180, 5092, 7794, 9104, 6732, + 6946, 3391, 3981, 8719, 2292, 9299, 7694, 4217, 8661, + 1105, 5555, 6318, 9071, 5775, 6208, 7153, 6725, 4834, + 8341, 5231, 635, 6491, 6914, 4534, 3780, 1612, 7491, + 9904, 5561, 4379, 7823, 6571, 1041, 5191, 1844, 8301, + 9882, 2613, 3531, 5574, 9708, 5720, 7268, 2236, 2552, + 1791, 6530, 7528, 9653, 5478, 49, 5543, 4607, 4929, + 6779, 4288, 4894, 5953, 9334, 2875, 8996, 4150, 7356, + 1186, 3993, 4505, 9077, 1116, 8449, 5955, 4281, 1244, + 6319, 2334, 7523, 1420, 9819, 1049, 7647, 3112, 8991, + 9729, 3869, 2710, 8813, 9524, 6132, 4591, 1916, 8391, + 5927, 2660, 5428, 5936, 3389, 323, 4780, 5804, 8256, + 6027, 8524, 109, 2252, 2388, 9629, 7006, 6247, 3274, + 8307, 2641, 3198, 7675, 4111, 618, 7105, 3170, 4299, + 5160, 4551, 5987, 4864, 4008, 4510, 1411, 474, 4094, + 7522, 9644, 8491, 401, 8653, 2482, 7935, 6580, 4043, + 1108, 2017, 2207, 9655, 1829, 6993, 5007, 4733, 7370, + 6766, 9337, 7507, 1648, 3705, 2374, 7193, 3309, 2758, + 3114, 8424, 2591, 2146, 3234, 9985, 5568, 712, 7456, + 6725, 1082, 7071, 4477, 2084, 1012, 393, 2646, 9693, + 4629, 6430, 4668, 7348, 4987, 5816, 4309, 6189, 5619, + 6356, 4170, 4871, 4240, 4621, 5427, 3415, 7229, 2801, + 5667, 2772, 2115, 9639, 6777, 5628, 5474, 6929, 7261, + 1128, 7763, 8975, 1875, 6229, 5956, 3894, 8274, 1400, + 3005, 7369, 4914, 2852, 2199, 4664, 5187, 6701, 5141, + 2836, 7341, 9140, 3613, 4273, 2795, 2402, 4117, 7860, + 2778, 346, 8610, 6929, 6113, 1593, 763, 2525, 8935, + 2101, 2835, 1362, 8394, 6460, 4773, 9741, 8111, 1860, + 3451, 7908, 7916, 6010, 8207, 8543, 7760, 8890, 7266, + 1155, 6223, 1146, 9602, 3885, 7243, 31, 7775, 3205, + 5848, 6242, 6442, 2055, 3787, 710, 1978, 8938, 7216, + 5945]), + values=tensor([5.5292e-01, 5.5339e-02, 4.5108e-01, 1.0570e-01, + 3.4688e-01, 1.9198e-01, 9.3821e-01, 9.8353e-01, + 8.8756e-01, 3.1342e-03, 5.5310e-01, 3.0156e-01, + 9.7159e-01, 5.4507e-01, 2.1473e-02, 2.0341e-02, + 8.7216e-01, 9.1887e-01, 3.0364e-02, 9.3932e-01, + 8.2611e-01, 6.7013e-01, 8.8961e-01, 1.2123e-01, + 1.9534e-01, 2.4678e-01, 1.1772e-01, 2.7037e-01, + 3.5509e-03, 2.8075e-01, 4.0535e-02, 6.3427e-01, + 3.9017e-01, 6.1389e-01, 1.0664e-01, 3.2671e-01, + 1.1828e-01, 5.4389e-01, 3.2263e-01, 9.1144e-01, + 7.3488e-02, 2.3373e-02, 9.0950e-01, 8.5203e-01, + 3.4924e-01, 7.3816e-01, 7.5268e-01, 3.6300e-02, + 2.2669e-01, 3.1511e-01, 3.8005e-01, 2.4819e-01, + 3.8328e-01, 5.0635e-01, 5.6645e-01, 1.2111e-01, + 7.6746e-01, 1.4418e-02, 7.3921e-02, 2.7487e-01, + 5.2504e-01, 4.9590e-01, 6.9415e-01, 5.9502e-01, + 1.8332e-01, 9.2079e-01, 7.3309e-01, 9.5422e-01, + 9.8358e-01, 2.7596e-01, 4.1096e-01, 6.2501e-01, + 5.8528e-01, 1.6744e-01, 3.0802e-02, 9.5302e-01, + 5.9898e-01, 2.6224e-01, 4.3792e-01, 5.1201e-01, + 2.9177e-02, 9.5366e-01, 1.2222e-02, 9.8630e-01, + 9.9589e-01, 8.9232e-01, 6.2139e-02, 7.2973e-01, + 1.7859e-01, 5.8169e-02, 8.3459e-01, 8.2388e-01, + 6.6385e-01, 6.9275e-01, 5.1824e-01, 7.1741e-01, + 6.6236e-01, 1.0698e-01, 8.2657e-01, 4.2895e-01, + 3.6838e-01, 2.7626e-01, 2.9440e-01, 9.3249e-01, + 2.8409e-01, 8.1546e-01, 4.8077e-01, 1.7037e-01, + 1.5884e-01, 7.7664e-01, 1.5836e-02, 3.3557e-01, + 2.0902e-01, 6.0679e-01, 1.5751e-01, 9.8621e-01, + 3.9991e-01, 6.0917e-01, 8.0877e-01, 7.1137e-01, + 2.9923e-01, 9.2558e-01, 3.8125e-01, 6.0657e-01, + 2.9772e-01, 7.1449e-01, 2.2410e-01, 3.3343e-01, + 6.7991e-01, 9.2217e-02, 7.2563e-01, 6.5640e-02, + 1.5008e-02, 2.3401e-01, 3.9745e-01, 1.7414e-02, + 6.1670e-01, 6.7045e-02, 8.9257e-01, 3.1882e-01, + 6.5174e-02, 9.5557e-01, 4.6108e-01, 5.3639e-01, + 2.2493e-01, 8.5831e-01, 3.6582e-01, 2.4755e-01, + 8.9200e-01, 1.4938e-01, 2.5340e-01, 2.1128e-01, + 7.9481e-01, 8.2922e-01, 4.6592e-01, 9.4400e-01, + 8.3401e-01, 9.2113e-01, 7.5652e-01, 3.0972e-01, + 4.2157e-01, 2.9254e-01, 4.9221e-01, 5.8905e-01, + 3.8325e-01, 2.2484e-01, 6.9358e-01, 6.4123e-01, + 6.7816e-01, 6.3084e-01, 9.8574e-01, 4.4427e-01, + 7.1513e-01, 3.9867e-01, 4.3878e-01, 1.9672e-01, + 5.0263e-03, 6.7740e-01, 2.5681e-01, 9.7933e-01, + 4.0394e-01, 4.1879e-02, 3.9553e-01, 7.8503e-01, + 7.4689e-01, 4.9247e-01, 4.1191e-01, 9.9678e-01, + 2.0022e-01, 6.5069e-01, 7.4428e-01, 9.0778e-01, + 5.1895e-01, 8.0675e-01, 8.3865e-01, 6.2747e-01, + 7.3217e-02, 4.9040e-01, 5.2601e-01, 8.7024e-01, + 6.0410e-01, 8.8149e-01, 8.2484e-01, 1.5845e-01, + 4.6403e-01, 8.9306e-01, 6.1336e-01, 8.0234e-01, + 7.9119e-01, 2.0744e-01, 8.8190e-01, 5.9520e-01, + 6.5300e-01, 6.2913e-01, 6.1054e-01, 9.8544e-01, + 4.4616e-01, 9.2657e-01, 4.7958e-01, 1.6243e-01, + 9.3923e-01, 2.8605e-01, 8.8992e-02, 9.4577e-01, + 3.8793e-01, 8.8493e-01, 9.4484e-01, 1.8553e-01, + 6.6811e-02, 2.8498e-01, 7.3602e-01, 5.3860e-01, + 6.3923e-01, 8.8471e-01, 8.9298e-01, 2.3408e-01, + 6.0315e-01, 7.1811e-01, 6.8929e-01, 9.2628e-01, + 3.3735e-01, 9.4330e-01, 2.9212e-01, 1.3474e-01, + 2.4841e-01, 2.9413e-01, 3.0786e-01, 4.4721e-01, + 6.4270e-01, 1.3463e-01, 7.4701e-01, 7.0796e-01, + 7.5288e-01, 4.6654e-01, 5.7533e-01, 2.5732e-01, + 9.4048e-01, 4.2449e-01, 2.7752e-01, 5.3717e-01, + 5.8754e-01, 2.2088e-01, 6.9696e-01, 3.0511e-01, + 5.4146e-01, 6.6670e-01, 1.9863e-01, 8.7473e-01, + 8.3417e-01, 1.7325e-03, 1.1431e-01, 6.6423e-01, + 1.7200e-01, 7.5624e-01, 8.6680e-01, 1.4888e-01, + 5.2062e-01, 2.3949e-01, 4.6781e-01, 8.4834e-01, + 8.3041e-01, 8.4708e-01, 5.0573e-01, 2.6783e-01, + 7.7273e-01, 6.9543e-02, 9.7146e-01, 5.8041e-01, + 8.2714e-02, 7.4425e-01, 7.8576e-01, 7.7661e-04, + 8.3968e-01, 4.5854e-02, 4.3457e-01, 7.8975e-01, + 9.9698e-01, 4.6019e-01, 9.2919e-01, 3.1968e-01, + 9.3109e-01, 9.2620e-01, 9.8663e-01, 5.4487e-01, + 9.8012e-01, 5.4934e-01, 1.7813e-02, 4.7736e-01, + 3.4974e-01, 5.3126e-01, 4.8493e-01, 1.0505e-01, + 2.6504e-01, 5.5712e-01, 9.8635e-01, 6.4827e-01, + 7.6120e-01, 4.2505e-01, 1.6706e-01, 6.8099e-01, + 9.9077e-01, 4.1107e-01, 4.8898e-01, 2.5076e-01, + 3.4645e-01, 3.1250e-01, 6.2990e-01, 6.5617e-02, + 2.3404e-01, 5.0847e-01, 6.3919e-01, 5.7855e-01, + 7.8187e-01, 8.5142e-01, 6.5013e-01, 9.1473e-01, + 3.5578e-01, 6.6380e-01, 4.7582e-01, 8.5910e-01, + 1.0565e-01, 6.2514e-01, 3.8345e-01, 1.5356e-01, + 9.9912e-02, 8.8363e-01, 1.7544e-01, 1.4346e-01, + 3.4208e-01, 6.1732e-01, 8.8918e-01, 2.9956e-01, + 9.0580e-01, 1.2071e-01, 7.4620e-01, 2.8879e-02, + 6.9099e-01, 3.9454e-01, 8.8898e-01, 8.2851e-01, + 4.6931e-01, 2.9252e-01, 8.3960e-01, 4.1263e-01, + 8.7211e-01, 9.0472e-01, 3.7009e-01, 6.8359e-01, + 9.2110e-01, 4.3054e-01, 5.9179e-01, 8.2038e-01, + 8.5760e-01, 4.2085e-01, 4.0021e-01, 6.0209e-01, + 7.9150e-01, 6.8003e-01, 2.9459e-01, 5.6288e-01, + 9.1978e-02, 2.5679e-01, 8.9665e-01, 3.8079e-01, + 4.8515e-01, 6.6981e-01, 6.6846e-01, 9.7820e-01, + 8.7582e-01, 8.0038e-01, 2.7188e-01, 4.8928e-01, + 5.2560e-01, 9.7220e-01, 3.8673e-01, 9.6365e-01, + 5.5796e-01, 3.5920e-01, 8.7943e-01, 8.6910e-01, + 6.1172e-01, 3.1763e-01, 4.6344e-01, 6.8853e-01, + 9.4884e-02, 8.3766e-01, 2.7469e-01, 1.5268e-01, + 7.2314e-01, 4.7604e-01, 4.7881e-02, 6.2107e-02, + 3.1626e-01, 2.4833e-01, 4.2443e-01, 5.1570e-01, + 7.9326e-01, 9.9465e-01, 8.7703e-01, 9.3805e-01, + 3.8399e-01, 7.9271e-01, 6.6890e-01, 5.1078e-01, + 6.5738e-01, 7.0870e-01, 6.3946e-02, 8.2076e-01, + 5.8328e-01, 9.7339e-01, 1.1501e-01, 1.8801e-01, + 5.1878e-01, 1.6410e-01, 2.5658e-02, 7.4582e-01, + 7.1671e-01, 3.2597e-01, 4.7647e-01, 3.0071e-01, + 2.1942e-01, 3.5837e-01, 2.1099e-01, 7.2833e-01, + 4.5191e-01, 8.3061e-01, 5.3493e-01, 4.6170e-01, + 7.3391e-01, 2.8119e-01, 7.3837e-01, 2.1069e-01, + 6.1466e-01, 3.1738e-01, 6.6976e-01, 4.3234e-01, + 5.3425e-01, 3.1649e-01, 6.9488e-01, 8.3116e-02, + 9.6527e-01, 7.2983e-01, 7.2952e-01, 5.7027e-01, + 5.7248e-01, 9.8809e-01, 5.6845e-01, 9.9233e-01, + 4.3437e-01, 9.1749e-01, 3.0435e-01, 6.1630e-01, + 5.6718e-01, 7.6623e-01, 7.3360e-01, 5.7167e-01, + 3.1448e-01, 2.8390e-01, 3.4381e-01, 3.6832e-01, + 9.5748e-01, 7.9723e-01, 9.3584e-02, 4.2134e-01, + 4.6396e-01, 3.4351e-01, 5.2272e-01, 7.3597e-01, + 4.0274e-01, 8.4091e-01, 1.1289e-01, 7.4283e-01, + 7.3034e-02, 8.8066e-01, 1.0006e-01, 6.3450e-01, + 9.2205e-02, 9.6993e-01, 2.0751e-01, 2.1244e-01, + 5.1143e-02, 3.6481e-01, 6.4697e-01, 2.0789e-01, + 9.5215e-01, 5.3364e-01, 9.2672e-01, 6.9821e-01, + 6.9041e-01, 8.3878e-01, 4.1297e-01, 1.8957e-01, + 2.0550e-01, 3.0226e-02, 6.2550e-01, 7.4896e-01, + 3.7984e-01, 3.6494e-01, 2.2888e-01, 3.1974e-02, + 5.6757e-01, 7.7597e-01, 8.9251e-01, 8.0742e-01, + 5.7001e-01, 6.4631e-01, 6.6361e-01, 9.5532e-01, + 9.6697e-01, 4.2484e-01, 6.2009e-01, 2.2163e-01, + 7.1692e-01, 6.5086e-01, 1.8669e-01, 9.3201e-02, + 8.4567e-01, 7.9722e-01, 5.9999e-01, 4.0199e-01, + 4.2838e-01, 9.1398e-01, 3.5932e-01, 1.2304e-01, + 3.8586e-01, 5.5759e-01, 8.5294e-01, 5.3330e-01, + 6.2723e-01, 9.8234e-01, 1.6861e-02, 5.0691e-01, + 6.1734e-02, 4.7853e-01, 5.6685e-01, 7.9571e-01, + 9.0991e-01, 9.2185e-01, 4.1263e-01, 7.1798e-01, + 6.7303e-01, 8.7499e-01, 6.2012e-01, 3.5399e-01, + 7.6377e-01, 3.3514e-01, 8.4335e-01, 8.8705e-01, + 6.8818e-01, 2.3811e-01, 9.6707e-01, 3.9398e-01, + 2.6073e-01, 8.3096e-01, 1.7007e-01, 3.0433e-01, + 4.0134e-01, 1.3059e-01, 2.4787e-01, 7.8166e-01, + 4.7521e-01, 6.8201e-01, 2.1001e-01, 7.1415e-01, + 3.2262e-01, 3.2235e-01, 4.7378e-01, 8.4827e-01, + 8.4848e-01, 5.2317e-02, 1.5766e-01, 2.2014e-03, + 1.7840e-01, 7.8631e-01, 5.2767e-01, 2.6045e-01, + 8.8588e-01, 4.0016e-01, 5.9530e-01, 2.4974e-01, + 6.6462e-01, 4.7206e-01, 1.3225e-01, 4.5137e-01, + 5.3570e-01, 2.8817e-01, 2.6505e-01, 4.1502e-01, + 6.3949e-03, 4.5409e-01, 5.8227e-01, 3.9940e-01, + 7.6494e-01, 8.8617e-01, 6.5990e-01, 3.0427e-01, + 1.9149e-01, 3.3059e-01, 1.1330e-01, 2.3008e-02, + 7.4098e-01, 2.5809e-01, 3.4906e-01, 6.0979e-01, + 5.8091e-01, 2.5328e-01, 6.2555e-01, 1.6286e-01, + 2.8329e-01, 2.2440e-02, 7.8273e-01, 2.9394e-01, + 9.8468e-01, 5.5472e-01, 6.7849e-01, 2.4774e-02, + 9.8321e-01, 4.0996e-01, 8.8539e-01, 8.9288e-01, + 5.5255e-01, 3.7365e-01, 1.0507e-01, 7.2419e-01, + 8.6134e-02, 5.7363e-01, 7.8715e-01, 2.3866e-01, + 4.1035e-01, 1.2496e-01, 4.5919e-01, 5.8619e-01, + 6.0808e-01, 4.2723e-01, 6.7449e-01, 9.2084e-01, + 8.9389e-01, 1.3942e-01, 5.4543e-01, 4.7201e-02, + 8.6576e-01, 1.4455e-01, 1.7668e-01, 4.2758e-02, + 1.1920e-01, 2.6815e-02, 7.7244e-01, 5.2841e-01, + 1.8374e-01, 3.0995e-01, 2.6686e-01, 2.2363e-01, + 6.0105e-01, 6.9802e-01, 8.7698e-01, 2.5112e-01, + 9.3430e-01, 4.3135e-01, 1.1205e-02, 9.9203e-01, + 8.3302e-01, 6.5717e-01, 2.3014e-01, 6.2920e-01, + 4.7020e-03, 2.3944e-01, 6.7821e-01, 2.6852e-01, + 4.3645e-01, 2.0642e-01, 6.3645e-01, 8.7126e-01, + 7.8323e-02, 2.0123e-01, 9.8522e-01, 6.6075e-01, + 1.0638e-01, 1.7513e-01, 7.5435e-01, 1.5965e-01, + 5.4974e-01, 8.4304e-01, 3.8315e-01, 5.0593e-01, + 1.8074e-01, 4.5465e-01, 3.5049e-01, 2.8592e-01, + 4.6064e-01, 1.3733e-01, 3.9878e-01, 8.2656e-01, + 4.3802e-01, 6.0861e-01, 2.3988e-01, 9.3018e-01, + 6.1398e-01, 8.8443e-01, 5.6659e-01, 9.7942e-01, + 5.9063e-03, 3.6857e-01, 7.0689e-01, 6.8562e-01, + 6.2652e-01, 7.1136e-01, 5.8443e-01, 2.8104e-01, + 1.1975e-01, 3.0807e-01, 8.5351e-01, 6.1232e-01, + 1.2850e-01, 6.4265e-01, 7.5862e-02, 8.1888e-01, + 1.5209e-01, 7.4651e-01, 8.9132e-01, 4.7729e-01, + 1.0458e-01, 5.8526e-03, 7.3018e-01, 3.9002e-01, + 8.3555e-01, 9.9792e-01, 1.2007e-01, 1.8173e-01, + 8.8202e-01, 6.3435e-02, 4.7842e-01, 4.3553e-01, + 2.6080e-01, 9.8947e-02, 1.9814e-01, 4.1648e-01, + 7.5812e-01, 5.7984e-01, 9.1152e-01, 8.4139e-01, + 7.3750e-02, 5.3616e-01, 2.6399e-02, 9.7508e-01, + 5.2809e-01, 9.0090e-01, 5.0747e-01, 9.1801e-01, + 2.8317e-01, 2.6351e-01, 7.4357e-01, 9.1706e-01, + 1.2509e-01, 7.5712e-01, 6.6426e-01, 3.7521e-01, + 7.4759e-01, 2.2567e-01, 6.8380e-01, 6.5098e-01, + 4.2407e-01, 9.0580e-01, 7.6534e-01, 6.2130e-01, + 7.4281e-01, 4.2870e-01, 9.5017e-01, 3.7626e-01, + 1.1094e-01, 9.0190e-01, 9.6787e-01, 4.0010e-01, + 4.7100e-01, 1.0633e-01, 8.9043e-01, 5.0640e-01, + 7.5304e-01, 3.1368e-03, 2.9130e-01, 9.0727e-01, + 8.4157e-01, 6.3215e-01, 7.1909e-01, 6.2791e-01, + 6.7473e-01, 5.2095e-01, 1.9918e-01, 4.2582e-01, + 7.0689e-01, 1.4951e-01, 9.5523e-01, 6.8796e-01, + 5.8195e-01, 7.1391e-01, 1.2233e-01, 8.4813e-02, + 8.0007e-01, 2.3040e-01, 5.2230e-01, 6.0031e-01, + 8.8717e-01, 7.2196e-01, 3.1973e-01, 9.8354e-01, + 8.2522e-01, 5.4297e-01, 8.2448e-01, 4.4039e-01, + 7.9127e-01, 1.5486e-01, 8.9541e-02, 7.5881e-01, + 7.0277e-01, 9.5355e-01, 5.7998e-01, 1.0220e-01, + 9.7185e-01, 1.5354e-01, 4.2886e-01, 9.4374e-01, + 9.6972e-01, 4.2716e-01, 7.7967e-01, 4.4084e-01, + 5.9503e-02, 2.8447e-01, 6.6930e-01, 9.2433e-01, + 8.5201e-02, 9.4074e-02, 5.7816e-02, 5.2477e-01, + 4.0431e-01, 9.3680e-01, 7.9281e-01, 5.0214e-01, + 4.3363e-01, 5.0481e-01, 6.5806e-01, 1.2108e-02, + 5.4159e-01, 5.7991e-01, 9.5810e-01, 4.5809e-01, + 5.2811e-01, 4.7398e-01, 6.0017e-01, 6.2723e-01, + 3.1668e-01, 6.6957e-01, 7.3447e-01, 9.3801e-01, + 6.3741e-01, 9.5748e-01, 6.1705e-01, 6.1947e-01, + 7.1114e-01, 7.8047e-01, 6.3606e-01, 1.1714e-01, + 2.9771e-01, 5.7763e-01, 7.2725e-01, 3.9279e-02, + 2.2740e-01, 1.1983e-01, 9.7496e-01, 9.7107e-01, + 6.8192e-01, 4.7055e-01, 7.6591e-02, 1.8872e-01, + 7.6675e-01, 8.9331e-01, 7.3735e-01, 2.2111e-01, + 3.9938e-01, 9.5547e-01, 1.5711e-01, 4.1021e-01, + 1.1412e-01, 4.7451e-01, 9.3830e-01, 2.5704e-02, + 3.1434e-01, 7.9403e-01, 7.1105e-01, 2.2231e-01, + 8.6172e-01, 7.5915e-01, 5.5640e-01, 3.9548e-01, + 7.4875e-01, 7.2545e-03, 6.9761e-02, 3.3954e-01, + 3.0983e-02, 7.8257e-01, 4.6817e-01, 1.4299e-01, + 7.3917e-01, 5.7775e-01, 7.0050e-01, 1.0170e-01, + 5.9268e-02, 7.8402e-01, 1.1116e-01, 7.0050e-01, + 6.8218e-01, 5.1559e-01, 9.0164e-01, 6.3522e-01, + 5.1084e-01, 4.0179e-01, 2.3160e-01, 8.9595e-01, + 5.3957e-01, 2.9593e-01, 8.6295e-02, 4.3092e-01, + 1.8133e-01, 7.9398e-01, 3.1231e-01, 4.6884e-01, + 9.3005e-01, 2.3156e-01, 4.6512e-01, 2.4386e-01, + 4.0889e-01, 2.1786e-01, 4.0123e-01, 6.9927e-02, + 1.2919e-01, 9.3419e-01, 7.5543e-01, 2.8780e-01, + 9.9350e-01, 4.7547e-01, 1.5017e-01, 3.4936e-01, + 7.4752e-01, 7.8208e-02, 8.9649e-02, 6.0120e-01, + 4.8680e-03, 3.9810e-01, 1.9291e-02, 2.5980e-01, + 6.4314e-01, 1.1897e-01, 1.0738e-01, 2.5415e-01, + 6.2778e-01, 3.3058e-01, 9.6010e-01, 5.7716e-01, + 5.7400e-01, 6.5654e-01, 3.8685e-01, 1.4531e-01, + 3.6711e-01, 5.5517e-01, 5.4930e-01, 1.8321e-01, + 4.6848e-01, 4.2975e-01, 8.5091e-01, 6.9266e-01, + 8.8622e-01, 5.1231e-01, 4.8174e-01, 4.5498e-02, + 7.8463e-01, 9.5652e-01, 3.0625e-01, 4.4074e-01, + 1.6669e-01, 8.4050e-01, 3.7991e-01, 6.5276e-01]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.3721, 0.5043, 0.5568, ..., 0.8647, 0.9880, 0.8941]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 10.363084554672241 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), + col_indices=tensor([5193, 2755, 2619, 8774, 5321, 6802, 9831, 2285, 7852, + 3999, 9956, 6338, 4303, 3557, 3117, 6782, 5048, 7592, + 3942, 736, 4361, 9482, 6490, 3337, 2778, 8169, 2811, + 209, 2573, 8564, 5262, 8591, 5293, 8927, 3544, 51, + 2528, 4507, 4161, 5578, 9752, 6784, 2306, 938, 2449, + 5328, 718, 7617, 6097, 864, 5625, 9977, 6328, 2206, + 1192, 3645, 3508, 3808, 3742, 5641, 1622, 4352, 9099, + 7155, 1778, 6225, 7403, 1744, 1586, 3123, 5186, 9952, + 4753, 6792, 5057, 2040, 1903, 4935, 4855, 6732, 8949, + 5033, 9687, 8172, 2973, 4285, 3263, 8170, 5631, 2665, + 2030, 1676, 7190, 9261, 1374, 5085, 6991, 7291, 5365, + 8790, 2603, 5128, 4726, 7347, 7445, 5508, 2405, 6862, + 927, 1040, 3233, 8284, 1163, 7143, 7742, 2101, 6504, + 7643, 3848, 7449, 288, 874, 4468, 4224, 1484, 7263, + 4340, 7167, 998, 8159, 8311, 1777, 3799, 3049, 6508, + 9603, 4316, 5196, 2183, 4727, 9055, 4438, 766, 1704, + 2955, 7889, 223, 603, 271, 3214, 3848, 7365, 3352, + 185, 1543, 1100, 7205, 5656, 8224, 7006, 460, 1632, + 5863, 1172, 5235, 1995, 4111, 11, 2411, 7389, 5139, + 7269, 8117, 8911, 1884, 4444, 8936, 4422, 7036, 5702, + 4252, 2130, 6704, 3313, 4857, 9399, 3363, 3509, 5493, + 2340, 4706, 9247, 8227, 7090, 7116, 226, 9056, 6722, + 8438, 5065, 7307, 1220, 7194, 705, 7096, 4679, 547, + 3971, 7573, 5105, 7215, 5944, 5393, 6667, 5458, 8429, + 275, 7814, 1025, 7237, 1604, 2929, 6126, 9253, 4344, + 4508, 267, 2777, 6034, 8761, 1834, 7748, 2674, 1367, + 9944, 6376, 1264, 5363, 2708, 3617, 3700, 5437, 4095, + 3959, 9704, 92, 9660, 9391, 3573, 2946, 813, 5316, + 3935, 7890, 4581, 6296, 7152, 6217, 3415, 6533, 2715, + 1688, 5201, 6175, 7050, 3595, 3662, 6840, 9726, 6036, + 7619, 5416, 6590, 7916, 4522, 6958, 8725, 6668, 2653, + 2628, 2565, 1650, 5630, 3465, 1488, 7827, 8886, 5742, + 4749, 648, 3505, 4220, 7748, 967, 839, 4075, 6270, + 6161, 5175, 1827, 7920, 1324, 2536, 3769, 8225, 5565, + 6328, 4306, 5393, 4486, 1932, 3230, 5293, 7471, 9723, + 8758, 373, 1054, 366, 7030, 2680, 6679, 3052, 3000, + 3826, 7135, 7573, 8624, 2094, 8253, 1679, 9255, 7782, + 2323, 4348, 3499, 8680, 5646, 838, 8871, 3174, 9682, + 8132, 4297, 756, 3636, 7385, 3221, 5036, 4653, 2075, + 2125, 9346, 9627, 6630, 4303, 6472, 8582, 3706, 7450, + 8033, 6481, 218, 2651, 3223, 6130, 1629, 8564, 9132, + 2060, 5147, 6339, 299, 2555, 4613, 3564, 8344, 6671, + 5893, 2906, 3816, 918, 1043, 2354, 6191, 6111, 6428, + 1535, 6205, 4349, 2774, 3014, 6169, 54, 7709, 3177, + 7317, 1857, 4166, 1657, 6193, 5261, 1312, 2305, 7110, + 6570, 2833, 5781, 7269, 8843, 6989, 8890, 1174, 6005, + 811, 1391, 1098, 636, 6355, 1696, 8042, 3865, 3213, + 262, 9122, 2345, 1147, 4236, 7137, 4556, 3780, 9838, + 7492, 7111, 529, 9470, 4720, 4229, 692, 9529, 7086, + 2082, 250, 1543, 289, 7190, 7172, 1560, 4019, 8975, + 1830, 1510, 9707, 2846, 3333, 9679, 8581, 2223, 2379, + 2778, 2110, 6343, 8400, 8819, 9110, 4987, 5901, 207, + 5848, 9965, 6853, 3891, 3084, 4227, 9187, 8352, 2804, + 244, 2773, 5879, 2163, 4413, 2823, 6063, 6812, 7469, + 3631, 6784, 6150, 9291, 1434, 4867, 7937, 8507, 4925, + 9859, 2433, 5664, 7328, 3053, 6754, 2086, 6555, 7886, + 1830, 8651, 582, 9396, 688, 2898, 4397, 1085, 4212, + 9690, 8597, 1017, 8482, 663, 1595, 2722, 495, 807, + 4378, 2814, 7029, 3658, 4499, 8945, 9032, 813, 7181, + 1952, 2910, 2796, 8972, 7959, 3329, 6355, 7208, 1762, + 701, 6311, 4802, 4644, 6623, 713, 2064, 6942, 593, + 2218, 7841, 6420, 5622, 2540, 1104, 8910, 7387, 7602, + 3882, 8077, 285, 6982, 278, 3095, 1513, 9909, 9182, + 3213, 7417, 6429, 2946, 4607, 9497, 8159, 9486, 5213, + 4740, 9629, 1996, 7823, 9038, 6968, 4206, 9366, 6179, + 4636, 7878, 248, 7209, 1504, 8559, 7776, 3701, 7946, + 1205, 4823, 3452, 2388, 2673, 5380, 9364, 1709, 3782, + 4596, 3539, 3609, 5046, 6692, 2716, 7354, 3756, 2031, + 3021, 2369, 8239, 4900, 649, 2495, 2736, 9221, 9307, + 3110, 2444, 5681, 9962, 658, 5969, 2802, 2529, 4596, + 9750, 5051, 7304, 1985, 1639, 8039, 31, 3676, 2155, + 3903, 9915, 8323, 2043, 9950, 4176, 8037, 391, 3433, + 7851, 4275, 2610, 5720, 6748, 793, 8339, 3679, 3153, + 2125, 5476, 6422, 6927, 8754, 7725, 2141, 1755, 7320, + 2935, 3107, 4817, 3917, 3837, 4030, 6563, 2811, 8883, + 8408, 3509, 6635, 4861, 2432, 7437, 506, 1386, 8922, + 5243, 9151, 2497, 8938, 6978, 2375, 7816, 1133, 9440, + 4511, 353, 8857, 951, 8442, 8719, 9229, 5886, 2784, + 867, 9558, 1353, 1986, 6386, 2976, 6556, 6466, 4952, + 8760, 6705, 3986, 248, 4939, 8572, 8033, 1694, 5483, + 1478, 924, 5915, 1868, 8180, 5092, 7794, 9104, 6732, + 6946, 3391, 3981, 8719, 2292, 9299, 7694, 4217, 8661, + 1105, 5555, 6318, 9071, 5775, 6208, 7153, 6725, 4834, + 8341, 5231, 635, 6491, 6914, 4534, 3780, 1612, 7491, + 9904, 5561, 4379, 7823, 6571, 1041, 5191, 1844, 8301, + 9882, 2613, 3531, 5574, 9708, 5720, 7268, 2236, 2552, + 1791, 6530, 7528, 9653, 5478, 49, 5543, 4607, 4929, + 6779, 4288, 4894, 5953, 9334, 2875, 8996, 4150, 7356, + 1186, 3993, 4505, 9077, 1116, 8449, 5955, 4281, 1244, + 6319, 2334, 7523, 1420, 9819, 1049, 7647, 3112, 8991, + 9729, 3869, 2710, 8813, 9524, 6132, 4591, 1916, 8391, + 5927, 2660, 5428, 5936, 3389, 323, 4780, 5804, 8256, + 6027, 8524, 109, 2252, 2388, 9629, 7006, 6247, 3274, + 8307, 2641, 3198, 7675, 4111, 618, 7105, 3170, 4299, + 5160, 4551, 5987, 4864, 4008, 4510, 1411, 474, 4094, + 7522, 9644, 8491, 401, 8653, 2482, 7935, 6580, 4043, + 1108, 2017, 2207, 9655, 1829, 6993, 5007, 4733, 7370, + 6766, 9337, 7507, 1648, 3705, 2374, 7193, 3309, 2758, + 3114, 8424, 2591, 2146, 3234, 9985, 5568, 712, 7456, + 6725, 1082, 7071, 4477, 2084, 1012, 393, 2646, 9693, + 4629, 6430, 4668, 7348, 4987, 5816, 4309, 6189, 5619, + 6356, 4170, 4871, 4240, 4621, 5427, 3415, 7229, 2801, + 5667, 2772, 2115, 9639, 6777, 5628, 5474, 6929, 7261, + 1128, 7763, 8975, 1875, 6229, 5956, 3894, 8274, 1400, + 3005, 7369, 4914, 2852, 2199, 4664, 5187, 6701, 5141, + 2836, 7341, 9140, 3613, 4273, 2795, 2402, 4117, 7860, + 2778, 346, 8610, 6929, 6113, 1593, 763, 2525, 8935, + 2101, 2835, 1362, 8394, 6460, 4773, 9741, 8111, 1860, + 3451, 7908, 7916, 6010, 8207, 8543, 7760, 8890, 7266, + 1155, 6223, 1146, 9602, 3885, 7243, 31, 7775, 3205, + 5848, 6242, 6442, 2055, 3787, 710, 1978, 8938, 7216, + 5945]), + values=tensor([5.5292e-01, 5.5339e-02, 4.5108e-01, 1.0570e-01, + 3.4688e-01, 1.9198e-01, 9.3821e-01, 9.8353e-01, + 8.8756e-01, 3.1342e-03, 5.5310e-01, 3.0156e-01, + 9.7159e-01, 5.4507e-01, 2.1473e-02, 2.0341e-02, + 8.7216e-01, 9.1887e-01, 3.0364e-02, 9.3932e-01, + 8.2611e-01, 6.7013e-01, 8.8961e-01, 1.2123e-01, + 1.9534e-01, 2.4678e-01, 1.1772e-01, 2.7037e-01, + 3.5509e-03, 2.8075e-01, 4.0535e-02, 6.3427e-01, + 3.9017e-01, 6.1389e-01, 1.0664e-01, 3.2671e-01, + 1.1828e-01, 5.4389e-01, 3.2263e-01, 9.1144e-01, + 7.3488e-02, 2.3373e-02, 9.0950e-01, 8.5203e-01, + 3.4924e-01, 7.3816e-01, 7.5268e-01, 3.6300e-02, + 2.2669e-01, 3.1511e-01, 3.8005e-01, 2.4819e-01, + 3.8328e-01, 5.0635e-01, 5.6645e-01, 1.2111e-01, + 7.6746e-01, 1.4418e-02, 7.3921e-02, 2.7487e-01, + 5.2504e-01, 4.9590e-01, 6.9415e-01, 5.9502e-01, + 1.8332e-01, 9.2079e-01, 7.3309e-01, 9.5422e-01, + 9.8358e-01, 2.7596e-01, 4.1096e-01, 6.2501e-01, + 5.8528e-01, 1.6744e-01, 3.0802e-02, 9.5302e-01, + 5.9898e-01, 2.6224e-01, 4.3792e-01, 5.1201e-01, + 2.9177e-02, 9.5366e-01, 1.2222e-02, 9.8630e-01, + 9.9589e-01, 8.9232e-01, 6.2139e-02, 7.2973e-01, + 1.7859e-01, 5.8169e-02, 8.3459e-01, 8.2388e-01, + 6.6385e-01, 6.9275e-01, 5.1824e-01, 7.1741e-01, + 6.6236e-01, 1.0698e-01, 8.2657e-01, 4.2895e-01, + 3.6838e-01, 2.7626e-01, 2.9440e-01, 9.3249e-01, + 2.8409e-01, 8.1546e-01, 4.8077e-01, 1.7037e-01, + 1.5884e-01, 7.7664e-01, 1.5836e-02, 3.3557e-01, + 2.0902e-01, 6.0679e-01, 1.5751e-01, 9.8621e-01, + 3.9991e-01, 6.0917e-01, 8.0877e-01, 7.1137e-01, + 2.9923e-01, 9.2558e-01, 3.8125e-01, 6.0657e-01, + 2.9772e-01, 7.1449e-01, 2.2410e-01, 3.3343e-01, + 6.7991e-01, 9.2217e-02, 7.2563e-01, 6.5640e-02, + 1.5008e-02, 2.3401e-01, 3.9745e-01, 1.7414e-02, + 6.1670e-01, 6.7045e-02, 8.9257e-01, 3.1882e-01, + 6.5174e-02, 9.5557e-01, 4.6108e-01, 5.3639e-01, + 2.2493e-01, 8.5831e-01, 3.6582e-01, 2.4755e-01, + 8.9200e-01, 1.4938e-01, 2.5340e-01, 2.1128e-01, + 7.9481e-01, 8.2922e-01, 4.6592e-01, 9.4400e-01, + 8.3401e-01, 9.2113e-01, 7.5652e-01, 3.0972e-01, + 4.2157e-01, 2.9254e-01, 4.9221e-01, 5.8905e-01, + 3.8325e-01, 2.2484e-01, 6.9358e-01, 6.4123e-01, + 6.7816e-01, 6.3084e-01, 9.8574e-01, 4.4427e-01, + 7.1513e-01, 3.9867e-01, 4.3878e-01, 1.9672e-01, + 5.0263e-03, 6.7740e-01, 2.5681e-01, 9.7933e-01, + 4.0394e-01, 4.1879e-02, 3.9553e-01, 7.8503e-01, + 7.4689e-01, 4.9247e-01, 4.1191e-01, 9.9678e-01, + 2.0022e-01, 6.5069e-01, 7.4428e-01, 9.0778e-01, + 5.1895e-01, 8.0675e-01, 8.3865e-01, 6.2747e-01, + 7.3217e-02, 4.9040e-01, 5.2601e-01, 8.7024e-01, + 6.0410e-01, 8.8149e-01, 8.2484e-01, 1.5845e-01, + 4.6403e-01, 8.9306e-01, 6.1336e-01, 8.0234e-01, + 7.9119e-01, 2.0744e-01, 8.8190e-01, 5.9520e-01, + 6.5300e-01, 6.2913e-01, 6.1054e-01, 9.8544e-01, + 4.4616e-01, 9.2657e-01, 4.7958e-01, 1.6243e-01, + 9.3923e-01, 2.8605e-01, 8.8992e-02, 9.4577e-01, + 3.8793e-01, 8.8493e-01, 9.4484e-01, 1.8553e-01, + 6.6811e-02, 2.8498e-01, 7.3602e-01, 5.3860e-01, + 6.3923e-01, 8.8471e-01, 8.9298e-01, 2.3408e-01, + 6.0315e-01, 7.1811e-01, 6.8929e-01, 9.2628e-01, + 3.3735e-01, 9.4330e-01, 2.9212e-01, 1.3474e-01, + 2.4841e-01, 2.9413e-01, 3.0786e-01, 4.4721e-01, + 6.4270e-01, 1.3463e-01, 7.4701e-01, 7.0796e-01, + 7.5288e-01, 4.6654e-01, 5.7533e-01, 2.5732e-01, + 9.4048e-01, 4.2449e-01, 2.7752e-01, 5.3717e-01, + 5.8754e-01, 2.2088e-01, 6.9696e-01, 3.0511e-01, + 5.4146e-01, 6.6670e-01, 1.9863e-01, 8.7473e-01, + 8.3417e-01, 1.7325e-03, 1.1431e-01, 6.6423e-01, + 1.7200e-01, 7.5624e-01, 8.6680e-01, 1.4888e-01, + 5.2062e-01, 2.3949e-01, 4.6781e-01, 8.4834e-01, + 8.3041e-01, 8.4708e-01, 5.0573e-01, 2.6783e-01, + 7.7273e-01, 6.9543e-02, 9.7146e-01, 5.8041e-01, + 8.2714e-02, 7.4425e-01, 7.8576e-01, 7.7661e-04, + 8.3968e-01, 4.5854e-02, 4.3457e-01, 7.8975e-01, + 9.9698e-01, 4.6019e-01, 9.2919e-01, 3.1968e-01, + 9.3109e-01, 9.2620e-01, 9.8663e-01, 5.4487e-01, + 9.8012e-01, 5.4934e-01, 1.7813e-02, 4.7736e-01, + 3.4974e-01, 5.3126e-01, 4.8493e-01, 1.0505e-01, + 2.6504e-01, 5.5712e-01, 9.8635e-01, 6.4827e-01, + 7.6120e-01, 4.2505e-01, 1.6706e-01, 6.8099e-01, + 9.9077e-01, 4.1107e-01, 4.8898e-01, 2.5076e-01, + 3.4645e-01, 3.1250e-01, 6.2990e-01, 6.5617e-02, + 2.3404e-01, 5.0847e-01, 6.3919e-01, 5.7855e-01, + 7.8187e-01, 8.5142e-01, 6.5013e-01, 9.1473e-01, + 3.5578e-01, 6.6380e-01, 4.7582e-01, 8.5910e-01, + 1.0565e-01, 6.2514e-01, 3.8345e-01, 1.5356e-01, + 9.9912e-02, 8.8363e-01, 1.7544e-01, 1.4346e-01, + 3.4208e-01, 6.1732e-01, 8.8918e-01, 2.9956e-01, + 9.0580e-01, 1.2071e-01, 7.4620e-01, 2.8879e-02, + 6.9099e-01, 3.9454e-01, 8.8898e-01, 8.2851e-01, + 4.6931e-01, 2.9252e-01, 8.3960e-01, 4.1263e-01, + 8.7211e-01, 9.0472e-01, 3.7009e-01, 6.8359e-01, + 9.2110e-01, 4.3054e-01, 5.9179e-01, 8.2038e-01, + 8.5760e-01, 4.2085e-01, 4.0021e-01, 6.0209e-01, + 7.9150e-01, 6.8003e-01, 2.9459e-01, 5.6288e-01, + 9.1978e-02, 2.5679e-01, 8.9665e-01, 3.8079e-01, + 4.8515e-01, 6.6981e-01, 6.6846e-01, 9.7820e-01, + 8.7582e-01, 8.0038e-01, 2.7188e-01, 4.8928e-01, + 5.2560e-01, 9.7220e-01, 3.8673e-01, 9.6365e-01, + 5.5796e-01, 3.5920e-01, 8.7943e-01, 8.6910e-01, + 6.1172e-01, 3.1763e-01, 4.6344e-01, 6.8853e-01, + 9.4884e-02, 8.3766e-01, 2.7469e-01, 1.5268e-01, + 7.2314e-01, 4.7604e-01, 4.7881e-02, 6.2107e-02, + 3.1626e-01, 2.4833e-01, 4.2443e-01, 5.1570e-01, + 7.9326e-01, 9.9465e-01, 8.7703e-01, 9.3805e-01, + 3.8399e-01, 7.9271e-01, 6.6890e-01, 5.1078e-01, + 6.5738e-01, 7.0870e-01, 6.3946e-02, 8.2076e-01, + 5.8328e-01, 9.7339e-01, 1.1501e-01, 1.8801e-01, + 5.1878e-01, 1.6410e-01, 2.5658e-02, 7.4582e-01, + 7.1671e-01, 3.2597e-01, 4.7647e-01, 3.0071e-01, + 2.1942e-01, 3.5837e-01, 2.1099e-01, 7.2833e-01, + 4.5191e-01, 8.3061e-01, 5.3493e-01, 4.6170e-01, + 7.3391e-01, 2.8119e-01, 7.3837e-01, 2.1069e-01, + 6.1466e-01, 3.1738e-01, 6.6976e-01, 4.3234e-01, + 5.3425e-01, 3.1649e-01, 6.9488e-01, 8.3116e-02, + 9.6527e-01, 7.2983e-01, 7.2952e-01, 5.7027e-01, + 5.7248e-01, 9.8809e-01, 5.6845e-01, 9.9233e-01, + 4.3437e-01, 9.1749e-01, 3.0435e-01, 6.1630e-01, + 5.6718e-01, 7.6623e-01, 7.3360e-01, 5.7167e-01, + 3.1448e-01, 2.8390e-01, 3.4381e-01, 3.6832e-01, + 9.5748e-01, 7.9723e-01, 9.3584e-02, 4.2134e-01, + 4.6396e-01, 3.4351e-01, 5.2272e-01, 7.3597e-01, + 4.0274e-01, 8.4091e-01, 1.1289e-01, 7.4283e-01, + 7.3034e-02, 8.8066e-01, 1.0006e-01, 6.3450e-01, + 9.2205e-02, 9.6993e-01, 2.0751e-01, 2.1244e-01, + 5.1143e-02, 3.6481e-01, 6.4697e-01, 2.0789e-01, + 9.5215e-01, 5.3364e-01, 9.2672e-01, 6.9821e-01, + 6.9041e-01, 8.3878e-01, 4.1297e-01, 1.8957e-01, + 2.0550e-01, 3.0226e-02, 6.2550e-01, 7.4896e-01, + 3.7984e-01, 3.6494e-01, 2.2888e-01, 3.1974e-02, + 5.6757e-01, 7.7597e-01, 8.9251e-01, 8.0742e-01, + 5.7001e-01, 6.4631e-01, 6.6361e-01, 9.5532e-01, + 9.6697e-01, 4.2484e-01, 6.2009e-01, 2.2163e-01, + 7.1692e-01, 6.5086e-01, 1.8669e-01, 9.3201e-02, + 8.4567e-01, 7.9722e-01, 5.9999e-01, 4.0199e-01, + 4.2838e-01, 9.1398e-01, 3.5932e-01, 1.2304e-01, + 3.8586e-01, 5.5759e-01, 8.5294e-01, 5.3330e-01, + 6.2723e-01, 9.8234e-01, 1.6861e-02, 5.0691e-01, + 6.1734e-02, 4.7853e-01, 5.6685e-01, 7.9571e-01, + 9.0991e-01, 9.2185e-01, 4.1263e-01, 7.1798e-01, + 6.7303e-01, 8.7499e-01, 6.2012e-01, 3.5399e-01, + 7.6377e-01, 3.3514e-01, 8.4335e-01, 8.8705e-01, + 6.8818e-01, 2.3811e-01, 9.6707e-01, 3.9398e-01, + 2.6073e-01, 8.3096e-01, 1.7007e-01, 3.0433e-01, + 4.0134e-01, 1.3059e-01, 2.4787e-01, 7.8166e-01, + 4.7521e-01, 6.8201e-01, 2.1001e-01, 7.1415e-01, + 3.2262e-01, 3.2235e-01, 4.7378e-01, 8.4827e-01, + 8.4848e-01, 5.2317e-02, 1.5766e-01, 2.2014e-03, + 1.7840e-01, 7.8631e-01, 5.2767e-01, 2.6045e-01, + 8.8588e-01, 4.0016e-01, 5.9530e-01, 2.4974e-01, + 6.6462e-01, 4.7206e-01, 1.3225e-01, 4.5137e-01, + 5.3570e-01, 2.8817e-01, 2.6505e-01, 4.1502e-01, + 6.3949e-03, 4.5409e-01, 5.8227e-01, 3.9940e-01, + 7.6494e-01, 8.8617e-01, 6.5990e-01, 3.0427e-01, + 1.9149e-01, 3.3059e-01, 1.1330e-01, 2.3008e-02, + 7.4098e-01, 2.5809e-01, 3.4906e-01, 6.0979e-01, + 5.8091e-01, 2.5328e-01, 6.2555e-01, 1.6286e-01, + 2.8329e-01, 2.2440e-02, 7.8273e-01, 2.9394e-01, + 9.8468e-01, 5.5472e-01, 6.7849e-01, 2.4774e-02, + 9.8321e-01, 4.0996e-01, 8.8539e-01, 8.9288e-01, + 5.5255e-01, 3.7365e-01, 1.0507e-01, 7.2419e-01, + 8.6134e-02, 5.7363e-01, 7.8715e-01, 2.3866e-01, + 4.1035e-01, 1.2496e-01, 4.5919e-01, 5.8619e-01, + 6.0808e-01, 4.2723e-01, 6.7449e-01, 9.2084e-01, + 8.9389e-01, 1.3942e-01, 5.4543e-01, 4.7201e-02, + 8.6576e-01, 1.4455e-01, 1.7668e-01, 4.2758e-02, + 1.1920e-01, 2.6815e-02, 7.7244e-01, 5.2841e-01, + 1.8374e-01, 3.0995e-01, 2.6686e-01, 2.2363e-01, + 6.0105e-01, 6.9802e-01, 8.7698e-01, 2.5112e-01, + 9.3430e-01, 4.3135e-01, 1.1205e-02, 9.9203e-01, + 8.3302e-01, 6.5717e-01, 2.3014e-01, 6.2920e-01, + 4.7020e-03, 2.3944e-01, 6.7821e-01, 2.6852e-01, + 4.3645e-01, 2.0642e-01, 6.3645e-01, 8.7126e-01, + 7.8323e-02, 2.0123e-01, 9.8522e-01, 6.6075e-01, + 1.0638e-01, 1.7513e-01, 7.5435e-01, 1.5965e-01, + 5.4974e-01, 8.4304e-01, 3.8315e-01, 5.0593e-01, + 1.8074e-01, 4.5465e-01, 3.5049e-01, 2.8592e-01, + 4.6064e-01, 1.3733e-01, 3.9878e-01, 8.2656e-01, + 4.3802e-01, 6.0861e-01, 2.3988e-01, 9.3018e-01, + 6.1398e-01, 8.8443e-01, 5.6659e-01, 9.7942e-01, + 5.9063e-03, 3.6857e-01, 7.0689e-01, 6.8562e-01, + 6.2652e-01, 7.1136e-01, 5.8443e-01, 2.8104e-01, + 1.1975e-01, 3.0807e-01, 8.5351e-01, 6.1232e-01, + 1.2850e-01, 6.4265e-01, 7.5862e-02, 8.1888e-01, + 1.5209e-01, 7.4651e-01, 8.9132e-01, 4.7729e-01, + 1.0458e-01, 5.8526e-03, 7.3018e-01, 3.9002e-01, + 8.3555e-01, 9.9792e-01, 1.2007e-01, 1.8173e-01, + 8.8202e-01, 6.3435e-02, 4.7842e-01, 4.3553e-01, + 2.6080e-01, 9.8947e-02, 1.9814e-01, 4.1648e-01, + 7.5812e-01, 5.7984e-01, 9.1152e-01, 8.4139e-01, + 7.3750e-02, 5.3616e-01, 2.6399e-02, 9.7508e-01, + 5.2809e-01, 9.0090e-01, 5.0747e-01, 9.1801e-01, + 2.8317e-01, 2.6351e-01, 7.4357e-01, 9.1706e-01, + 1.2509e-01, 7.5712e-01, 6.6426e-01, 3.7521e-01, + 7.4759e-01, 2.2567e-01, 6.8380e-01, 6.5098e-01, + 4.2407e-01, 9.0580e-01, 7.6534e-01, 6.2130e-01, + 7.4281e-01, 4.2870e-01, 9.5017e-01, 3.7626e-01, + 1.1094e-01, 9.0190e-01, 9.6787e-01, 4.0010e-01, + 4.7100e-01, 1.0633e-01, 8.9043e-01, 5.0640e-01, + 7.5304e-01, 3.1368e-03, 2.9130e-01, 9.0727e-01, + 8.4157e-01, 6.3215e-01, 7.1909e-01, 6.2791e-01, + 6.7473e-01, 5.2095e-01, 1.9918e-01, 4.2582e-01, + 7.0689e-01, 1.4951e-01, 9.5523e-01, 6.8796e-01, + 5.8195e-01, 7.1391e-01, 1.2233e-01, 8.4813e-02, + 8.0007e-01, 2.3040e-01, 5.2230e-01, 6.0031e-01, + 8.8717e-01, 7.2196e-01, 3.1973e-01, 9.8354e-01, + 8.2522e-01, 5.4297e-01, 8.2448e-01, 4.4039e-01, + 7.9127e-01, 1.5486e-01, 8.9541e-02, 7.5881e-01, + 7.0277e-01, 9.5355e-01, 5.7998e-01, 1.0220e-01, + 9.7185e-01, 1.5354e-01, 4.2886e-01, 9.4374e-01, + 9.6972e-01, 4.2716e-01, 7.7967e-01, 4.4084e-01, + 5.9503e-02, 2.8447e-01, 6.6930e-01, 9.2433e-01, + 8.5201e-02, 9.4074e-02, 5.7816e-02, 5.2477e-01, + 4.0431e-01, 9.3680e-01, 7.9281e-01, 5.0214e-01, + 4.3363e-01, 5.0481e-01, 6.5806e-01, 1.2108e-02, + 5.4159e-01, 5.7991e-01, 9.5810e-01, 4.5809e-01, + 5.2811e-01, 4.7398e-01, 6.0017e-01, 6.2723e-01, + 3.1668e-01, 6.6957e-01, 7.3447e-01, 9.3801e-01, + 6.3741e-01, 9.5748e-01, 6.1705e-01, 6.1947e-01, + 7.1114e-01, 7.8047e-01, 6.3606e-01, 1.1714e-01, + 2.9771e-01, 5.7763e-01, 7.2725e-01, 3.9279e-02, + 2.2740e-01, 1.1983e-01, 9.7496e-01, 9.7107e-01, + 6.8192e-01, 4.7055e-01, 7.6591e-02, 1.8872e-01, + 7.6675e-01, 8.9331e-01, 7.3735e-01, 2.2111e-01, + 3.9938e-01, 9.5547e-01, 1.5711e-01, 4.1021e-01, + 1.1412e-01, 4.7451e-01, 9.3830e-01, 2.5704e-02, + 3.1434e-01, 7.9403e-01, 7.1105e-01, 2.2231e-01, + 8.6172e-01, 7.5915e-01, 5.5640e-01, 3.9548e-01, + 7.4875e-01, 7.2545e-03, 6.9761e-02, 3.3954e-01, + 3.0983e-02, 7.8257e-01, 4.6817e-01, 1.4299e-01, + 7.3917e-01, 5.7775e-01, 7.0050e-01, 1.0170e-01, + 5.9268e-02, 7.8402e-01, 1.1116e-01, 7.0050e-01, + 6.8218e-01, 5.1559e-01, 9.0164e-01, 6.3522e-01, + 5.1084e-01, 4.0179e-01, 2.3160e-01, 8.9595e-01, + 5.3957e-01, 2.9593e-01, 8.6295e-02, 4.3092e-01, + 1.8133e-01, 7.9398e-01, 3.1231e-01, 4.6884e-01, + 9.3005e-01, 2.3156e-01, 4.6512e-01, 2.4386e-01, + 4.0889e-01, 2.1786e-01, 4.0123e-01, 6.9927e-02, + 1.2919e-01, 9.3419e-01, 7.5543e-01, 2.8780e-01, + 9.9350e-01, 4.7547e-01, 1.5017e-01, 3.4936e-01, + 7.4752e-01, 7.8208e-02, 8.9649e-02, 6.0120e-01, + 4.8680e-03, 3.9810e-01, 1.9291e-02, 2.5980e-01, + 6.4314e-01, 1.1897e-01, 1.0738e-01, 2.5415e-01, + 6.2778e-01, 3.3058e-01, 9.6010e-01, 5.7716e-01, + 5.7400e-01, 6.5654e-01, 3.8685e-01, 1.4531e-01, + 3.6711e-01, 5.5517e-01, 5.4930e-01, 1.8321e-01, + 4.6848e-01, 4.2975e-01, 8.5091e-01, 6.9266e-01, + 8.8622e-01, 5.1231e-01, 4.8174e-01, 4.5498e-02, + 7.8463e-01, 9.5652e-01, 3.0625e-01, 4.4074e-01, + 1.6669e-01, 8.4050e-01, 3.7991e-01, 6.5276e-01]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.3721, 0.5043, 0.5568, ..., 0.8647, 0.9880, 0.8941]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 10.363084554672241 seconds + +[39.17, 38.6, 39.23, 38.35, 39.37, 38.46, 39.25, 43.56, 39.01, 38.43] +[94.69] +12.925498723983765 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 352057, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.363084554672241, 'TIME_S_1KI': 0.029435814526262056, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1223.9154741740226, 'W': 94.69} +[39.17, 38.6, 39.23, 38.35, 39.37, 38.46, 39.25, 43.56, 39.01, 38.43, 39.13, 39.47, 39.53, 39.29, 44.98, 39.37, 38.9, 38.56, 38.54, 39.56] +712.615 +35.63075 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 352057, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.363084554672241, 'TIME_S_1KI': 0.029435814526262056, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1223.9154741740226, 'W': 94.69, 'J_1KI': 3.4764696460346554, 'W_1KI': 0.2689621282917255, 'W_D': 59.05925, 'J_D': 763.3702605144381, 'W_D_1KI': 0.1677547953882468, 'J_D_1KI': 0.0004764989629186376} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_500000_1e-05.json b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_500000_1e-05.json new file mode 100644 index 0000000..9ddd17e --- /dev/null +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_500000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 21395, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.323282241821289, "TIME_S_1KI": 0.482509102211792, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 2021.2716293263436, "W": 152.47, "J_1KI": 94.47401866447038, "W_1KI": 7.1264314092077585, "W_D": 115.044, "J_D": 1525.1208324537276, "W_D_1KI": 5.377144192568356, "J_D_1KI": 0.2513271415082195} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_500000_1e-05.output b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_500000_1e-05.output new file mode 100644 index 0000000..50f6332 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_500000_1e-05.output @@ -0,0 +1,89 @@ +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '500000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.532757043838501} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 5, 8, ..., 2499994, + 2499995, 2500000]), + col_indices=tensor([298854, 299868, 317882, ..., 208197, 239895, + 321556]), + values=tensor([0.0947, 0.1899, 0.7776, ..., 0.8480, 0.0740, 0.2913]), + size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.2732, 0.7262, 0.3001, ..., 0.8229, 0.3388, 0.7233]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 2500000 +Density: 1e-05 +Time: 0.532757043838501 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '19708', '-ss', '500000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 9.672011375427246} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 5, 7, ..., 2499994, + 2500000, 2500000]), + col_indices=tensor([ 49185, 277910, 351023, ..., 230263, 378248, + 487183]), + values=tensor([0.7966, 0.8451, 0.5460, ..., 0.3570, 0.2848, 0.9857]), + size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.8196, 0.2368, 0.8865, ..., 0.6520, 0.2281, 0.7931]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 2500000 +Density: 1e-05 +Time: 9.672011375427246 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '21395', '-ss', '500000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.323282241821289} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 4, 8, ..., 2499995, + 2499998, 2500000]), + col_indices=tensor([ 50735, 77236, 160897, ..., 492852, 393041, + 457835]), + values=tensor([0.2461, 0.0110, 0.8932, ..., 0.0580, 0.2778, 0.4102]), + size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.4625, 0.6924, 0.9316, ..., 0.4127, 0.3248, 0.5422]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 2500000 +Density: 1e-05 +Time: 10.323282241821289 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 4, 8, ..., 2499995, + 2499998, 2500000]), + col_indices=tensor([ 50735, 77236, 160897, ..., 492852, 393041, + 457835]), + values=tensor([0.2461, 0.0110, 0.8932, ..., 0.0580, 0.2778, 0.4102]), + size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.4625, 0.6924, 0.9316, ..., 0.4127, 0.3248, 0.5422]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 2500000 +Density: 1e-05 +Time: 10.323282241821289 seconds + +[41.04, 39.37, 40.41, 40.48, 45.25, 40.28, 40.5, 39.5, 40.46, 39.64] +[152.47] +13.256848096847534 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 21395, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.323282241821289, 'TIME_S_1KI': 0.482509102211792, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2021.2716293263436, 'W': 152.47} +[41.04, 39.37, 40.41, 40.48, 45.25, 40.28, 40.5, 39.5, 40.46, 39.64, 42.68, 45.88, 39.43, 39.56, 39.31, 40.35, 46.4, 49.8, 39.76, 40.2] +748.52 +37.426 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 21395, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.323282241821289, 'TIME_S_1KI': 0.482509102211792, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 2021.2716293263436, 'W': 152.47, 'J_1KI': 94.47401866447038, 'W_1KI': 7.1264314092077585, 'W_D': 115.044, 'J_D': 1525.1208324537276, 'W_D_1KI': 5.377144192568356, 'J_D_1KI': 0.2513271415082195} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_50000_0.0001.json b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_50000_0.0001.json new file mode 100644 index 0000000..f0cbadb --- /dev/null +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_50000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 97887, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.967289686203003, "TIME_S_1KI": 0.11204030858237563, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1548.6584901952745, "W": 117.34, "J_1KI": 15.820880098432626, "W_1KI": 1.1987291468734356, "W_D": 81.498, "J_D": 1075.6141949372293, "W_D_1KI": 0.8325722516779552, "J_D_1KI": 0.008505442517167297} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_50000_0.0001.output b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_50000_0.0001.output new file mode 100644 index 0000000..a9ce226 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_50000_0.0001.output @@ -0,0 +1,85 @@ +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.1396017074584961} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 4, 11, ..., 249990, 249993, + 250000]), + col_indices=tensor([ 1901, 17696, 37644, ..., 22666, 31352, 38471]), + values=tensor([0.6079, 0.0811, 0.7282, ..., 0.2667, 0.3886, 0.6657]), + size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) +tensor([0.5204, 0.6126, 0.8277, ..., 0.7159, 0.4461, 0.9246]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 250000 +Density: 0.0001 +Time: 0.1396017074584961 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '75213', '-ss', '50000', '-sd', '0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 8.06783390045166} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 4, 10, ..., 249992, 249996, + 250000]), + col_indices=tensor([ 3649, 15078, 16220, ..., 32895, 36388, 49599]), + values=tensor([0.6393, 0.2992, 0.9532, ..., 0.0270, 0.3430, 0.6378]), + size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) +tensor([0.0844, 0.1224, 0.7905, ..., 0.3661, 0.3101, 0.4173]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 250000 +Density: 0.0001 +Time: 8.06783390045166 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '97887', '-ss', '50000', '-sd', '0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.967289686203003} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 6, 14, ..., 249992, 249996, + 250000]), + col_indices=tensor([ 9116, 23500, 25241, ..., 7305, 15035, 46474]), + values=tensor([0.8636, 0.6633, 0.2645, ..., 0.7208, 0.8992, 0.1134]), + size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) +tensor([0.3603, 0.4772, 0.1653, ..., 0.3951, 0.3400, 0.6722]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 250000 +Density: 0.0001 +Time: 10.967289686203003 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 6, 14, ..., 249992, 249996, + 250000]), + col_indices=tensor([ 9116, 23500, 25241, ..., 7305, 15035, 46474]), + values=tensor([0.8636, 0.6633, 0.2645, ..., 0.7208, 0.8992, 0.1134]), + size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) +tensor([0.3603, 0.4772, 0.1653, ..., 0.3951, 0.3400, 0.6722]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 250000 +Density: 0.0001 +Time: 10.967289686203003 seconds + +[40.69, 39.7, 40.28, 39.02, 40.08, 39.07, 39.32, 38.93, 40.06, 39.15] +[117.34] +13.198044061660767 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 97887, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.967289686203003, 'TIME_S_1KI': 0.11204030858237563, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1548.6584901952745, 'W': 117.34} +[40.69, 39.7, 40.28, 39.02, 40.08, 39.07, 39.32, 38.93, 40.06, 39.15, 49.08, 39.91, 39.13, 39.81, 39.05, 39.67, 39.05, 40.19, 39.16, 39.9] +716.84 +35.842 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 97887, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.967289686203003, 'TIME_S_1KI': 0.11204030858237563, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1548.6584901952745, 'W': 117.34, 'J_1KI': 15.820880098432626, 'W_1KI': 1.1987291468734356, 'W_D': 81.498, 'J_D': 1075.6141949372293, 'W_D_1KI': 0.8325722516779552, 'J_D_1KI': 0.008505442517167297} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_50000_0.001.json b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_50000_0.001.json new file mode 100644 index 0000000..dcf99f8 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_50000_0.001.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 47277, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.432827234268188, "TIME_S_1KI": 0.2206744766856651, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1956.9828476619723, "W": 146.36, "J_1KI": 41.393972706854754, "W_1KI": 3.095797110645769, "W_D": 110.02925000000002, "J_D": 1471.2035733199718, "W_D_1KI": 2.3273314719631117, "J_D_1KI": 0.04922756249260976} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_50000_0.001.output b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_50000_0.001.output new file mode 100644 index 0000000..c946bac --- /dev/null +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_50000_0.001.output @@ -0,0 +1,85 @@ +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '0.001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.2981231212615967} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 43, 103, ..., 2499901, + 2499951, 2500000]), + col_indices=tensor([ 154, 1105, 2164, ..., 43048, 45641, 46786]), + values=tensor([0.5353, 0.9585, 0.2831, ..., 0.0513, 0.1909, 0.0614]), + size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.3993, 0.6905, 0.7348, ..., 0.6851, 0.9182, 0.5409]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 2500000 +Density: 0.001 +Time: 0.2981231212615967 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '35220', '-ss', '50000', '-sd', '0.001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 7.822157621383667} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 48, 100, ..., 2499912, + 2499953, 2500000]), + col_indices=tensor([ 120, 161, 363, ..., 47642, 48044, 49939]), + values=tensor([0.7949, 0.8676, 0.3054, ..., 0.9459, 0.0848, 0.8977]), + size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.4844, 0.7866, 0.3385, ..., 0.0837, 0.3382, 0.6328]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 2500000 +Density: 0.001 +Time: 7.822157621383667 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '47277', '-ss', '50000', '-sd', '0.001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.432827234268188} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 62, 109, ..., 2499897, + 2499942, 2500000]), + col_indices=tensor([ 2040, 2609, 3779, ..., 46933, 47654, 47998]), + values=tensor([0.9101, 0.3119, 0.8580, ..., 0.1192, 0.4361, 0.9803]), + size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.1061, 0.6227, 0.1589, ..., 0.5507, 0.9975, 0.5119]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 2500000 +Density: 0.001 +Time: 10.432827234268188 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 62, 109, ..., 2499897, + 2499942, 2500000]), + col_indices=tensor([ 2040, 2609, 3779, ..., 46933, 47654, 47998]), + values=tensor([0.9101, 0.3119, 0.8580, ..., 0.1192, 0.4361, 0.9803]), + size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.1061, 0.6227, 0.1589, ..., 0.5507, 0.9975, 0.5119]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 2500000 +Density: 0.001 +Time: 10.432827234268188 seconds + +[40.03, 40.19, 39.31, 40.07, 40.41, 39.74, 44.15, 41.27, 39.36, 40.06] +[146.36] +13.371022462844849 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 47277, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.432827234268188, 'TIME_S_1KI': 0.2206744766856651, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1956.9828476619723, 'W': 146.36} +[40.03, 40.19, 39.31, 40.07, 40.41, 39.74, 44.15, 41.27, 39.36, 40.06, 40.74, 39.25, 45.03, 39.17, 39.46, 39.16, 40.2, 39.66, 39.96, 39.62] +726.615 +36.33075 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 47277, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.432827234268188, 'TIME_S_1KI': 0.2206744766856651, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1956.9828476619723, 'W': 146.36, 'J_1KI': 41.393972706854754, 'W_1KI': 3.095797110645769, 'W_D': 110.02925000000002, 'J_D': 1471.2035733199718, 'W_D_1KI': 2.3273314719631117, 'J_D_1KI': 0.04922756249260976} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_50000_1e-05.json b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_50000_1e-05.json new file mode 100644 index 0000000..a40aca5 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_50000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Epyc 7313P", "CORES": 16, "ITERATIONS": 129830, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.498366355895996, "TIME_S_1KI": 0.08086240742429328, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1343.8986691188811, "W": 102.66, "J_1KI": 10.351218278663492, "W_1KI": 0.7907263344373412, "W_D": 67.04849999999999, "J_D": 877.7166366298197, "W_D_1KI": 0.5164330278055919, "J_D_1KI": 0.003977763443006947} diff --git a/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_50000_1e-05.output b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_50000_1e-05.output new file mode 100644 index 0000000..7b7017b --- /dev/null +++ b/pytorch/output_synthetic_maxcore/epyc_7313p_max_csr_10_10_10_synthetic_50000_1e-05.output @@ -0,0 +1,101 @@ +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.11773824691772461} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 1, ..., 25000, 25000, 25000]), + col_indices=tensor([16845, 2751, 33930, ..., 33536, 38018, 30474]), + values=tensor([0.6858, 0.5470, 0.3190, ..., 0.3110, 0.3011, 0.6040]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.7348, 0.5937, 0.8612, ..., 0.8920, 0.9109, 0.1161]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 0.11773824691772461 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '89180', '-ss', '50000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 7.942249059677124} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 2, ..., 25000, 25000, 25000]), + col_indices=tensor([ 5133, 25494, 8495, ..., 18153, 14682, 27268]), + values=tensor([0.7177, 0.6433, 0.0497, ..., 0.6766, 0.5365, 0.3286]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.6426, 0.1118, 0.3197, ..., 0.9296, 0.1873, 0.3702]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 7.942249059677124 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '117899', '-ss', '50000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 9.535074234008789} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 24998, 24998, 25000]), + col_indices=tensor([ 1468, 1704, 43281, ..., 3197, 24132, 30286]), + values=tensor([1.4228e-01, 5.9740e-01, 9.5210e-06, ..., + 2.4125e-01, 6.2955e-01, 4.9169e-01]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.8788, 0.8743, 0.0964, ..., 0.0391, 0.4204, 0.2909]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 9.535074234008789 seconds + +['apptainer', 'run', 'pytorch-epyc_7313p.sif', 'python3', 'spmv.py', 'synthetic', 'csr', '129830', '-ss', '50000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.498366355895996} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 1, ..., 25000, 25000, 25000]), + col_indices=tensor([16477, 45779, 22583, ..., 30055, 21515, 45820]), + values=tensor([0.8893, 0.7790, 0.5329, ..., 0.5529, 0.2667, 0.0404]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.0469, 0.9963, 0.7558, ..., 0.9652, 0.6676, 0.7778]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 10.498366355895996 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 1, ..., 25000, 25000, 25000]), + col_indices=tensor([16477, 45779, 22583, ..., 30055, 21515, 45820]), + values=tensor([0.8893, 0.7790, 0.5329, ..., 0.5529, 0.2667, 0.0404]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.0469, 0.9963, 0.7558, ..., 0.9652, 0.6676, 0.7778]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 10.498366355895996 seconds + +[41.64, 39.36, 40.21, 39.07, 40.05, 39.18, 39.19, 39.18, 40.04, 39.2] +[102.66] +13.090772151947021 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 129830, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.498366355895996, 'TIME_S_1KI': 0.08086240742429328, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1343.8986691188811, 'W': 102.66} +[41.64, 39.36, 40.21, 39.07, 40.05, 39.18, 39.19, 39.18, 40.04, 39.2, 39.71, 39.93, 38.98, 39.86, 39.33, 39.67, 39.03, 39.93, 39.08, 39.73] +712.23 +35.6115 +{'CPU': 'Epyc 7313P', 'CORES': 16, 'ITERATIONS': 129830, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.498366355895996, 'TIME_S_1KI': 0.08086240742429328, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1343.8986691188811, 'W': 102.66, 'J_1KI': 10.351218278663492, 'W_1KI': 0.7907263344373412, 'W_D': 67.04849999999999, 'J_D': 877.7166366298197, 'W_D_1KI': 0.5164330278055919, 'J_D_1KI': 0.003977763443006947} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_100000_0.0001.json b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_100000_0.0001.json new file mode 100644 index 0000000..1cb7a6a --- /dev/null +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_100000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 33560, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.490610837936401, "TIME_S_1KI": 0.3125926948133612, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1237.3838691329956, "W": 88.17, "J_1KI": 36.87079467023229, "W_1KI": 2.6272348033373065, "W_D": 71.61225, "J_D": 1005.0112621335984, "W_D_1KI": 2.133857270560191, "J_D_1KI": 0.06358335132777686} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_100000_0.0001.output b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_100000_0.0001.output new file mode 100644 index 0000000..14d045d --- /dev/null +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_100000_0.0001.output @@ -0,0 +1,65 @@ +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '100000', '-sd', '0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.3128688335418701} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 17, 23, ..., 999976, + 999990, 1000000]), + col_indices=tensor([ 283, 794, 12077, ..., 88041, 96002, 98956]), + values=tensor([0.6667, 0.7061, 0.4936, ..., 0.0020, 0.2226, 0.8107]), + size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.3746, 0.1787, 0.3326, ..., 0.2981, 0.5262, 0.4171]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 1000000 +Density: 0.0001 +Time: 0.3128688335418701 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '33560', '-ss', '100000', '-sd', '0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.490610837936401} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 12, 24, ..., 999975, + 999989, 1000000]), + col_indices=tensor([ 291, 3246, 3703, ..., 78390, 83116, 86469]), + values=tensor([0.7026, 0.5046, 0.5818, ..., 0.3671, 0.4061, 0.2873]), + size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.3720, 0.0968, 0.4099, ..., 0.6733, 0.7032, 0.3728]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 1000000 +Density: 0.0001 +Time: 10.490610837936401 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 12, 24, ..., 999975, + 999989, 1000000]), + col_indices=tensor([ 291, 3246, 3703, ..., 78390, 83116, 86469]), + values=tensor([0.7026, 0.5046, 0.5818, ..., 0.3671, 0.4061, 0.2873]), + size=(100000, 100000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.3720, 0.0968, 0.4099, ..., 0.6733, 0.7032, 0.3728]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 1000000 +Density: 0.0001 +Time: 10.490610837936401 seconds + +[18.34, 17.84, 18.15, 18.01, 17.99, 21.31, 18.71, 18.25, 18.1, 17.94] +[88.17] +14.034069061279297 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 33560, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.490610837936401, 'TIME_S_1KI': 0.3125926948133612, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1237.3838691329956, 'W': 88.17} +[18.34, 17.84, 18.15, 18.01, 17.99, 21.31, 18.71, 18.25, 18.1, 17.94, 18.37, 20.96, 17.82, 18.03, 18.16, 17.77, 17.89, 17.87, 17.71, 18.52] +331.155 +16.55775 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 33560, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.490610837936401, 'TIME_S_1KI': 0.3125926948133612, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1237.3838691329956, 'W': 88.17, 'J_1KI': 36.87079467023229, 'W_1KI': 2.6272348033373065, 'W_D': 71.61225, 'J_D': 1005.0112621335984, 'W_D_1KI': 2.133857270560191, 'J_D_1KI': 0.06358335132777686} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_100000_1e-05.json b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_100000_1e-05.json new file mode 100644 index 0000000..0f4c2a6 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_100000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 65588, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.838059663772583, "TIME_S_1KI": 0.16524455180479025, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1179.1915578985215, "W": 82.78, "J_1KI": 17.97876986489177, "W_1KI": 1.2621211197170215, "W_D": 66.50475, "J_D": 947.3524977065921, "W_D_1KI": 1.0139774044032446, "J_D_1KI": 0.015459800640410512} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_100000_1e-05.output b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_100000_1e-05.output new file mode 100644 index 0000000..7b64a62 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_100000_1e-05.output @@ -0,0 +1,85 @@ +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '100000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.17682647705078125} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 5, 6, ..., 99999, 99999, + 100000]), + col_indices=tensor([ 3198, 22722, 88522, ..., 47695, 53177, 56584]), + values=tensor([0.0931, 0.9110, 0.9063, ..., 0.1473, 0.7899, 0.0419]), + size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) +tensor([0.4850, 0.3145, 0.7013, ..., 0.1298, 0.2149, 0.6470]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 100000 +Density: 1e-05 +Time: 0.17682647705078125 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '59380', '-ss', '100000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 9.506051540374756} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 2, ..., 99999, 99999, + 100000]), + col_indices=tensor([45126, 76716, 27115, ..., 82599, 76675, 53817]), + values=tensor([0.5870, 0.5895, 0.9992, ..., 0.5279, 0.4372, 0.6677]), + size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) +tensor([0.8372, 0.3480, 0.3478, ..., 0.9164, 0.0517, 0.0932]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 100000 +Density: 1e-05 +Time: 9.506051540374756 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '65588', '-ss', '100000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [100000, 100000], "MATRIX_ROWS": 100000, "MATRIX_SIZE": 10000000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.838059663772583} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 3, ..., 100000, 100000, + 100000]), + col_indices=tensor([69179, 69629, 89362, ..., 28216, 37414, 39020]), + values=tensor([0.6325, 0.8110, 0.8083, ..., 0.4927, 0.7217, 0.7562]), + size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) +tensor([0.6752, 0.8314, 0.5534, ..., 0.1964, 0.0025, 0.5959]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 100000 +Density: 1e-05 +Time: 10.838059663772583 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 3, ..., 100000, 100000, + 100000]), + col_indices=tensor([69179, 69629, 89362, ..., 28216, 37414, 39020]), + values=tensor([0.6325, 0.8110, 0.8083, ..., 0.4927, 0.7217, 0.7562]), + size=(100000, 100000), nnz=100000, layout=torch.sparse_csr) +tensor([0.6752, 0.8314, 0.5534, ..., 0.1964, 0.0025, 0.5959]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([100000, 100000]) +Rows: 100000 +Size: 10000000000 +NNZ: 100000 +Density: 1e-05 +Time: 10.838059663772583 seconds + +[18.44, 17.92, 18.39, 18.06, 17.93, 17.86, 18.18, 18.13, 18.19, 17.89] +[82.78] +14.244884729385376 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 65588, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.838059663772583, 'TIME_S_1KI': 0.16524455180479025, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1179.1915578985215, 'W': 82.78} +[18.44, 17.92, 18.39, 18.06, 17.93, 17.86, 18.18, 18.13, 18.19, 17.89, 18.4, 17.89, 17.79, 17.88, 18.16, 18.32, 18.28, 17.67, 18.23, 18.52] +325.505 +16.27525 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 65588, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [100000, 100000], 'MATRIX_ROWS': 100000, 'MATRIX_SIZE': 10000000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.838059663772583, 'TIME_S_1KI': 0.16524455180479025, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1179.1915578985215, 'W': 82.78, 'J_1KI': 17.97876986489177, 'W_1KI': 1.2621211197170215, 'W_D': 66.50475, 'J_D': 947.3524977065921, 'W_D_1KI': 1.0139774044032446, 'J_D_1KI': 0.015459800640410512} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.0001.json b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.0001.json new file mode 100644 index 0000000..ff48609 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 240931, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.228987216949463, "TIME_S_1KI": 0.04245608583764423, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 972.0923814868927, "W": 74.28, "J_1KI": 4.034733519085932, "W_1KI": 0.30830403725547983, "W_D": 58.167500000000004, "J_D": 761.2302584832908, "W_D_1KI": 0.2414280437137604, "J_D_1KI": 0.0010020630127038877} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.0001.output b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.0001.output new file mode 100644 index 0000000..36a267f --- /dev/null +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.0001.output @@ -0,0 +1,81 @@ +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.062392234802246094} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2, 3, ..., 9997, 9999, 10000]), + col_indices=tensor([7179, 9532, 8081, ..., 4031, 8581, 2872]), + values=tensor([0.3998, 0.4929, 0.1773, ..., 0.2243, 0.6349, 0.5923]), + size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) +tensor([0.2436, 0.6971, 0.0487, ..., 0.2986, 0.9140, 0.9941]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000 +Density: 0.0001 +Time: 0.062392234802246094 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '168290', '-ss', '10000', '-sd', '0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 7.3342225551605225} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 2, ..., 10000, 10000, 10000]), + col_indices=tensor([7117, 7845, 2903, ..., 807, 7859, 5458]), + values=tensor([0.8544, 0.9061, 0.0037, ..., 0.6594, 0.1915, 0.6916]), + size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) +tensor([0.0592, 0.4192, 0.0774, ..., 0.7897, 0.5835, 0.6060]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000 +Density: 0.0001 +Time: 7.3342225551605225 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '240931', '-ss', '10000', '-sd', '0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 10000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.228987216949463} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 4, ..., 9999, 10000, 10000]), + col_indices=tensor([1962, 399, 6914, ..., 7707, 7379, 8204]), + values=tensor([0.6427, 0.2940, 0.2788, ..., 0.7421, 0.9158, 0.7396]), + size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) +tensor([0.3387, 0.7040, 0.3501, ..., 0.4098, 0.3396, 0.7875]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000 +Density: 0.0001 +Time: 10.228987216949463 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 1, 4, ..., 9999, 10000, 10000]), + col_indices=tensor([1962, 399, 6914, ..., 7707, 7379, 8204]), + values=tensor([0.6427, 0.2940, 0.2788, ..., 0.7421, 0.9158, 0.7396]), + size=(10000, 10000), nnz=10000, layout=torch.sparse_csr) +tensor([0.3387, 0.7040, 0.3501, ..., 0.4098, 0.3396, 0.7875]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 10000 +Density: 0.0001 +Time: 10.228987216949463 seconds + +[18.32, 17.9, 17.75, 17.66, 17.81, 17.98, 17.81, 17.63, 17.93, 18.05] +[74.28] +13.086865663528442 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 240931, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.228987216949463, 'TIME_S_1KI': 0.04245608583764423, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 972.0923814868927, 'W': 74.28} +[18.32, 17.9, 17.75, 17.66, 17.81, 17.98, 17.81, 17.63, 17.93, 18.05, 18.35, 17.85, 17.96, 17.83, 18.33, 17.85, 17.85, 17.82, 18.0, 17.86] +322.25 +16.1125 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 240931, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 10000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.228987216949463, 'TIME_S_1KI': 0.04245608583764423, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 972.0923814868927, 'W': 74.28, 'J_1KI': 4.034733519085932, 'W_1KI': 0.30830403725547983, 'W_D': 58.167500000000004, 'J_D': 761.2302584832908, 'W_D_1KI': 0.2414280437137604, 'J_D_1KI': 0.0010020630127038877} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.001.json b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.001.json new file mode 100644 index 0000000..4c2a534 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.001.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 201421, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.7230703830719, "TIME_S_1KI": 0.053237102303493176, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1117.283116903305, "W": 79.97, "J_1KI": 5.547004120242204, "W_1KI": 0.3970291081863361, "W_D": 63.60725, "J_D": 888.6745846898556, "W_D_1KI": 0.31579254397505724, "J_D_1KI": 0.001567823335079546} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.001.output b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.001.output new file mode 100644 index 0000000..1cf380c --- /dev/null +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.001.output @@ -0,0 +1,85 @@ +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.06886577606201172} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 12, 19, ..., 99984, 99991, + 100000]), + col_indices=tensor([1627, 2251, 2667, ..., 7083, 9414, 9995]), + values=tensor([0.7763, 0.8562, 0.0227, ..., 0.7081, 0.0734, 0.4206]), + size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) +tensor([0.6749, 0.4550, 0.5239, ..., 0.7938, 0.7493, 0.7052]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 100000 +Density: 0.001 +Time: 0.06886577606201172 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '152470', '-ss', '10000', '-sd', '0.001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 7.948191404342651} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 14, 22, ..., 99977, 99992, + 100000]), + col_indices=tensor([ 579, 1179, 1463, ..., 6326, 6539, 6627]), + values=tensor([0.4661, 0.6191, 0.1376, ..., 0.4152, 0.1640, 0.4813]), + size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) +tensor([0.0160, 0.8279, 0.2510, ..., 0.4302, 0.2870, 0.5452]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 100000 +Density: 0.001 +Time: 7.948191404342651 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '201421', '-ss', '10000', '-sd', '0.001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 100000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.7230703830719} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 11, 17, ..., 99977, 99988, + 100000]), + col_indices=tensor([ 243, 1001, 2007, ..., 7428, 8081, 8733]), + values=tensor([0.5597, 0.5588, 0.7631, ..., 0.2707, 0.4657, 0.9680]), + size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) +tensor([0.1756, 0.9887, 0.2623, ..., 0.3846, 0.9664, 0.0716]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 100000 +Density: 0.001 +Time: 10.7230703830719 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 11, 17, ..., 99977, 99988, + 100000]), + col_indices=tensor([ 243, 1001, 2007, ..., 7428, 8081, 8733]), + values=tensor([0.5597, 0.5588, 0.7631, ..., 0.2707, 0.4657, 0.9680]), + size=(10000, 10000), nnz=100000, layout=torch.sparse_csr) +tensor([0.1756, 0.9887, 0.2623, ..., 0.3846, 0.9664, 0.0716]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 100000 +Density: 0.001 +Time: 10.7230703830719 seconds + +[20.0, 17.95, 18.01, 18.57, 18.05, 17.91, 18.47, 18.3, 18.35, 18.45] +[79.97] +13.971278190612793 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 201421, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.7230703830719, 'TIME_S_1KI': 0.053237102303493176, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1117.283116903305, 'W': 79.97} +[20.0, 17.95, 18.01, 18.57, 18.05, 17.91, 18.47, 18.3, 18.35, 18.45, 18.1, 18.11, 18.32, 17.8, 18.31, 17.97, 17.94, 17.86, 17.95, 18.22] +327.255 +16.36275 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 201421, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 100000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.7230703830719, 'TIME_S_1KI': 0.053237102303493176, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1117.283116903305, 'W': 79.97, 'J_1KI': 5.547004120242204, 'W_1KI': 0.3970291081863361, 'W_D': 63.60725, 'J_D': 888.6745846898556, 'W_D_1KI': 0.31579254397505724, 'J_D_1KI': 0.001567823335079546} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.01.json b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.01.json new file mode 100644 index 0000000..7e50353 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.01.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 58758, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.521214962005615, "TIME_S_1KI": 0.1790601273359477, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1248.3679735660553, "W": 87.25, "J_1KI": 21.245923509412425, "W_1KI": 1.484904183260152, "W_D": 70.41275, "J_D": 1007.4615705525875, "W_D_1KI": 1.1983517138091835, "J_D_1KI": 0.020394698829251906} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.01.output b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.01.output new file mode 100644 index 0000000..560bbb8 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.01.output @@ -0,0 +1,85 @@ +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.01'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 0.19649839401245117} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 90, 190, ..., 999800, + 999902, 1000000]), + col_indices=tensor([ 52, 87, 188, ..., 9706, 9893, 9952]), + values=tensor([0.1675, 0.8959, 0.7675, ..., 0.1378, 0.1178, 0.3486]), + size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.9304, 0.9814, 0.5110, ..., 0.0040, 0.2898, 0.8662]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000000 +Density: 0.01 +Time: 0.19649839401245117 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '53435', '-ss', '10000', '-sd', '0.01'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 9.548681497573853} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 94, 197, ..., 999809, + 999893, 1000000]), + col_indices=tensor([ 61, 165, 222, ..., 9905, 9907, 9919]), + values=tensor([0.6376, 0.5545, 0.9458, ..., 0.6333, 0.2848, 0.3343]), + size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.2834, 0.7754, 0.6738, ..., 0.4578, 0.3713, 0.7996]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000000 +Density: 0.01 +Time: 9.548681497573853 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '58758', '-ss', '10000', '-sd', '0.01'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000000, "MATRIX_DENSITY": 0.01, "TIME_S": 10.521214962005615} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 109, 219, ..., 999802, + 999904, 1000000]), + col_indices=tensor([ 63, 137, 260, ..., 9828, 9873, 9905]), + values=tensor([0.1449, 0.8321, 0.3255, ..., 0.3929, 0.1108, 0.3040]), + size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.9048, 0.1055, 0.1608, ..., 0.3713, 0.7919, 0.0232]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000000 +Density: 0.01 +Time: 10.521214962005615 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 109, 219, ..., 999802, + 999904, 1000000]), + col_indices=tensor([ 63, 137, 260, ..., 9828, 9873, 9905]), + values=tensor([0.1449, 0.8321, 0.3255, ..., 0.3929, 0.1108, 0.3040]), + size=(10000, 10000), nnz=1000000, layout=torch.sparse_csr) +tensor([0.9048, 0.1055, 0.1608, ..., 0.3713, 0.7919, 0.0232]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000000 +Density: 0.01 +Time: 10.521214962005615 seconds + +[21.83, 18.04, 18.3, 17.99, 18.07, 21.44, 19.02, 18.2, 18.32, 17.87] +[87.25] +14.307942390441895 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 58758, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.521214962005615, 'TIME_S_1KI': 0.1790601273359477, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1248.3679735660553, 'W': 87.25} +[21.83, 18.04, 18.3, 17.99, 18.07, 21.44, 19.02, 18.2, 18.32, 17.87, 18.33, 21.51, 17.89, 18.53, 18.27, 17.81, 18.21, 18.47, 18.07, 19.18] +336.745 +16.83725 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 58758, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000000, 'MATRIX_DENSITY': 0.01, 'TIME_S': 10.521214962005615, 'TIME_S_1KI': 0.1790601273359477, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1248.3679735660553, 'W': 87.25, 'J_1KI': 21.245923509412425, 'W_1KI': 1.484904183260152, 'W_D': 70.41275, 'J_D': 1007.4615705525875, 'W_D_1KI': 1.1983517138091835, 'J_D_1KI': 0.020394698829251906} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.05.json b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.05.json new file mode 100644 index 0000000..c7df7b8 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.05.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 8801, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.496035814285278, "TIME_S_1KI": 1.1925958202801135, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1351.109428257942, "W": 82.21, "J_1KI": 153.5177171069131, "W_1KI": 9.340983979093284, "W_D": 65.94874999999999, "J_D": 1083.858142644763, "W_D_1KI": 7.493324622202022, "J_D_1KI": 0.8514174096354984} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.05.output b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.05.output new file mode 100644 index 0000000..7df5a22 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_0.05.output @@ -0,0 +1,65 @@ +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '0.05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 1.1929755210876465} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 485, 983, ..., 4998996, + 4999523, 5000000]), + col_indices=tensor([ 11, 47, 113, ..., 9897, 9981, 9996]), + values=tensor([0.8953, 0.8081, 0.2668, ..., 0.4279, 0.4927, 0.2076]), + size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.3301, 0.9128, 0.0218, ..., 0.3705, 0.4449, 0.9102]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000000 +Density: 0.05 +Time: 1.1929755210876465 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '8801', '-ss', '10000', '-sd', '0.05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 5000000, "MATRIX_DENSITY": 0.05, "TIME_S": 10.496035814285278} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 509, 1022, ..., 4998954, + 4999475, 5000000]), + col_indices=tensor([ 16, 27, 72, ..., 9970, 9971, 9996]), + values=tensor([0.8982, 0.6195, 0.1567, ..., 0.8636, 0.4059, 0.3830]), + size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.3042, 0.6883, 0.8193, ..., 0.9178, 0.9438, 0.4311]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000000 +Density: 0.05 +Time: 10.496035814285278 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 509, 1022, ..., 4998954, + 4999475, 5000000]), + col_indices=tensor([ 16, 27, 72, ..., 9970, 9971, 9996]), + values=tensor([0.8982, 0.6195, 0.1567, ..., 0.8636, 0.4059, 0.3830]), + size=(10000, 10000), nnz=5000000, layout=torch.sparse_csr) +tensor([0.3042, 0.6883, 0.8193, ..., 0.9178, 0.9438, 0.4311]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 5000000 +Density: 0.05 +Time: 10.496035814285278 seconds + +[18.39, 18.45, 17.88, 18.05, 18.11, 18.03, 17.97, 17.99, 18.04, 18.19] +[82.21] +16.434854984283447 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 8801, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.496035814285278, 'TIME_S_1KI': 1.1925958202801135, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1351.109428257942, 'W': 82.21} +[18.39, 18.45, 17.88, 18.05, 18.11, 18.03, 17.97, 17.99, 18.04, 18.19, 18.32, 17.88, 17.95, 17.82, 18.37, 18.15, 18.04, 17.93, 18.22, 17.79] +325.225 +16.26125 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 8801, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 5000000, 'MATRIX_DENSITY': 0.05, 'TIME_S': 10.496035814285278, 'TIME_S_1KI': 1.1925958202801135, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1351.109428257942, 'W': 82.21, 'J_1KI': 153.5177171069131, 'W_1KI': 9.340983979093284, 'W_D': 65.94874999999999, 'J_D': 1083.858142644763, 'W_D_1KI': 7.493324622202022, 'J_D_1KI': 0.8514174096354984} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_1e-05.json b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_1e-05.json new file mode 100644 index 0000000..e2fe041 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 282031, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.372447967529297, "TIME_S_1KI": 0.036777687444037345, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1003.1455927085877, "W": 73.48, "J_1KI": 3.5568628721969846, "W_1KI": 0.26053873510358794, "W_D": 57.203, "J_D": 780.9327346177101, "W_D_1KI": 0.20282522134091643, "J_D_1KI": 0.0007191593170286829} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_1e-05.output b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_1e-05.output new file mode 100644 index 0000000..e246539 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_10000_1e-05.output @@ -0,0 +1,1414 @@ +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '10000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.05941200256347656} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), + col_indices=tensor([9369, 4292, 7681, 931, 2083, 7410, 1936, 8751, 948, + 4175, 1888, 1345, 5560, 8024, 9671, 1813, 200, 3639, + 4209, 3914, 3664, 7493, 1335, 4478, 2357, 7163, 3091, + 1065, 1561, 1003, 6097, 7558, 3015, 3713, 2757, 4724, + 4711, 6411, 2158, 193, 8251, 155, 227, 7018, 2516, + 6344, 9278, 6665, 5922, 3495, 9818, 2312, 5020, 771, + 4972, 1230, 8287, 7235, 5784, 9154, 6363, 9057, 5066, + 5544, 6958, 630, 2095, 1478, 1039, 1263, 2930, 2777, + 7763, 5296, 5286, 2070, 731, 3847, 9033, 1007, 9514, + 5297, 1206, 2620, 5020, 6860, 5221, 4179, 9153, 5412, + 6136, 2995, 6232, 9878, 9074, 9378, 3413, 1935, 7692, + 8374, 9520, 993, 5604, 4102, 1183, 6775, 1244, 8245, + 5932, 1440, 3804, 7398, 4378, 8195, 8257, 8791, 1040, + 7963, 4734, 2450, 6959, 5246, 9222, 1, 7047, 8234, + 866, 6402, 4633, 7505, 2769, 4851, 6107, 7344, 7189, + 7328, 3897, 965, 5441, 5357, 5066, 1754, 6254, 5498, + 7113, 89, 760, 8137, 2865, 5201, 4600, 5721, 1748, + 4799, 198, 561, 973, 1342, 1462, 7299, 4893, 7284, + 4504, 5041, 5263, 8101, 2983, 3117, 9593, 1776, 912, + 1800, 6114, 293, 8830, 5057, 9808, 6301, 342, 7503, + 1661, 4113, 4237, 5473, 6194, 2962, 5280, 3993, 7639, + 2123, 1005, 432, 3307, 4099, 1416, 6710, 7849, 719, + 3636, 4849, 2857, 6681, 3061, 4205, 4356, 4430, 9178, + 19, 6497, 5369, 4515, 7344, 3800, 3469, 5969, 5902, + 4203, 2153, 6321, 2664, 9623, 5060, 3065, 9561, 4385, + 5272, 8081, 7587, 6655, 6103, 4233, 3378, 5753, 279, + 844, 9757, 8250, 7589, 5060, 8284, 4520, 7172, 5654, + 2330, 281, 5681, 5734, 533, 8626, 9457, 995, 6177, + 714, 9777, 8353, 7141, 3996, 8060, 8903, 2572, 492, + 4226, 1366, 1687, 4444, 1185, 6850, 4034, 8390, 9196, + 7811, 2375, 5756, 7147, 4177, 6207, 2461, 9116, 8302, + 856, 6642, 9846, 8355, 7524, 4741, 4031, 9989, 4115, + 7857, 8052, 8671, 2448, 7790, 8481, 5526, 255, 123, + 7179, 6917, 7059, 4981, 8522, 3823, 8374, 9363, 2579, + 719, 3170, 2065, 2123, 6483, 2368, 6179, 5946, 2044, + 9039, 7593, 9755, 9345, 255, 4168, 1474, 6322, 8273, + 3870, 5214, 4849, 6546, 2060, 2438, 5644, 9600, 3633, + 4659, 188, 9526, 1427, 319, 8390, 3521, 3476, 479, + 3575, 61, 4594, 635, 5082, 6907, 8592, 3784, 2982, + 3662, 4786, 1972, 762, 8064, 6674, 530, 3912, 5854, + 8548, 1089, 3237, 6468, 8726, 436, 4844, 6699, 9575, + 1656, 9217, 3900, 4247, 8086, 5534, 9169, 1634, 9645, + 4528, 7198, 4697, 9088, 8781, 5626, 1215, 129, 5598, + 1585, 449, 903, 5853, 9516, 8438, 7765, 8525, 4032, + 6984, 216, 180, 9590, 285, 9447, 2370, 152, 3856, + 4746, 5575, 8833, 7314, 8256, 1547, 7346, 6, 9884, + 3393, 5101, 4193, 7777, 6780, 8505, 196, 6530, 5802, + 6109, 1711, 411, 670, 8958, 6114, 6213, 2109, 1552, + 3886, 9976, 3912, 7466, 2360, 2339, 8975, 2160, 6808, + 983, 5935, 5386, 4300, 5934, 1130, 4710, 1592, 1841, + 3608, 3413, 1472, 2712, 5373, 1880, 6288, 5094, 1269, + 3993, 6098, 9131, 5653, 5682, 6923, 3163, 1227, 2575, + 2745, 3093, 6715, 9823, 2192, 3993, 8479, 9787, 7579, + 2022, 1182, 5457, 5227, 5758, 1, 1790, 6759, 3391, + 1588, 544, 9366, 4383, 2855, 4468, 2468, 4088, 7238, + 5779, 4678, 2400, 5780, 7097, 6321, 9466, 4336, 6810, + 6425, 1843, 4019, 6686, 7926, 274, 184, 1068, 61, + 7363, 7575, 4978, 1807, 6937, 8902, 1870, 416, 2221, + 4968, 4159, 1877, 510, 7447, 7018, 7917, 2673, 4103, + 7464, 6374, 4844, 1357, 6680, 9952, 9107, 8977, 8070, + 7535, 7617, 3548, 3942, 3624, 2103, 1342, 815, 8145, + 42, 1784, 8288, 3031, 7397, 4244, 5651, 2259, 1297, + 9854, 9916, 3346, 9566, 8995, 6587, 9452, 7647, 4825, + 4985, 8252, 2532, 4007, 8716, 6717, 6733, 3323, 9856, + 3231, 4061, 5785, 9390, 6595, 9382, 9945, 75, 1750, + 9402, 428, 5377, 1787, 9936, 561, 7031, 9872, 8282, + 7760, 7533, 2136, 3108, 4844, 1988, 2923, 495, 4478, + 682, 8508, 1432, 4696, 1879, 3229, 8845, 1212, 4612, + 2250, 4232, 3044, 6043, 3817, 6746, 5915, 5264, 9867, + 141, 7835, 5729, 4184, 315, 8998, 2050, 3600, 4117, + 5862, 2996, 2178, 4555, 884, 5987, 4334, 9847, 1952, + 4836, 3829, 984, 7244, 2084, 835, 4528, 7792, 9008, + 5334, 7853, 8949, 2146, 9193, 6477, 3689, 2049, 2288, + 5464, 4792, 7546, 6699, 9477, 2890, 7386, 9757, 1510, + 4437, 9048, 3113, 3313, 8431, 3646, 2338, 9855, 9449, + 3900, 4813, 4177, 5508, 6064, 5008, 6187, 6648, 242, + 7481, 9103, 7824, 2626, 7786, 2902, 8626, 641, 5887, + 616, 2318, 7063, 1731, 4264, 2596, 6108, 7367, 8429, + 7261, 4316, 7571, 7312, 5783, 1021, 3006, 6723, 396, + 4261, 8062, 2569, 7403, 7238, 9524, 5428, 3860, 8888, + 9041, 2258, 3911, 1000, 2523, 6306, 3819, 107, 794, + 8182, 9699, 687, 3249, 6973, 644, 8956, 9151, 1275, + 7335, 8, 278, 7259, 7854, 1802, 6079, 3187, 5102, + 1589, 455, 790, 2994, 8659, 2130, 7127, 3242, 8700, + 1793, 5489, 5845, 8896, 3608, 2206, 8070, 6754, 7664, + 8760, 6948, 6834, 5734, 6896, 2430, 9242, 3118, 2381, + 3495, 4550, 8869, 2771, 7295, 4456, 7206, 3674, 1437, + 7347, 6143, 6252, 5892, 3134, 2631, 655, 4085, 6250, + 4349, 3772, 3760, 6873, 7209, 4226, 8586, 7240, 8091, + 4508, 2034, 948, 8704, 2561, 1268, 8514, 2330, 1681, + 1205, 4009, 1235, 1184, 1415, 9349, 8198, 3685, 5912, + 4711, 8526, 717, 1752, 9308, 9720, 1876, 498, 8065, + 5045, 3908, 634, 8213, 6037, 7420, 6893, 1058, 8086, + 1739, 7540, 1922, 220, 5058, 956, 1526, 9056, 9892, + 8318, 9472, 1910, 5495, 7506, 2778, 8197, 1359, 7540, + 5891, 6992, 9821, 6909, 9480, 4367, 8049, 1416, 265, + 1247, 113, 1688, 975, 3650, 6084, 2184, 6816, 1016, + 4758, 2096, 7591, 2095, 6481, 7845, 3341, 6910, 5458, + 2075, 7414, 7039, 5914, 3393, 633, 9968, 1852, 6911, + 7941, 9946, 5378, 6983, 7821, 7193, 910, 7269, 118, + 7064, 7561, 4796, 7921, 6326, 9540, 9984, 6195, 6109, + 9277, 5989, 1450, 9210, 2130, 5194, 7550, 2719, 1801, + 8480, 7519, 5324, 5739, 6289, 809, 9366, 4086, 2659, + 9058, 5262, 5251, 4342, 66, 7702, 827, 9185, 8548, + 1287, 9991, 7545, 1320, 9173, 9802, 6829, 481, 9759, + 7677, 4822, 9474, 9179, 6647, 1253, 4968, 3118, 1817, + 9521, 5504, 4448, 1197, 3040, 9515, 3309, 6082, 4129, + 3262, 9477, 7455, 9950, 2475, 5368, 190, 6063, 8037, + 1095, 4438, 5638, 7382, 4544, 6912, 6243, 3964, 6238, + 2247, 6716, 399, 9908, 7557, 5599, 8493, 9594, 2531, + 8846, 1544, 6229, 1594, 1978, 9863, 4417, 9023, 2082, + 3833]), + values=tensor([5.3494e-01, 7.0226e-01, 2.1671e-01, 7.9716e-01, + 1.5294e-01, 9.1431e-01, 3.5575e-01, 6.1020e-01, + 4.6334e-01, 2.3542e-01, 2.1404e-01, 5.0982e-01, + 8.3132e-01, 3.2115e-01, 7.1669e-01, 7.2224e-01, + 8.5851e-01, 9.9803e-01, 6.5428e-01, 1.3530e-01, + 3.4815e-01, 1.7625e-01, 9.6787e-01, 7.8503e-01, + 7.3634e-01, 6.9234e-02, 8.8729e-01, 8.3630e-01, + 2.7559e-01, 9.3453e-01, 4.5741e-01, 5.3532e-01, + 2.7304e-01, 7.2083e-01, 5.5287e-01, 6.9040e-02, + 1.9572e-01, 6.8429e-01, 8.4458e-01, 2.7459e-02, + 4.7087e-01, 9.1962e-01, 6.5292e-01, 4.5367e-02, + 9.6999e-01, 5.0419e-01, 3.9615e-01, 9.2229e-01, + 2.3951e-01, 2.8038e-01, 5.6660e-01, 5.0301e-01, + 5.0398e-01, 2.5761e-02, 6.3277e-01, 4.9414e-01, + 4.0270e-01, 7.3018e-01, 3.1073e-01, 1.4216e-01, + 4.3242e-01, 8.9035e-01, 4.2689e-01, 1.8602e-01, + 5.6458e-01, 6.9089e-01, 3.0015e-01, 7.4904e-01, + 7.6259e-01, 7.6037e-01, 6.3282e-01, 7.9171e-01, + 7.9776e-01, 6.7919e-02, 6.6168e-01, 5.2451e-01, + 4.2208e-01, 7.2727e-01, 3.5238e-01, 2.9475e-01, + 1.4905e-01, 3.9320e-01, 4.7593e-01, 3.0412e-01, + 5.5938e-01, 8.1894e-01, 4.2428e-01, 3.2530e-02, + 6.3128e-01, 4.9935e-01, 5.6138e-01, 5.5402e-01, + 5.6829e-01, 3.9829e-01, 2.3937e-01, 9.5803e-01, + 6.7789e-01, 1.1007e-01, 1.3123e-01, 6.9715e-01, + 9.4735e-01, 5.7383e-01, 6.0802e-01, 5.8651e-01, + 3.5996e-01, 6.8343e-01, 7.6429e-01, 6.1667e-01, + 8.5050e-01, 3.4478e-01, 7.9391e-01, 8.7568e-01, + 3.9328e-01, 6.9384e-02, 4.4575e-01, 6.4553e-01, + 6.9449e-01, 1.3080e-01, 5.8886e-01, 7.4885e-01, + 9.8388e-01, 3.8011e-01, 8.9519e-01, 1.7299e-01, + 3.3820e-01, 1.2534e-01, 3.2668e-01, 9.2283e-03, + 1.2917e-01, 8.8043e-01, 4.2154e-01, 4.8916e-01, + 4.3408e-01, 5.5831e-01, 1.3679e-01, 6.6307e-01, + 7.8115e-01, 9.4496e-01, 1.1070e-01, 7.6608e-01, + 6.1543e-01, 4.3543e-01, 9.7861e-01, 2.5149e-01, + 7.4679e-01, 1.9167e-01, 3.6069e-01, 7.1365e-02, + 6.4093e-01, 6.3832e-02, 3.1763e-01, 7.9068e-01, + 5.7565e-01, 3.4190e-01, 4.6958e-01, 8.0388e-01, + 8.3006e-01, 7.2872e-01, 8.3361e-01, 9.8341e-01, + 4.6743e-01, 5.0359e-01, 1.9547e-01, 1.9260e-01, + 4.0587e-01, 6.7866e-01, 5.4252e-01, 5.6365e-02, + 6.9855e-01, 1.7592e-03, 3.4492e-01, 9.2538e-03, + 8.1518e-01, 9.4687e-01, 1.4218e-01, 1.9527e-01, + 7.5539e-02, 4.4876e-01, 4.2342e-01, 5.0992e-01, + 9.9602e-01, 5.3648e-01, 7.5969e-01, 9.3006e-01, + 8.3706e-01, 9.0337e-01, 9.2300e-01, 7.0675e-01, + 4.2837e-01, 2.3719e-04, 6.5248e-01, 4.7451e-01, + 2.4181e-01, 4.2638e-01, 9.2778e-01, 8.1603e-01, + 6.8197e-01, 1.8440e-01, 3.6134e-01, 6.1226e-01, + 1.0357e-01, 6.9728e-01, 6.5411e-01, 2.3559e-01, + 8.7314e-01, 6.9377e-01, 9.9581e-01, 5.7317e-01, + 3.0578e-01, 5.5796e-01, 9.6768e-01, 8.4203e-01, + 5.1244e-01, 4.2505e-01, 9.4739e-02, 8.0927e-01, + 3.4125e-01, 9.8507e-01, 9.1922e-01, 9.9708e-01, + 2.0460e-01, 4.0908e-01, 4.5041e-01, 3.1945e-01, + 6.3554e-01, 8.8918e-01, 3.6344e-01, 4.7777e-01, + 4.3635e-01, 3.4375e-01, 8.0383e-01, 5.4128e-01, + 2.4282e-01, 4.9469e-01, 1.0903e-02, 6.4223e-01, + 9.2686e-01, 3.4284e-02, 6.1503e-01, 1.2871e-01, + 6.9691e-01, 9.5051e-02, 2.6109e-01, 2.7993e-01, + 1.4483e-01, 9.5486e-01, 5.9376e-01, 6.6076e-01, + 6.6898e-01, 9.1987e-01, 8.9167e-01, 5.8476e-01, + 1.6670e-01, 1.8504e-01, 6.4368e-01, 7.7421e-01, + 6.7459e-02, 6.4579e-01, 8.9247e-02, 3.1335e-01, + 4.3829e-01, 3.4589e-01, 8.0592e-01, 8.6378e-01, + 8.9032e-01, 4.7166e-01, 5.3857e-01, 3.6422e-01, + 5.2627e-01, 8.2517e-01, 3.0069e-01, 3.0466e-02, + 6.9778e-01, 6.1976e-01, 3.0304e-01, 6.2317e-01, + 7.5123e-01, 3.9843e-01, 9.2485e-01, 9.1498e-01, + 6.7657e-01, 5.0198e-01, 1.6260e-01, 5.2710e-01, + 7.0488e-01, 4.3809e-02, 4.9102e-02, 1.1326e-01, + 7.2666e-01, 9.8875e-01, 6.3819e-01, 7.3223e-01, + 5.9101e-01, 9.5853e-01, 9.0991e-01, 4.3939e-01, + 5.5491e-01, 4.2698e-01, 1.1272e-01, 1.5961e-01, + 5.3397e-01, 1.4795e-01, 1.8302e-01, 8.0099e-01, + 3.5810e-01, 6.3189e-01, 5.4625e-01, 1.4642e-01, + 2.4942e-01, 2.8846e-02, 8.1257e-01, 8.2196e-01, + 5.1545e-01, 2.4526e-01, 5.6993e-01, 8.8549e-01, + 8.8233e-01, 4.5438e-01, 8.5072e-01, 1.1630e-01, + 9.1439e-02, 2.5783e-01, 7.9677e-02, 6.3369e-02, + 9.5527e-01, 6.4158e-01, 8.9300e-01, 2.3017e-01, + 8.8755e-01, 5.2765e-01, 5.7778e-01, 9.8691e-01, + 9.5033e-01, 5.4723e-01, 5.2403e-01, 8.6838e-02, + 3.3533e-01, 7.5633e-01, 1.8832e-01, 4.9157e-01, + 5.9068e-01, 9.0864e-01, 1.5880e-01, 1.2158e-01, + 8.1804e-01, 9.9871e-01, 7.7085e-01, 2.5916e-01, + 5.3921e-01, 2.7717e-01, 8.1364e-01, 6.0833e-01, + 6.5527e-01, 3.0418e-01, 1.9193e-01, 2.8446e-01, + 9.8016e-01, 1.6921e-01, 8.1176e-01, 3.8852e-01, + 2.2540e-02, 4.2125e-01, 5.2474e-01, 9.7758e-01, + 3.2835e-01, 8.6360e-01, 5.9029e-01, 6.0406e-01, + 1.1566e-01, 3.1892e-01, 3.8155e-01, 2.7657e-01, + 2.6755e-02, 1.5956e-01, 8.0951e-02, 6.1243e-01, + 1.5359e-01, 8.5427e-02, 2.9165e-01, 5.5011e-01, + 8.2504e-01, 8.6517e-01, 4.6796e-01, 1.5989e-01, + 3.2647e-01, 5.4660e-02, 9.8974e-01, 8.4641e-01, + 7.9581e-01, 5.8920e-01, 7.1725e-01, 1.8775e-01, + 3.6992e-01, 5.7226e-01, 8.4525e-01, 6.5221e-01, + 8.3817e-01, 6.9235e-01, 1.8657e-01, 8.7594e-01, + 1.1613e-02, 9.3848e-01, 1.5094e-02, 3.7415e-01, + 7.0746e-01, 7.7351e-01, 6.5104e-01, 7.8463e-01, + 8.5070e-01, 4.6198e-01, 8.9265e-01, 6.7845e-01, + 9.6676e-01, 2.7995e-01, 9.1269e-01, 2.6040e-01, + 5.4642e-04, 4.9587e-01, 7.9907e-01, 3.4662e-01, + 1.2440e-01, 3.0538e-01, 3.8175e-01, 1.5146e-01, + 2.4863e-01, 3.9598e-01, 5.1940e-01, 2.4951e-02, + 6.8522e-01, 6.4197e-01, 3.8664e-01, 2.5372e-01, + 3.0972e-01, 4.5998e-01, 5.9974e-01, 4.2295e-01, + 7.6272e-01, 7.0890e-02, 5.0215e-01, 3.6695e-01, + 1.1325e-01, 5.4199e-02, 2.0994e-01, 1.5755e-01, + 9.2191e-02, 7.5356e-02, 4.0738e-01, 1.1548e-01, + 8.8495e-01, 4.6492e-01, 9.2065e-01, 8.5062e-01, + 1.8884e-01, 9.1183e-01, 6.9594e-01, 3.0290e-01, + 7.5701e-01, 1.0833e-01, 8.9416e-02, 5.4321e-01, + 6.5455e-01, 1.9349e-01, 7.3463e-01, 5.3061e-01, + 1.2923e-01, 6.7922e-01, 4.3448e-01, 5.8524e-02, + 1.0936e-01, 6.1550e-01, 3.1482e-01, 2.0198e-01, + 7.7773e-01, 4.0564e-01, 8.1843e-01, 4.1686e-01, + 7.5219e-02, 6.8049e-01, 7.8257e-01, 1.2532e-01, + 5.4710e-01, 5.9733e-01, 6.1573e-01, 2.0190e-01, + 3.1840e-01, 1.9388e-01, 4.4946e-01, 7.3374e-01, + 1.3914e-01, 6.2631e-01, 8.4141e-01, 7.2916e-01, + 2.3452e-01, 9.8508e-01, 1.7695e-01, 7.7904e-01, + 6.8397e-01, 5.7632e-01, 9.5771e-02, 7.2578e-01, + 1.0257e-01, 1.3969e-01, 1.3670e-01, 3.3417e-01, + 1.6122e-01, 4.1108e-01, 8.5451e-01, 7.2020e-01, + 9.7044e-01, 7.6796e-01, 5.0373e-01, 4.6714e-01, + 1.3568e-01, 4.3124e-01, 6.5967e-01, 1.1454e-01, + 5.9466e-01, 1.2158e-01, 8.1122e-01, 2.1659e-02, + 1.4806e-01, 3.9405e-01, 7.0561e-01, 9.6753e-01, + 7.5261e-01, 6.4833e-01, 5.6556e-01, 7.2806e-01, + 3.0308e-01, 5.2333e-01, 5.3243e-01, 8.0866e-02, + 4.9897e-01, 6.7445e-01, 5.3939e-01, 4.4553e-02, + 1.1984e-01, 8.3972e-01, 1.2906e-01, 6.4756e-01, + 2.2604e-01, 8.8400e-02, 8.5450e-01, 5.2807e-01, + 6.7526e-01, 4.7973e-01, 9.5607e-01, 3.6041e-01, + 6.2899e-01, 3.9580e-02, 2.5659e-01, 6.6980e-01, + 8.9686e-01, 3.2498e-01, 1.2380e-01, 4.5050e-01, + 1.1124e-01, 2.3719e-01, 4.8882e-01, 8.4740e-01, + 4.6802e-01, 5.6961e-01, 4.1714e-01, 1.9139e-01, + 1.4977e-01, 1.6533e-01, 6.1512e-01, 6.1583e-01, + 8.6816e-01, 1.7922e-01, 8.0301e-02, 5.2096e-01, + 6.2359e-01, 5.2949e-01, 2.8555e-01, 1.6938e-01, + 3.1758e-01, 6.8656e-01, 8.7031e-01, 5.6731e-01, + 8.9351e-01, 3.3680e-01, 2.1221e-01, 9.5091e-01, + 7.3853e-01, 4.3306e-01, 7.0611e-01, 4.3816e-01, + 4.7303e-01, 6.8694e-01, 3.2986e-02, 1.6516e-01, + 9.7964e-01, 1.0363e-01, 9.1905e-03, 6.0994e-01, + 3.8461e-01, 8.1119e-01, 6.0960e-02, 3.9688e-01, + 8.4362e-01, 9.5264e-01, 7.5651e-01, 6.1777e-01, + 6.4546e-01, 4.6095e-01, 7.9749e-01, 6.6184e-01, + 6.7159e-01, 4.1572e-01, 8.1975e-01, 8.5704e-01, + 9.5283e-01, 9.4574e-01, 7.0789e-01, 7.3982e-01, + 4.1348e-02, 6.7719e-01, 6.5182e-01, 8.1683e-01, + 1.3839e-01, 2.0278e-01, 6.0828e-01, 1.0797e-01, + 6.0124e-01, 6.0301e-01, 3.9954e-01, 2.0480e-01, + 7.5413e-01, 6.3142e-01, 7.1027e-01, 7.2452e-01, + 1.8486e-01, 6.6465e-01, 8.3245e-01, 8.8389e-01, + 6.5977e-01, 6.9656e-02, 1.6660e-01, 5.9679e-01, + 8.9196e-01, 6.8070e-01, 6.3959e-01, 5.8042e-03, + 8.0853e-01, 8.5659e-01, 3.3640e-01, 1.8581e-01, + 5.9169e-01, 4.2319e-01, 3.8067e-01, 1.9300e-01, + 5.3054e-01, 6.8816e-01, 6.8273e-01, 5.3962e-01, + 2.8424e-01, 5.6442e-01, 9.5795e-01, 9.2218e-01, + 8.0050e-01, 6.8473e-01, 3.8577e-01, 9.7011e-01, + 3.1918e-01, 9.3327e-01, 6.9021e-01, 1.8843e-01, + 8.5606e-01, 9.9524e-01, 4.8329e-01, 8.9000e-01, + 5.3213e-01, 7.3315e-01, 2.5494e-02, 4.0879e-01, + 6.4250e-01, 5.5355e-01, 1.2252e-01, 5.7920e-01, + 3.7143e-01, 5.1322e-01, 8.4723e-02, 7.9295e-01, + 1.2383e-02, 5.1956e-01, 5.8727e-01, 6.1912e-01, + 3.3986e-01, 7.6974e-01, 7.6659e-01, 9.5451e-01, + 8.3764e-01, 2.5156e-01, 4.3059e-01, 7.0635e-01, + 6.0360e-01, 1.4390e-01, 6.5535e-01, 5.7107e-01, + 1.2208e-01, 4.7518e-02, 8.6895e-01, 8.3106e-01, + 4.0396e-01, 9.2759e-01, 2.8476e-02, 7.1715e-01, + 8.2140e-01, 3.0353e-01, 8.1749e-01, 7.6563e-01, + 1.6998e-01, 1.4423e-01, 6.3960e-01, 2.2465e-01, + 8.9137e-01, 2.8630e-01, 1.9775e-01, 4.5517e-01, + 3.4702e-01, 2.0214e-01, 7.5386e-01, 9.1500e-01, + 2.2446e-02, 7.8173e-01, 8.6836e-01, 2.5348e-01, + 7.6978e-01, 8.6174e-01, 9.8956e-01, 8.7990e-01, + 5.1627e-01, 5.1075e-01, 6.1329e-01, 6.2919e-03, + 2.7232e-01, 6.0787e-01, 5.8860e-01, 2.6776e-01, + 3.7047e-02, 5.2311e-01, 2.6293e-01, 4.2249e-01, + 1.4035e-01, 3.5946e-01, 5.0611e-01, 1.0812e-01, + 9.6929e-01, 4.8763e-01, 3.4152e-01, 9.2894e-01, + 3.5740e-01, 8.8255e-01, 3.9777e-01, 3.5602e-01, + 9.7293e-01, 1.3972e-01, 1.7139e-01, 5.8461e-01, + 5.7873e-01, 4.4359e-01, 1.2193e-01, 2.4860e-01, + 4.1304e-01, 1.6021e-01, 3.4864e-02, 9.4921e-01, + 5.8965e-01, 1.5943e-01, 9.8201e-01, 4.9046e-02, + 7.6024e-01, 3.3380e-01, 8.6701e-01, 5.3753e-01, + 1.7502e-01, 4.7328e-02, 1.7840e-01, 9.9289e-01, + 5.9354e-01, 7.7719e-02, 1.5382e-02, 3.4153e-01, + 4.6868e-01, 8.7385e-01, 8.1347e-01, 8.7648e-01, + 5.7851e-02, 4.3920e-01, 4.7258e-01, 2.3403e-01, + 7.3513e-01, 2.3548e-01, 1.5553e-01, 8.3209e-01, + 7.0165e-01, 4.7744e-01, 5.3971e-01, 3.3874e-01, + 1.8556e-01, 2.2626e-01, 4.6003e-01, 3.3582e-01, + 7.5588e-01, 8.3431e-01, 3.3175e-01, 4.9592e-01, + 4.0955e-01, 1.3751e-01, 7.0894e-01, 4.9153e-01, + 1.5322e-01, 4.0113e-01, 9.4939e-01, 5.9441e-01, + 5.8121e-01, 3.3659e-01, 9.7817e-01, 3.4669e-01, + 7.9566e-01, 7.1024e-01, 5.5031e-01, 3.4954e-01, + 3.4465e-01, 7.7224e-02, 9.9026e-01, 6.8618e-01, + 1.3450e-01, 7.8318e-01, 3.1590e-01, 2.8146e-03, + 9.7664e-01, 1.6926e-01, 1.4825e-03, 3.3327e-01, + 5.0830e-01, 2.9658e-01, 9.5750e-01, 3.8518e-01, + 8.9685e-01, 5.4191e-01, 2.8746e-01, 9.6913e-01, + 8.5148e-01, 3.4877e-01, 4.4378e-01, 1.8566e-01, + 8.7999e-02, 4.8281e-02, 9.6971e-01, 2.4078e-01, + 6.9354e-01, 5.9718e-01, 9.7996e-01, 8.8058e-01, + 2.0210e-01, 6.4906e-01, 8.9747e-01, 2.3099e-01, + 5.0524e-01, 5.5068e-01, 9.4371e-01, 3.0247e-01, + 4.0591e-01, 8.1501e-01, 2.7012e-01, 1.7310e-02, + 3.4884e-01, 2.3646e-01, 4.8107e-01, 4.2507e-01, + 7.9939e-01, 3.1643e-01, 7.7881e-01, 8.6766e-01, + 8.6404e-01, 9.0609e-01, 3.6385e-01, 5.1686e-01, + 2.4634e-01, 7.8383e-01, 5.7474e-01, 4.3615e-01, + 4.3340e-01, 5.2652e-01, 5.1281e-02, 6.3129e-01, + 5.2216e-01, 8.4505e-01, 4.9870e-01, 4.4874e-01, + 5.2666e-01, 6.2031e-01, 7.7562e-01, 9.4926e-01, + 8.7988e-01, 4.4981e-02, 7.9699e-01, 9.0923e-01, + 1.5170e-01, 2.4692e-02, 1.8363e-01, 8.7058e-01, + 8.5398e-01, 2.0772e-01, 6.3919e-01, 4.6879e-01, + 2.3371e-01, 7.2800e-02, 4.7250e-01, 2.5422e-01, + 6.1023e-01, 1.6797e-01, 6.0522e-01, 8.0303e-02, + 5.5261e-01, 1.0917e-01, 6.4577e-01, 6.0612e-02, + 7.3816e-01, 9.8764e-01, 5.6014e-01, 8.6349e-01, + 5.5593e-02, 3.5238e-01, 6.3127e-01, 3.1182e-01, + 2.2277e-01, 6.2807e-02, 9.7890e-01, 2.2426e-01, + 8.7528e-01, 3.5611e-01, 3.6472e-01, 3.1276e-01, + 3.5721e-01, 7.0353e-01, 7.9461e-01, 1.1229e-02, + 6.0911e-01, 8.0298e-01, 3.0671e-01, 6.1287e-01, + 6.4400e-01, 9.7229e-01, 1.2032e-01, 1.2383e-01, + 7.0865e-01, 6.1356e-01, 1.5986e-02, 8.9680e-02, + 9.9053e-01, 9.8796e-01, 2.7993e-01, 3.6141e-01, + 9.1806e-01, 7.0575e-01, 8.3233e-03, 3.8565e-01, + 2.8749e-01, 1.7810e-01, 1.2298e-01, 8.0324e-01, + 8.2782e-01, 2.0803e-01, 9.6965e-02, 1.7778e-01, + 7.6076e-01, 9.9037e-01, 6.2066e-01, 9.0984e-01, + 1.6615e-01, 9.0857e-02, 6.4172e-01, 9.6035e-01, + 3.6966e-01, 2.3181e-02, 9.6897e-01, 3.7446e-01, + 6.6189e-01, 4.4041e-01, 4.9516e-01, 9.2437e-01, + 1.3754e-01, 1.7227e-01, 6.5340e-01, 8.0011e-01, + 2.9490e-01, 7.0561e-01, 5.9292e-01, 4.6428e-01, + 1.0080e-01, 9.7790e-01, 8.1424e-01, 7.1818e-01, + 7.6458e-01, 7.8318e-01, 6.1479e-01, 6.7696e-01]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.9856, 0.2722, 0.4021, ..., 0.8237, 0.4550, 0.5626]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 0.05941200256347656 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '176731', '-ss', '10000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 6.579680919647217} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), + col_indices=tensor([1504, 3099, 4004, 1150, 1392, 5460, 1366, 7098, 1310, + 7653, 7132, 7485, 6491, 1708, 1741, 5889, 6633, 4763, + 2335, 7667, 7189, 7712, 8830, 6994, 9528, 3923, 7748, + 9751, 3527, 4817, 1065, 9038, 1439, 7778, 7797, 1760, + 581, 9181, 5233, 2380, 1312, 6119, 1318, 8532, 5773, + 7950, 4559, 535, 3122, 484, 3449, 8220, 8300, 4045, + 9446, 2552, 6931, 9875, 6005, 9524, 8628, 424, 6643, + 755, 101, 4097, 978, 5632, 3675, 2949, 5286, 7265, + 1772, 8623, 6738, 3008, 3529, 8115, 1631, 9342, 745, + 4959, 994, 6574, 6399, 4493, 4340, 4457, 6066, 5468, + 9796, 6503, 4529, 8546, 3580, 1327, 3981, 3795, 190, + 8899, 4487, 1151, 981, 8161, 9891, 7554, 1606, 2191, + 501, 6416, 6764, 6915, 8693, 842, 667, 5088, 2889, + 2340, 4198, 1848, 9366, 7349, 1938, 9093, 4810, 7574, + 4872, 6494, 3389, 7735, 4677, 4983, 5552, 5863, 2929, + 3140, 3500, 281, 5523, 2412, 2145, 7281, 485, 501, + 4658, 799, 5803, 3186, 9799, 796, 1828, 529, 5220, + 511, 1206, 6406, 2968, 2841, 2647, 3672, 4434, 7786, + 9806, 5583, 1592, 8541, 7269, 7056, 9582, 6922, 4787, + 2305, 9413, 5247, 397, 3656, 3804, 3527, 2142, 7290, + 7247, 4905, 5634, 8535, 9565, 339, 744, 6037, 9637, + 9460, 1628, 3, 1771, 6647, 338, 2256, 379, 708, + 4609, 197, 8108, 8962, 7639, 2087, 4711, 4628, 5883, + 7430, 5627, 9880, 1675, 4591, 2652, 7448, 5936, 6297, + 7873, 5268, 7195, 2980, 2157, 9239, 9737, 5346, 4867, + 8334, 9445, 8457, 6122, 450, 6706, 1153, 7923, 1520, + 4513, 3315, 1820, 599, 4976, 1470, 7792, 4365, 4978, + 703, 5872, 7079, 1174, 5912, 3839, 6207, 8174, 7243, + 9811, 2337, 4217, 6899, 5228, 927, 4725, 7472, 336, + 6301, 1371, 3176, 1154, 7762, 2845, 8548, 8811, 9702, + 2601, 634, 9382, 5875, 7329, 1394, 2851, 5756, 1857, + 1393, 2021, 7676, 4374, 3100, 7383, 8099, 6950, 8386, + 2425, 3633, 8089, 5488, 6403, 5138, 3438, 8348, 1632, + 8249, 1318, 1810, 7668, 8138, 7204, 8283, 9712, 4220, + 6479, 2329, 8929, 9111, 1076, 6240, 6882, 9300, 3175, + 7084, 8253, 4744, 9435, 3307, 8858, 1495, 6648, 9955, + 3141, 4955, 9881, 6166, 6863, 7755, 4543, 3360, 1304, + 2491, 130, 8953, 2704, 2173, 7251, 4890, 5141, 8546, + 3008, 2284, 5892, 8116, 9667, 1393, 8025, 354, 1194, + 1882, 5501, 5281, 8588, 4405, 6232, 5693, 7500, 5289, + 4832, 194, 9943, 3198, 6104, 6121, 7446, 707, 544, + 1653, 5880, 2435, 4811, 3977, 3517, 400, 1529, 2947, + 1585, 288, 2, 6997, 1487, 4049, 5514, 2584, 4709, + 5967, 342, 565, 5609, 6203, 18, 4569, 6819, 4803, + 8089, 164, 1406, 5749, 4901, 6777, 9505, 2817, 4676, + 4501, 3368, 8473, 4649, 726, 6243, 4027, 7343, 7734, + 8837, 6566, 8591, 7047, 2595, 379, 1982, 4344, 4978, + 4736, 8583, 6503, 8199, 4626, 5126, 9719, 1002, 9042, + 9523, 128, 9225, 982, 8392, 7559, 5463, 8036, 3745, + 3176, 8009, 9295, 9552, 3167, 1345, 276, 8693, 8017, + 5204, 7251, 6299, 2085, 5969, 3905, 5663, 2565, 5965, + 645, 520, 6000, 3298, 388, 4005, 2224, 7511, 9686, + 4080, 3588, 8629, 9093, 9508, 5361, 7962, 370, 2439, + 5219, 3882, 7248, 5395, 270, 7381, 4302, 4363, 2207, + 4662, 5466, 7711, 8471, 5548, 75, 977, 2775, 5430, + 2234, 1131, 9542, 5839, 5109, 6581, 7709, 8434, 4907, + 6530, 5217, 3726, 337, 1715, 866, 7308, 3618, 6557, + 1527, 1002, 3707, 1179, 5241, 1089, 1496, 6675, 7386, + 2847, 4681, 1035, 5874, 8289, 1900, 3378, 3926, 2618, + 4592, 4374, 3550, 8264, 3205, 410, 3679, 1948, 838, + 3556, 6228, 4681, 1158, 6736, 7755, 2790, 7244, 7096, + 6263, 5478, 3768, 3461, 8248, 8092, 8531, 1313, 4969, + 5370, 4315, 3322, 3749, 187, 7550, 7837, 7860, 3557, + 335, 5629, 7074, 8236, 467, 4046, 1116, 4876, 2409, + 4083, 1725, 8263, 9131, 4333, 8542, 5321, 5263, 2697, + 5140, 3630, 3072, 702, 1702, 4933, 1839, 4688, 5480, + 3284, 3461, 3585, 1266, 2777, 7100, 7424, 1393, 4346, + 2665, 918, 9363, 7559, 6271, 5807, 7574, 8631, 3570, + 8046, 9813, 4564, 4046, 6392, 3313, 2613, 7556, 7214, + 8532, 156, 4129, 9090, 3781, 3510, 5521, 4941, 1039, + 6207, 9585, 5651, 3796, 2251, 4814, 7135, 4638, 274, + 7298, 7170, 9107, 6247, 4674, 5325, 3592, 9661, 333, + 2023, 4234, 1071, 6858, 8695, 6728, 4181, 5454, 4250, + 1450, 4542, 9761, 3858, 9458, 296, 8038, 4239, 8592, + 9312, 1625, 9860, 6000, 1575, 5405, 2205, 255, 165, + 9085, 4235, 8538, 6219, 7921, 5076, 7407, 8421, 8337, + 6724, 7265, 4262, 7588, 1810, 4604, 8332, 6981, 343, + 3524, 2442, 8260, 3956, 5626, 8798, 5445, 7298, 920, + 1504, 4390, 2474, 4172, 3669, 2195, 2152, 2627, 9739, + 4415, 4105, 4626, 9659, 6433, 8303, 3484, 7190, 9552, + 7206, 8836, 3057, 3137, 4456, 9535, 5783, 3216, 1597, + 6065, 9330, 3235, 902, 8776, 8756, 4727, 2548, 4711, + 7235, 6844, 2271, 6464, 7218, 4495, 5477, 9217, 4896, + 1873, 7807, 6461, 2708, 6330, 747, 4535, 89, 6855, + 8611, 4462, 8552, 3726, 7142, 5548, 5723, 2430, 6398, + 3795, 989, 9572, 6463, 1806, 7636, 7490, 7840, 9869, + 508, 3343, 967, 9912, 9634, 6887, 6472, 2064, 5202, + 4621, 2419, 2502, 5190, 7622, 1155, 4554, 8122, 5338, + 942, 9679, 8966, 8442, 3506, 6771, 9700, 1891, 1736, + 1812, 3923, 1097, 1811, 1887, 4126, 5689, 203, 2986, + 547, 2374, 9229, 2732, 9653, 5462, 9455, 9662, 6890, + 4506, 9078, 5285, 8481, 5981, 2701, 1765, 8256, 6470, + 3083, 5913, 3042, 9147, 9324, 8785, 5084, 211, 3626, + 8593, 314, 7332, 4103, 5149, 8975, 9201, 9884, 7650, + 6098, 420, 1920, 7326, 2881, 161, 8106, 5643, 4716, + 7087, 3616, 3230, 603, 6580, 6811, 4421, 2350, 9035, + 3407, 4230, 3124, 8671, 8273, 804, 8204, 6453, 8083, + 4163, 5243, 424, 9961, 6498, 1444, 3806, 7023, 5787, + 3298, 4766, 7662, 5115, 8511, 5962, 5834, 3528, 2009, + 7716, 894, 6464, 816, 606, 9512, 2155, 5802, 8197, + 3640, 3457, 6802, 9357, 1847, 7556, 9331, 2269, 9710, + 4086, 521, 71, 3853, 6049, 9611, 8181, 7543, 8075, + 3056, 504, 9545, 1895, 5702, 9663, 6557, 5268, 5558, + 9942, 730, 8283, 2364, 2523, 1925, 6382, 7494, 8845, + 6201, 243, 2685, 420, 2294, 6911, 6669, 8058, 2744, + 4906, 9626, 735, 8791, 9013, 1195, 812, 4286, 8340, + 5875, 9467, 5617, 1844, 1184, 6712, 1388, 5770, 4852, + 1291, 6391, 7901, 3776, 8634, 2205, 574, 5343, 1096, + 2895, 7494, 270, 9267, 8977, 2790, 9580, 6376, 6037, + 9396, 6317, 4748, 3869, 8407, 8131, 5131, 5038, 2277, + 6479, 419, 6444, 7942, 1392, 2965, 2230, 2611, 5216, + 5819]), + values=tensor([0.7467, 0.8354, 0.8789, 0.4204, 0.7717, 0.2232, 0.1499, + 0.0344, 0.7363, 0.9713, 0.7208, 0.9097, 0.8947, 0.3049, + 0.6561, 0.9022, 0.2976, 0.6971, 0.5911, 0.3147, 0.1310, + 0.3271, 0.9369, 0.5111, 0.3198, 0.0811, 0.2464, 0.0480, + 0.2027, 0.7099, 0.8056, 0.0418, 0.5020, 0.1613, 0.3123, + 0.7734, 0.7770, 0.5410, 0.4713, 0.9866, 0.1361, 0.9358, + 0.9151, 0.6482, 0.5032, 0.1248, 0.9695, 0.7101, 0.7393, + 0.0540, 0.9817, 0.8551, 0.5882, 0.5454, 0.8099, 0.4829, + 0.0487, 0.0913, 0.0172, 0.2430, 0.7307, 0.8104, 0.0097, + 0.3087, 0.0574, 0.7258, 0.7698, 0.7383, 0.9314, 0.0456, + 0.0673, 0.6807, 0.0704, 0.8277, 0.1331, 0.1490, 0.4915, + 0.3113, 0.1267, 0.0934, 0.3037, 0.5287, 0.4640, 0.2874, + 0.6223, 0.2233, 0.5101, 0.8720, 0.2195, 0.9271, 0.1344, + 0.1055, 0.1477, 0.8744, 0.7010, 0.8409, 0.4047, 0.4719, + 0.3950, 0.2521, 0.3126, 0.8370, 0.0922, 0.9784, 0.5158, + 0.7455, 0.1178, 0.6258, 0.0383, 0.7569, 0.5151, 0.6815, + 0.0495, 0.0392, 0.2275, 0.6572, 0.8031, 0.4166, 0.6576, + 0.5660, 0.8271, 0.1219, 0.3624, 0.8760, 0.4463, 0.8000, + 0.6969, 0.0103, 0.1415, 0.2117, 0.7143, 0.7258, 0.8575, + 0.3239, 0.1440, 0.6460, 0.3468, 0.6646, 0.9502, 0.7849, + 0.0160, 0.2557, 0.5135, 0.8823, 0.8979, 0.5154, 0.8255, + 0.0884, 0.6180, 0.5891, 0.6532, 0.4457, 0.6335, 0.9159, + 0.6559, 0.2515, 0.8048, 0.7241, 0.9864, 0.4182, 0.8651, + 0.9442, 0.4034, 0.3764, 0.4228, 0.7479, 0.3412, 0.8945, + 0.4273, 0.7897, 0.1891, 0.1742, 0.5500, 0.6530, 0.6992, + 0.8339, 0.5042, 0.7425, 0.5554, 0.3348, 0.8989, 0.0461, + 0.5163, 0.8515, 0.6896, 0.5275, 0.8665, 0.2652, 0.5623, + 0.2676, 0.9720, 0.8394, 0.7177, 0.7252, 0.6472, 0.0788, + 0.5973, 0.1826, 0.9090, 0.6216, 0.9811, 0.3422, 0.2537, + 0.2318, 0.6696, 0.4190, 0.3221, 0.5987, 0.2694, 0.0672, + 0.9592, 0.1593, 0.8027, 0.1318, 0.1332, 0.8746, 0.6822, + 0.3541, 0.7704, 0.4230, 0.9552, 0.7601, 0.9928, 0.5369, + 0.4961, 0.1278, 0.7090, 0.1215, 0.8975, 0.2398, 0.5280, + 0.5371, 0.7003, 0.3062, 0.4088, 0.7112, 0.3779, 0.5538, + 0.7588, 0.5309, 0.3775, 0.2231, 0.3086, 0.9548, 0.9153, + 0.9388, 0.1666, 0.6598, 0.9735, 0.0414, 0.3204, 0.3603, + 0.9436, 0.0406, 0.8205, 0.2090, 0.8181, 0.5050, 0.5756, + 0.2329, 0.5121, 0.9088, 0.9475, 0.4941, 0.3383, 0.9031, + 0.7613, 0.1888, 0.0570, 0.0843, 0.2365, 0.9173, 0.0573, + 0.4713, 0.1354, 0.0959, 0.4629, 0.2932, 0.7317, 0.8381, + 0.3740, 0.4991, 0.5826, 0.8759, 0.6512, 0.0172, 0.4202, + 0.0764, 0.0315, 0.4182, 0.3493, 0.7892, 0.0128, 0.5157, + 0.3028, 0.1641, 0.1826, 0.2604, 0.8810, 0.0981, 0.3282, + 0.9640, 0.8997, 0.9552, 0.8266, 0.2868, 0.6160, 0.0243, + 0.7892, 0.8972, 0.8709, 0.4156, 0.8535, 0.1469, 0.0575, + 0.7017, 0.9264, 0.2099, 0.9803, 0.6196, 0.1986, 0.6481, + 0.7156, 0.9366, 0.5404, 0.0288, 0.9861, 0.4184, 0.5436, + 0.9217, 0.5460, 0.4070, 0.6495, 0.5316, 0.6177, 0.4010, + 0.3482, 0.7350, 0.8952, 0.5389, 0.5623, 0.8490, 0.3707, + 0.3698, 0.0123, 0.7325, 0.7195, 0.8881, 0.2879, 0.8368, + 0.9197, 0.7775, 0.3643, 0.5484, 0.1674, 0.1069, 0.4749, + 0.1394, 0.0434, 0.6186, 0.5289, 0.3648, 0.2886, 0.6590, + 0.8834, 0.8125, 0.4782, 0.8204, 0.5843, 0.4274, 0.2838, + 0.7416, 0.4167, 0.9954, 0.3534, 0.0950, 0.7390, 0.2449, + 0.1994, 0.3896, 0.4629, 0.1811, 0.1236, 0.7689, 0.3781, + 0.5069, 0.7597, 0.3530, 0.9613, 0.2925, 0.6169, 0.9997, + 0.1166, 0.0343, 0.2967, 0.7714, 0.5907, 0.3569, 0.3642, + 0.4772, 0.7473, 0.9593, 0.2689, 0.9527, 0.6422, 0.3639, + 0.4866, 0.9157, 0.5316, 0.0382, 0.0500, 0.3008, 0.8346, + 0.4395, 0.8330, 0.8715, 0.7079, 0.3038, 0.0861, 0.1187, + 0.9485, 0.6116, 0.8025, 0.0336, 0.0740, 0.0462, 0.3122, + 0.4819, 0.9203, 0.4894, 0.6551, 0.7424, 0.7384, 0.9517, + 0.9751, 0.0184, 0.6613, 0.3660, 0.9469, 0.4030, 0.8522, + 0.5951, 0.3829, 0.4841, 0.9823, 0.4553, 0.5041, 0.4493, + 0.6799, 0.7742, 0.8697, 0.4861, 0.8989, 0.9993, 0.4908, + 0.1217, 0.3436, 0.0711, 0.3941, 0.5653, 0.3453, 0.4600, + 0.0019, 0.8200, 0.7548, 0.9925, 0.1950, 0.4375, 0.0876, + 0.0545, 0.8708, 0.8847, 0.5442, 0.3831, 0.3845, 0.2264, + 0.3709, 0.0964, 0.1887, 0.0345, 0.9963, 0.9845, 0.7547, + 0.6656, 0.6711, 0.0521, 0.0059, 0.5569, 0.2868, 0.9531, + 0.6085, 0.6756, 0.6170, 0.8035, 0.7219, 0.8596, 0.9935, + 0.6736, 0.5461, 0.1019, 0.4352, 0.3666, 0.0766, 0.1100, + 0.0285, 0.2597, 0.2132, 0.6382, 0.4681, 0.2564, 0.2271, + 0.9805, 0.2869, 0.9275, 0.9865, 0.7866, 0.7332, 0.1282, + 0.7573, 0.5598, 0.5043, 0.3676, 0.9213, 0.5799, 0.2807, + 0.9752, 0.2947, 0.0641, 0.9531, 0.5348, 0.0010, 0.7435, + 0.7719, 0.2118, 0.8754, 0.5538, 0.4779, 0.8650, 0.6418, + 0.6431, 0.4644, 0.1877, 0.3080, 0.8519, 0.1095, 0.1184, + 0.4411, 0.4758, 0.0611, 0.5779, 0.7578, 0.0287, 0.6000, + 0.9316, 0.0010, 0.4785, 0.9461, 0.1258, 0.4284, 0.7563, + 0.3076, 0.6399, 0.8224, 0.6585, 0.3967, 0.4175, 0.7215, + 0.0128, 0.3849, 0.6926, 0.2936, 0.7038, 0.2757, 0.4692, + 0.3468, 0.7666, 0.2596, 0.7912, 0.8896, 0.8809, 0.0059, + 0.2967, 0.9128, 0.0723, 0.0052, 0.9469, 0.8966, 0.5197, + 0.0949, 0.0308, 0.1701, 0.9911, 0.9507, 0.9187, 0.5231, + 0.7573, 0.3017, 0.9246, 0.2495, 0.6044, 0.8340, 0.2483, + 0.5625, 0.6091, 0.5083, 0.6674, 0.1755, 0.4307, 0.7132, + 0.1112, 0.0365, 0.1570, 0.7746, 0.8507, 0.8213, 0.3732, + 0.2036, 0.9453, 0.8539, 0.9172, 0.0928, 0.4934, 0.4764, + 0.9651, 0.0970, 0.4340, 0.6824, 0.9577, 0.5403, 0.8440, + 0.8176, 0.7649, 0.0142, 0.6065, 0.2439, 0.1621, 0.0508, + 0.2838, 0.7247, 0.2337, 0.8936, 0.1110, 0.8591, 0.1007, + 0.3180, 0.0296, 0.7491, 0.5542, 0.8529, 0.9486, 0.0760, + 0.5042, 0.8275, 0.2472, 0.5600, 0.5119, 0.3775, 0.2305, + 0.7960, 0.0983, 0.0924, 0.3391, 0.0740, 0.9041, 0.3018, + 0.8816, 0.2439, 0.3331, 0.7706, 0.1233, 0.1673, 0.8906, + 0.8856, 0.6832, 0.9240, 0.9154, 0.9988, 0.9112, 0.2300, + 0.9611, 0.7710, 0.5601, 0.3442, 0.7704, 0.3949, 0.0630, + 0.3164, 0.8465, 0.1384, 0.2009, 0.3981, 0.0471, 0.7501, + 0.3021, 0.9317, 0.2838, 0.5702, 0.8311, 0.1984, 0.4158, + 0.5512, 0.2415, 0.9168, 0.1557, 0.9722, 0.2083, 0.9310, + 0.2854, 0.3296, 0.8389, 0.1930, 0.5648, 0.9005, 0.2382, + 0.6475, 0.3336, 0.9293, 0.2971, 0.9734, 0.0801, 0.9406, + 0.6141, 0.2201, 0.3176, 0.0332, 0.2823, 0.8970, 0.6078, + 0.7508, 0.0094, 0.2669, 0.0551, 0.1264, 0.5449, 0.1361, + 0.9754, 0.4822, 0.9515, 0.6364, 0.0981, 0.5598, 0.8382, + 0.5254, 0.0685, 0.8906, 0.8992, 0.2617, 0.7668, 0.2228, + 0.8462, 0.0339, 0.7493, 0.7201, 0.9366, 0.4188, 0.1804, + 0.1494, 0.8053, 0.2257, 0.6325, 0.3236, 0.3885, 0.3952, + 0.4395, 0.5226, 0.0978, 0.6158, 0.8731, 0.0319, 0.5423, + 0.6762, 0.9538, 0.0376, 0.4503, 0.9658, 0.9633, 0.4630, + 0.8800, 0.3784, 0.9350, 0.8712, 0.9332, 0.6804, 0.0999, + 0.2383, 0.5366, 0.6021, 0.4415, 0.0995, 0.6759, 0.6192, + 0.9807, 0.4059, 0.4669, 0.5511, 0.1347, 0.4787, 0.3980, + 0.5675, 0.9839, 0.6574, 0.0411, 0.0685, 0.1554, 0.5685, + 0.8165, 0.2072, 0.3451, 0.6895, 0.5489, 0.1369, 0.1888, + 0.5408, 0.0289, 0.0593, 0.2654, 0.9500, 0.9242, 0.3884, + 0.5208, 0.6608, 0.9135, 0.0065, 0.4095, 0.4932, 0.1269, + 0.3243, 0.4039, 0.8400, 0.0793, 0.5154, 0.2087, 0.3919, + 0.4758, 0.1531, 0.9070, 0.3809, 0.6719, 0.4901, 0.2111, + 0.9908, 0.8730, 0.3814, 0.1372, 0.2073, 0.9797, 0.4051, + 0.8671, 0.9780, 0.3153, 0.9767, 0.4671, 0.4459, 0.4147, + 0.9662, 0.3628, 0.6849, 0.6582, 0.5036, 0.8509, 0.7848, + 0.3086, 0.0093, 0.4011, 0.9222, 0.4489, 0.3083, 0.9840, + 0.7003, 0.3847, 0.9044, 0.4172, 0.6487, 0.3232, 0.8882, + 0.3507, 0.4746, 0.2057, 0.7891, 0.9884, 0.0182, 0.2421, + 0.6518, 0.9508, 0.5277, 0.4701, 0.1985, 0.1981, 0.9592, + 0.6556, 0.3536, 0.2018, 0.5108, 0.2993, 0.5685, 0.6970, + 0.4429, 0.4512, 0.6646, 0.8770, 0.3713, 0.4887, 0.4934, + 0.9094, 0.0628, 0.1047, 0.3828, 0.0538, 0.7423, 0.0483, + 0.5247, 0.5619, 0.6010, 0.0610, 0.6313, 0.7678, 0.2957, + 0.2187, 0.7911, 0.9416, 1.0000, 0.6833, 0.2789, 0.5629, + 0.0302, 0.3182, 0.3499, 0.4337, 0.4962, 0.1298, 0.4456, + 0.0387, 0.2487, 0.3136, 0.3069, 0.9675, 0.4312, 0.3624, + 0.1589, 0.5045, 0.5909, 0.3991, 0.7502, 0.3595, 0.0925, + 0.5385, 0.8123, 0.1086, 0.1197, 0.1917, 0.3958, 0.8592, + 0.5579, 0.0049, 0.2422, 0.9021, 0.7969, 0.6116, 0.7882, + 0.0064, 0.7028, 0.1202, 0.0407, 0.8816, 0.5750, 0.7270, + 0.7359, 0.9426, 0.4471, 0.6645, 0.7391, 0.4953, 0.1855, + 0.9757, 0.8337, 0.4173, 0.8819, 0.7926, 0.9439, 0.6488, + 0.5255, 0.2177, 0.8967, 0.4852, 0.8970, 0.3385, 0.1072, + 0.7487, 0.0835, 0.3044, 0.9792, 0.4704, 0.2580, 0.5151, + 0.8842, 0.7470, 0.1408, 0.9051, 0.3976, 0.8983]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.6331, 0.4592, 0.8230, ..., 0.6920, 0.8755, 0.3375]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 6.579680919647217 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '282031', '-ss', '10000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [10000, 10000], "MATRIX_ROWS": 10000, "MATRIX_SIZE": 100000000, "MATRIX_NNZ": 1000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.372447967529297} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), + col_indices=tensor([ 641, 1820, 5085, 7616, 6287, 2843, 3768, 139, 557, + 8943, 8505, 7281, 43, 6135, 7303, 4893, 489, 615, + 6714, 3680, 855, 4855, 479, 9230, 4436, 9603, 1635, + 9190, 9268, 3004, 1125, 8864, 107, 6184, 8970, 8700, + 7610, 2464, 2526, 7595, 3071, 5215, 1177, 6775, 4184, + 7851, 6577, 5571, 7909, 9344, 735, 6183, 9381, 8186, + 7299, 7523, 9047, 1302, 3301, 6829, 1465, 8532, 8991, + 1047, 5588, 9587, 3024, 6187, 7730, 4690, 6326, 2702, + 2537, 5158, 9461, 7448, 9578, 6012, 7028, 226, 6053, + 1967, 8146, 5831, 6774, 2244, 6191, 9992, 2390, 9133, + 8890, 766, 5014, 4790, 2155, 4691, 2161, 5599, 1756, + 7675, 496, 9605, 711, 5336, 9031, 2531, 2338, 9491, + 3768, 7092, 9040, 599, 4662, 8394, 522, 7316, 1506, + 525, 4754, 5479, 3359, 6765, 8131, 5941, 6009, 2305, + 1065, 3240, 5116, 987, 2923, 7533, 799, 2666, 5958, + 7677, 3749, 6265, 1775, 7785, 8588, 7337, 5345, 1189, + 7948, 6558, 2457, 299, 6806, 3954, 5519, 1039, 5338, + 7232, 812, 6127, 3761, 4004, 6956, 9330, 4265, 8611, + 6724, 8377, 8527, 2706, 1567, 2671, 2286, 3304, 1272, + 2070, 9256, 4736, 9758, 5406, 1452, 7915, 3101, 144, + 9979, 1960, 6381, 3432, 2638, 7424, 537, 2559, 9614, + 8179, 4691, 7438, 1120, 5872, 3070, 8489, 6931, 1985, + 4925, 4797, 5226, 7081, 8212, 445, 4109, 5640, 2257, + 7467, 2012, 6933, 9812, 6077, 3165, 2359, 17, 5933, + 7004, 1444, 9368, 5351, 6245, 3660, 7222, 2545, 8008, + 2336, 3100, 3043, 8828, 7123, 7845, 9969, 4531, 3791, + 9658, 582, 9738, 7316, 8440, 1704, 64, 9634, 7709, + 5983, 9441, 9604, 5121, 141, 2351, 3725, 6220, 7490, + 9494, 5209, 7692, 9939, 632, 7847, 6751, 9374, 2312, + 8674, 2385, 1543, 8905, 8015, 222, 786, 7500, 8256, + 2521, 6696, 1643, 8098, 4270, 7100, 3669, 2113, 1313, + 8306, 6672, 298, 1769, 5946, 9397, 7730, 9951, 7831, + 3644, 512, 9197, 3290, 2307, 6307, 5995, 9826, 8701, + 1474, 5284, 3261, 2218, 2945, 4813, 3037, 7819, 5822, + 7884, 4720, 2534, 1208, 3616, 922, 2226, 4382, 3494, + 6973, 6642, 6587, 3020, 4947, 3226, 2552, 101, 2200, + 8571, 1979, 8248, 2284, 9387, 3200, 9086, 615, 4324, + 7614, 1291, 9099, 2422, 9376, 7855, 2869, 4373, 9650, + 4367, 4622, 5124, 7211, 2179, 1614, 3245, 5389, 6821, + 6300, 8718, 1035, 3582, 8257, 7452, 2297, 3762, 3338, + 2343, 6557, 3623, 5128, 4244, 4231, 1091, 2759, 1073, + 1438, 9204, 3250, 1109, 5974, 5625, 9640, 5403, 9827, + 9860, 2538, 6365, 3807, 7739, 4746, 196, 7104, 1414, + 9645, 5312, 4324, 1738, 8925, 3231, 558, 7534, 4725, + 9093, 1277, 4867, 2640, 3909, 8870, 6450, 5182, 1941, + 5107, 8388, 8527, 7970, 1975, 7722, 4808, 8077, 5290, + 5743, 6355, 7161, 573, 7648, 7139, 100, 2042, 3159, + 1046, 6596, 5452, 1650, 9645, 6382, 6862, 555, 3741, + 118, 8221, 8479, 8346, 7654, 5102, 3554, 7238, 258, + 9058, 600, 7288, 3482, 1231, 52, 6020, 6829, 8334, + 4647, 3307, 2858, 528, 4606, 6172, 3855, 4925, 5620, + 132, 8810, 4311, 4446, 8520, 9436, 6123, 4339, 1754, + 5002, 7908, 529, 6941, 1458, 1377, 7366, 3326, 2975, + 4976, 2358, 9764, 3735, 4314, 9201, 3224, 3442, 4608, + 7255, 153, 1882, 8568, 6384, 2712, 5756, 5384, 9835, + 2913, 8596, 324, 1552, 8661, 2777, 8374, 5359, 1615, + 3969, 6396, 7689, 2470, 778, 7314, 3640, 427, 3557, + 3960, 5759, 9579, 3154, 4508, 9713, 2509, 4663, 4700, + 2397, 2730, 4887, 7158, 9627, 992, 5544, 8476, 9970, + 6284, 6686, 6616, 1433, 1753, 1639, 788, 8113, 3009, + 2084, 9407, 5338, 8482, 2017, 2846, 3658, 5916, 2942, + 3321, 8671, 2490, 5057, 4147, 6392, 6458, 674, 981, + 3352, 6130, 6143, 264, 4531, 5618, 3537, 3145, 3094, + 4051, 1817, 5211, 9273, 9450, 6106, 8283, 7138, 7857, + 3244, 6049, 1477, 4734, 9695, 9753, 4169, 9542, 2937, + 3509, 7510, 4689, 707, 8198, 7008, 6722, 3337, 5751, + 3766, 833, 8750, 4331, 5594, 3997, 5578, 9017, 3910, + 3070, 1260, 7089, 5023, 6162, 4544, 2963, 5389, 8290, + 2433, 8470, 268, 2658, 5350, 9452, 9566, 5799, 6076, + 5093, 4524, 728, 5385, 601, 1121, 2937, 6609, 9033, + 112, 8436, 1613, 1934, 5295, 1872, 5673, 2468, 20, + 629, 8138, 8511, 4404, 5469, 9306, 3180, 1675, 8874, + 5243, 5951, 1999, 1207, 2097, 2731, 7103, 9382, 5573, + 4542, 3567, 7221, 1313, 4524, 4765, 9415, 2646, 4434, + 2523, 8400, 4785, 4828, 6799, 641, 9477, 4083, 3467, + 6803, 5831, 7241, 1931, 3753, 6755, 5101, 8779, 276, + 723, 6290, 3559, 163, 1895, 5804, 7812, 452, 8815, + 3364, 1546, 636, 1173, 4838, 5941, 3629, 5615, 1065, + 6095, 1559, 4709, 6197, 6796, 6190, 1496, 4155, 8680, + 8774, 2349, 1020, 7910, 216, 8442, 9179, 6834, 1499, + 2872, 6140, 8913, 9738, 5850, 8410, 7955, 3577, 3138, + 5103, 4605, 8243, 2613, 2619, 6014, 1536, 619, 7266, + 4067, 4761, 4808, 7604, 7128, 3593, 8227, 5574, 5711, + 3815, 6532, 6664, 4778, 9035, 2519, 6829, 8402, 9861, + 5598, 8030, 991, 5754, 1489, 8219, 1588, 7984, 3957, + 7982, 7783, 5801, 4818, 6928, 5945, 1030, 6679, 8996, + 2066, 5413, 9651, 8908, 3779, 697, 6794, 9930, 9736, + 8162, 6895, 2355, 5033, 4891, 2352, 2673, 6602, 6389, + 2319, 1938, 3169, 4827, 2997, 199, 8604, 2753, 197, + 9848, 5455, 5838, 5131, 3306, 3152, 5760, 1477, 8162, + 8523, 382, 6174, 1580, 2419, 5000, 1351, 4299, 2598, + 8064, 714, 8757, 4986, 9885, 1, 9906, 7850, 9127, + 609, 9264, 7572, 5203, 1497, 5370, 2825, 6608, 5307, + 1067, 1059, 6801, 4949, 4490, 3210, 7421, 7811, 1102, + 5058, 8487, 8843, 5590, 9083, 3587, 9580, 6809, 4814, + 5774, 5460, 5247, 1639, 4042, 1058, 5514, 2499, 4333, + 2608, 5359, 3700, 2316, 8701, 7433, 6840, 4441, 7816, + 5852, 6477, 8172, 7852, 5968, 9671, 5374, 1033, 1307, + 7427, 1879, 7842, 1991, 8425, 3031, 6842, 7640, 2472, + 5231, 4002, 6652, 3522, 211, 9391, 7872, 5134, 1378, + 6610, 2732, 1051, 7787, 2466, 1112, 7365, 9226, 5845, + 3593, 4013, 3040, 449, 9502, 9775, 5013, 72, 3221, + 1993, 2626, 656, 562, 8318, 7938, 2465, 4300, 2538, + 873, 5650, 590, 6320, 2620, 5043, 8788, 7544, 7372, + 3427, 2476, 6556, 1948, 1008, 9277, 8552, 7791, 838, + 8482, 7805, 2152, 8325, 132, 5590, 2315, 1155, 2035, + 4363, 7292, 6257, 538, 3095, 8540, 2594, 1676, 6100, + 432, 8590, 397, 6028, 5770, 4864, 259, 9108, 1343, + 3496, 3662, 6106, 9274, 2047, 2081, 3620, 438, 3494, + 55, 6088, 3113, 2526, 6605, 5078, 9048, 4362, 5299, + 8201, 7239, 2961, 6652, 4458, 3937, 4156, 4861, 4275, + 6038]), + values=tensor([4.7714e-01, 6.5835e-01, 6.6810e-01, 8.6236e-01, + 4.8150e-01, 2.9025e-01, 3.8068e-01, 1.2618e-02, + 8.9304e-01, 4.7334e-01, 3.1033e-01, 6.2877e-01, + 4.7847e-01, 6.3115e-01, 3.7549e-01, 7.1375e-01, + 7.1370e-01, 1.5617e-01, 5.9230e-01, 8.6992e-01, + 1.0824e-02, 9.5002e-01, 9.3768e-01, 3.9687e-01, + 2.4891e-01, 3.5396e-01, 7.9816e-01, 4.0629e-01, + 1.1462e-01, 9.2518e-02, 5.4557e-01, 2.8237e-01, + 2.7320e-01, 6.0124e-01, 9.2649e-01, 9.6609e-01, + 2.5218e-02, 8.7923e-01, 2.8120e-01, 8.5964e-01, + 7.5022e-01, 6.9189e-01, 8.6902e-01, 6.6175e-01, + 4.8078e-01, 1.0568e-01, 6.1760e-01, 5.1173e-01, + 7.1935e-01, 7.9758e-01, 5.1397e-01, 9.2681e-01, + 1.5881e-01, 4.0107e-01, 3.7000e-02, 4.5709e-01, + 8.7828e-01, 9.9798e-01, 2.0436e-01, 8.2405e-01, + 2.2018e-01, 8.1418e-01, 6.6142e-01, 6.5186e-01, + 1.7800e-01, 5.1282e-01, 5.4169e-01, 5.1202e-01, + 7.2361e-01, 6.0514e-01, 5.7929e-02, 5.8574e-01, + 1.3412e-01, 2.4876e-01, 8.0263e-02, 3.0969e-01, + 7.6202e-01, 9.0548e-01, 6.8427e-01, 9.4370e-02, + 1.2529e-03, 5.6984e-01, 2.4518e-01, 5.3912e-01, + 7.6442e-01, 1.5031e-01, 7.1477e-01, 5.7099e-01, + 9.6944e-01, 7.7954e-01, 1.9253e-01, 4.3041e-01, + 4.5620e-01, 8.4686e-01, 7.6515e-01, 3.4939e-02, + 6.8882e-01, 2.9488e-01, 3.1215e-01, 5.0502e-01, + 4.1170e-01, 9.0587e-01, 2.6328e-01, 6.3719e-01, + 6.4003e-01, 1.4477e-01, 3.2101e-01, 6.3956e-01, + 5.8353e-01, 6.2460e-02, 8.7149e-01, 5.0409e-01, + 2.9944e-01, 1.5857e-01, 7.5177e-01, 3.8737e-01, + 5.8319e-01, 8.6482e-01, 5.5542e-01, 1.6361e-01, + 9.6946e-01, 7.4385e-01, 7.8405e-01, 9.1404e-01, + 3.1006e-01, 6.1069e-01, 9.8763e-01, 7.8296e-01, + 5.8330e-01, 2.2488e-01, 5.3122e-01, 9.0733e-01, + 1.0823e-01, 7.1544e-01, 5.3686e-01, 9.7645e-01, + 7.0111e-01, 8.3358e-01, 6.7151e-01, 4.5959e-01, + 1.8565e-01, 7.9015e-01, 1.8143e-02, 5.2429e-01, + 9.8713e-01, 7.8291e-02, 3.2014e-01, 7.0142e-01, + 3.2823e-02, 2.0523e-01, 2.8556e-01, 6.5603e-01, + 6.6879e-01, 1.8088e-01, 6.8243e-01, 8.0618e-01, + 5.9647e-01, 2.7644e-01, 6.0267e-01, 9.4412e-01, + 9.6862e-01, 4.6876e-01, 9.2399e-01, 8.4139e-02, + 1.1788e-01, 6.5004e-01, 4.1362e-01, 6.3517e-01, + 9.1004e-01, 8.6067e-01, 3.3935e-01, 9.9589e-01, + 6.5934e-01, 9.0696e-01, 3.5917e-01, 3.4094e-01, + 1.2945e-01, 8.7930e-01, 5.9039e-01, 9.4529e-01, + 5.8159e-01, 4.0632e-01, 3.0761e-02, 3.3183e-01, + 8.7530e-01, 1.2750e-01, 4.8617e-01, 9.8340e-01, + 9.7630e-02, 3.4204e-01, 4.1919e-01, 9.3104e-01, + 8.6768e-01, 7.0351e-02, 9.3605e-01, 3.1020e-01, + 8.5241e-01, 8.9140e-01, 9.8230e-01, 1.2324e-01, + 3.6008e-01, 2.9767e-01, 9.7191e-01, 1.9919e-03, + 2.2594e-01, 6.6331e-02, 1.2033e-02, 9.2786e-01, + 5.1123e-01, 8.4921e-01, 9.4593e-01, 1.5175e-01, + 9.6212e-01, 4.9790e-01, 3.6524e-01, 6.4334e-01, + 8.5222e-01, 8.3525e-01, 4.4515e-01, 9.2110e-01, + 6.7497e-01, 9.1729e-01, 9.5976e-01, 3.4302e-01, + 1.5117e-01, 9.0576e-01, 2.9185e-01, 3.2189e-01, + 6.6528e-01, 4.5914e-01, 8.8528e-01, 9.1793e-01, + 5.4030e-01, 5.4753e-01, 1.9790e-01, 5.5714e-01, + 3.5467e-01, 4.9917e-01, 5.8322e-01, 5.3679e-01, + 6.0002e-01, 2.0784e-01, 3.4511e-01, 2.2987e-01, + 7.2294e-01, 4.0254e-01, 2.7296e-01, 3.4605e-02, + 8.6606e-01, 1.7876e-01, 9.4357e-01, 5.2248e-01, + 7.6849e-01, 7.7606e-01, 3.8884e-01, 3.4760e-01, + 3.4674e-01, 7.9396e-01, 9.2260e-01, 7.9808e-01, + 7.3693e-01, 5.4535e-01, 2.7120e-01, 5.2527e-01, + 8.1707e-01, 9.8153e-01, 4.7831e-02, 9.0352e-01, + 2.7109e-01, 3.6352e-01, 3.9784e-01, 5.4847e-01, + 2.2590e-01, 7.0093e-01, 7.2317e-01, 9.8874e-01, + 2.4136e-01, 8.9288e-01, 4.3400e-01, 3.2705e-01, + 4.0069e-01, 1.8910e-01, 8.1844e-01, 7.9620e-01, + 5.6564e-01, 1.2793e-01, 2.8968e-01, 9.3505e-01, + 3.0875e-01, 7.9151e-01, 2.4407e-01, 2.0703e-02, + 9.6879e-01, 8.8887e-01, 9.7410e-01, 1.8982e-01, + 4.3029e-01, 6.1504e-02, 4.4247e-01, 7.0771e-01, + 8.5999e-01, 6.0147e-02, 1.0992e-01, 2.1045e-02, + 2.9122e-01, 5.5412e-01, 6.6382e-01, 6.2970e-01, + 9.8414e-01, 2.8818e-01, 9.9151e-02, 7.1218e-01, + 9.6381e-01, 3.1820e-01, 8.8603e-01, 2.0768e-01, + 2.5266e-01, 4.1578e-01, 4.2094e-02, 8.3200e-01, + 1.5533e-01, 2.6469e-01, 8.4578e-01, 6.7183e-01, + 9.4744e-01, 5.0742e-01, 9.2285e-01, 2.7251e-01, + 7.5077e-01, 8.9139e-01, 1.5554e-02, 3.6012e-01, + 8.4348e-01, 2.6198e-01, 8.1818e-01, 4.6823e-02, + 7.7674e-01, 3.7275e-01, 2.2973e-01, 8.8084e-01, + 9.4058e-01, 8.3742e-01, 4.1623e-01, 3.1520e-02, + 3.4727e-01, 9.5595e-01, 1.9390e-01, 6.7977e-01, + 3.6465e-01, 2.6049e-01, 2.9796e-01, 1.1722e-01, + 3.9747e-01, 6.8602e-01, 5.6184e-01, 6.8826e-01, + 2.0046e-01, 6.7113e-01, 5.8623e-01, 4.6542e-01, + 6.7784e-01, 2.2631e-01, 4.2916e-01, 5.2430e-01, + 5.5908e-01, 8.4205e-02, 1.0124e-01, 9.4289e-01, + 5.4475e-03, 4.6761e-01, 9.1604e-01, 5.3590e-01, + 8.3150e-01, 5.3336e-01, 1.4978e-01, 5.6498e-01, + 6.6969e-02, 6.4111e-01, 9.1692e-01, 6.8961e-02, + 5.2052e-01, 6.7275e-01, 9.6648e-01, 1.0708e-02, + 3.7208e-01, 8.8149e-01, 4.5841e-01, 4.2290e-01, + 2.8680e-02, 6.1936e-01, 3.2559e-01, 4.5333e-01, + 9.4508e-01, 6.9227e-01, 5.5121e-01, 8.7142e-01, + 2.5169e-01, 2.1455e-01, 5.7989e-01, 1.4356e-01, + 8.7386e-01, 6.7318e-01, 4.6051e-01, 1.5353e-01, + 9.0016e-01, 6.2262e-01, 3.1852e-01, 7.0931e-02, + 6.4187e-01, 9.5944e-01, 8.9126e-01, 2.8364e-01, + 9.9916e-01, 1.9702e-01, 2.2416e-01, 4.3509e-01, + 1.4583e-01, 1.4836e-01, 9.0843e-01, 7.9091e-02, + 8.2524e-01, 5.2035e-01, 1.1139e-01, 1.7207e-01, + 5.1057e-01, 4.3832e-01, 5.2320e-01, 1.3588e-01, + 7.2917e-01, 9.7882e-01, 5.3764e-01, 1.1408e-01, + 9.6750e-01, 5.2236e-02, 1.7656e-01, 6.3825e-01, + 4.2668e-02, 3.1796e-01, 4.0240e-02, 1.7456e-01, + 5.1237e-01, 8.3579e-01, 6.7024e-01, 6.4843e-01, + 7.7335e-01, 5.1312e-01, 1.0212e-01, 3.8262e-01, + 4.8249e-01, 8.2486e-02, 8.1760e-01, 9.7405e-01, + 1.3984e-01, 2.0012e-01, 5.7656e-01, 1.0390e-01, + 4.9240e-01, 7.8365e-01, 9.2216e-01, 7.6854e-01, + 6.6574e-01, 8.6726e-01, 3.9857e-01, 8.9556e-01, + 5.5728e-01, 3.7013e-01, 2.4661e-01, 7.1962e-02, + 2.1412e-01, 6.4604e-01, 9.0376e-01, 7.0492e-01, + 4.2638e-01, 5.8832e-01, 3.4304e-01, 6.3964e-01, + 8.6998e-01, 2.4576e-01, 8.2567e-01, 1.0762e-01, + 3.1310e-01, 8.9782e-01, 6.0560e-01, 2.1446e-02, + 5.3497e-02, 9.6383e-01, 7.7932e-01, 2.1853e-01, + 7.3464e-01, 2.3548e-01, 9.3060e-01, 5.7317e-03, + 7.4298e-01, 5.3537e-01, 4.8560e-01, 9.6730e-01, + 7.6250e-01, 6.9670e-02, 6.0534e-01, 5.0924e-01, + 2.0278e-01, 1.0778e-01, 9.0005e-01, 1.0226e-01, + 4.6301e-01, 1.3695e-01, 4.8460e-01, 5.5213e-01, + 4.9099e-01, 6.6150e-01, 1.4123e-01, 4.8495e-02, + 3.2005e-01, 9.2497e-01, 3.4661e-01, 2.2349e-01, + 6.0811e-01, 6.4216e-01, 5.9953e-01, 4.6989e-01, + 2.0930e-01, 2.5490e-01, 3.4212e-01, 5.8880e-01, + 8.9119e-01, 9.5757e-01, 7.8986e-01, 9.1785e-01, + 8.4240e-02, 7.0146e-01, 4.2999e-01, 8.7659e-01, + 6.6600e-01, 9.3144e-01, 6.6034e-01, 2.5563e-01, + 5.4123e-01, 2.4843e-01, 4.2146e-01, 2.4451e-01, + 5.9355e-02, 7.9812e-01, 9.9665e-01, 1.2106e-01, + 4.8230e-01, 1.6177e-01, 6.8532e-01, 2.3983e-01, + 3.0260e-01, 5.4610e-01, 1.8362e-01, 2.4822e-01, + 5.2604e-01, 1.7262e-01, 9.3319e-01, 5.2875e-01, + 4.4548e-01, 9.6324e-01, 9.3822e-01, 1.4101e-01, + 2.9004e-01, 9.8271e-01, 1.8284e-01, 6.5851e-01, + 5.8992e-01, 1.9685e-01, 7.9180e-02, 4.3183e-01, + 2.5144e-01, 7.4977e-01, 5.0010e-01, 5.3582e-01, + 8.5925e-01, 5.7023e-01, 7.6546e-01, 2.7229e-01, + 6.3567e-01, 1.9853e-02, 9.8156e-01, 5.1300e-01, + 7.0410e-01, 1.9884e-01, 8.2894e-01, 6.0498e-01, + 8.3068e-01, 4.5943e-01, 9.1785e-01, 7.5169e-01, + 6.0400e-02, 6.3811e-01, 4.3791e-01, 6.6424e-01, + 2.3959e-01, 6.6513e-01, 9.6708e-01, 6.6745e-01, + 7.8435e-01, 4.7840e-01, 1.4220e-01, 8.4696e-01, + 3.9492e-01, 1.7747e-01, 1.0384e-01, 3.4803e-01, + 4.4867e-01, 2.1118e-02, 5.1986e-01, 8.6635e-03, + 2.9422e-01, 6.5401e-01, 7.4585e-01, 6.1559e-01, + 9.5539e-02, 1.5754e-01, 5.3164e-01, 1.9059e-01, + 4.7617e-01, 8.1445e-01, 3.7421e-01, 3.5266e-01, + 2.7694e-01, 1.6864e-01, 4.1843e-01, 3.8316e-01, + 6.9262e-01, 6.9038e-01, 8.3762e-01, 6.6963e-01, + 3.0783e-01, 5.9280e-02, 2.5202e-01, 8.1615e-01, + 1.1046e-02, 2.1282e-01, 7.3311e-01, 2.8725e-01, + 7.6723e-01, 5.5518e-01, 2.1261e-01, 3.9670e-01, + 1.2823e-01, 8.5473e-01, 8.2945e-01, 6.0473e-03, + 8.1675e-01, 2.9842e-01, 2.7518e-01, 8.4889e-01, + 1.4176e-01, 2.2999e-01, 9.8103e-01, 6.1864e-01, + 1.7848e-01, 1.4930e-02, 9.0227e-01, 3.7526e-01, + 6.7379e-01, 7.4257e-01, 2.2657e-01, 1.3257e-01, + 6.5286e-02, 4.5247e-01, 1.1977e-02, 4.5326e-01, + 6.2023e-01, 2.9594e-01, 8.5625e-01, 3.2932e-01, + 8.5327e-01, 3.7474e-01, 5.2005e-01, 1.9805e-03, + 1.8896e-01, 2.2181e-01, 1.4462e-01, 2.7939e-01, + 3.3215e-01, 7.7546e-01, 9.2522e-01, 8.1760e-01, + 5.1863e-01, 7.7043e-01, 9.7478e-01, 5.0158e-01, + 4.9716e-01, 1.9079e-01, 3.1415e-01, 9.3979e-01, + 3.9996e-02, 5.6242e-01, 2.6871e-01, 3.4933e-04, + 6.5883e-01, 6.9675e-01, 4.0822e-01, 3.8498e-01, + 1.0241e-01, 8.6637e-01, 2.2285e-01, 7.4028e-01, + 1.7733e-01, 2.7094e-01, 4.5353e-01, 4.3450e-01, + 4.5140e-01, 4.4938e-01, 9.0305e-01, 6.1982e-01, + 1.4139e-01, 8.3423e-01, 9.4445e-01, 9.7407e-01, + 3.3746e-01, 1.2854e-01, 3.3241e-01, 8.0687e-01, + 4.7193e-01, 6.3117e-01, 6.1655e-01, 7.1355e-01, + 9.6168e-01, 4.7774e-01, 6.2907e-01, 8.0398e-02, + 7.1037e-01, 5.8516e-01, 8.8072e-01, 4.9747e-01, + 5.7621e-01, 5.3898e-01, 1.5911e-01, 3.2921e-01, + 3.7609e-01, 2.5010e-01, 4.9033e-01, 6.6828e-01, + 8.3216e-01, 3.2885e-01, 3.5639e-01, 6.1506e-01, + 3.9507e-01, 6.8564e-01, 9.3219e-01, 8.1971e-01, + 3.7975e-01, 6.2635e-02, 7.3499e-01, 8.3335e-01, + 9.6516e-01, 3.6389e-01, 1.4785e-01, 9.8734e-01, + 4.6517e-01, 4.7021e-01, 4.5035e-01, 8.5602e-01, + 8.8317e-01, 6.9377e-01, 1.0737e-01, 3.0491e-01, + 7.4477e-01, 2.7987e-01, 9.1324e-01, 4.3301e-01, + 1.0371e-01, 4.6262e-01, 7.3666e-01, 4.1720e-01, + 8.9850e-01, 7.7097e-01, 8.4133e-01, 9.0364e-01, + 3.7363e-01, 4.2931e-01, 4.3065e-01, 4.7899e-01, + 6.1030e-01, 9.2078e-01, 2.4479e-01, 6.3372e-01, + 7.5302e-01, 6.8533e-02, 2.4034e-01, 2.9799e-01, + 5.9541e-01, 8.0769e-01, 6.0826e-02, 4.9975e-01, + 6.7782e-01, 9.2380e-01, 6.5933e-01, 6.2628e-01, + 3.5499e-01, 7.7217e-01, 7.1395e-01, 8.3721e-01, + 8.8629e-01, 9.0689e-01, 2.0537e-01, 3.0803e-01, + 6.5047e-01, 7.1533e-01, 8.5211e-01, 6.9320e-01, + 9.0068e-01, 1.3613e-01, 7.8974e-01, 8.7644e-01, + 1.5286e-02, 5.1885e-02, 3.0124e-01, 3.2126e-02, + 8.9848e-01, 5.7828e-01, 9.6688e-01, 1.8717e-01, + 8.2536e-01, 6.1247e-01, 4.0347e-01, 4.7207e-01, + 7.2367e-01, 9.3299e-01, 4.6252e-01, 6.5511e-01, + 9.2534e-01, 7.0945e-01, 4.6262e-01, 9.6054e-01, + 9.4908e-01, 4.6484e-01, 9.9122e-01, 1.7594e-02, + 1.4339e-01, 7.1119e-02, 7.0679e-01, 7.2761e-01, + 4.9954e-01, 7.5889e-01, 1.8391e-01, 6.9856e-01, + 9.4138e-01, 9.0301e-01, 5.2853e-01, 5.0671e-01, + 8.2311e-01, 6.1262e-01, 6.5198e-01, 1.4274e-01, + 8.5886e-01, 2.5963e-02, 6.0455e-01, 9.0689e-01, + 4.6808e-02, 3.6223e-01, 3.6475e-01, 1.2150e-01, + 9.1193e-01, 9.1870e-01, 5.4367e-01, 2.4872e-01, + 8.8178e-01, 2.1879e-01, 4.8890e-01, 2.5284e-01, + 1.0187e-01, 3.9640e-02, 2.3500e-01, 1.6553e-01, + 3.0865e-01, 4.7595e-01, 2.7209e-01, 9.0120e-01, + 8.3193e-01, 1.3589e-01, 9.8747e-01, 9.9208e-01, + 3.3995e-01, 2.0806e-01, 4.9592e-02, 8.8307e-01, + 4.4688e-01, 8.3109e-01, 7.4699e-01, 8.7723e-01, + 2.2585e-01, 4.2030e-01, 2.1791e-01, 6.5667e-01, + 6.7550e-01, 8.1568e-01, 1.4914e-01, 8.1042e-01, + 2.8686e-01, 6.8659e-01, 4.8032e-01, 2.5172e-01, + 3.8307e-01, 5.3647e-01, 6.7392e-01, 3.3138e-01, + 4.2032e-02, 4.4574e-01, 1.6246e-01, 6.0810e-01, + 7.0306e-01, 2.1204e-01, 3.9409e-02, 2.2795e-01, + 8.4389e-01, 1.7474e-01, 8.9677e-01, 1.4316e-01, + 8.6058e-01, 6.1491e-01, 3.1661e-01, 9.2257e-01, + 7.4407e-01, 2.4658e-01, 2.5910e-01, 8.2101e-03, + 8.6598e-01, 7.2740e-01, 9.0937e-01, 6.4394e-01, + 4.9736e-01, 3.6977e-01, 6.7672e-01, 3.2331e-01, + 8.7654e-01, 5.8446e-01, 8.9775e-01, 1.7963e-01, + 7.2940e-01, 6.4353e-01, 5.5434e-01, 6.6167e-01, + 6.1351e-01, 3.2832e-01, 6.7163e-01, 6.7831e-01, + 5.1237e-01, 2.1545e-01, 3.3231e-01, 2.8996e-01, + 6.5585e-01, 2.0358e-02, 7.7431e-01, 9.8544e-01, + 9.1419e-01, 9.5741e-01, 7.0935e-01, 3.3533e-01, + 8.7434e-01, 6.1952e-01, 8.9673e-01, 1.8459e-01, + 2.2639e-02, 3.3693e-02, 1.4487e-01, 2.5814e-01, + 7.7431e-01, 3.5981e-01, 6.2179e-01, 2.9769e-01, + 1.7809e-01, 9.9498e-01, 3.6807e-01, 9.3312e-01, + 9.5690e-01, 6.4950e-01, 8.9949e-02, 6.1082e-01, + 5.5730e-04, 2.8380e-01, 1.5247e-01, 2.6631e-01, + 7.0591e-01, 9.1447e-01, 5.5121e-01, 8.2357e-01, + 3.1340e-01, 9.1639e-01, 5.7718e-02, 9.6115e-01, + 9.1335e-01, 7.8484e-01, 2.8462e-01, 7.3102e-01, + 3.0921e-01, 2.4763e-01, 1.7843e-01, 6.2335e-01, + 9.5565e-01, 3.9810e-01, 4.9350e-01, 3.6155e-01, + 9.9764e-01, 2.8685e-01, 3.0377e-01, 2.8867e-01]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.3038, 0.6445, 0.5741, ..., 0.8215, 0.9151, 0.6540]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 10.372447967529297 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 1000, 1000, 1000]), + col_indices=tensor([ 641, 1820, 5085, 7616, 6287, 2843, 3768, 139, 557, + 8943, 8505, 7281, 43, 6135, 7303, 4893, 489, 615, + 6714, 3680, 855, 4855, 479, 9230, 4436, 9603, 1635, + 9190, 9268, 3004, 1125, 8864, 107, 6184, 8970, 8700, + 7610, 2464, 2526, 7595, 3071, 5215, 1177, 6775, 4184, + 7851, 6577, 5571, 7909, 9344, 735, 6183, 9381, 8186, + 7299, 7523, 9047, 1302, 3301, 6829, 1465, 8532, 8991, + 1047, 5588, 9587, 3024, 6187, 7730, 4690, 6326, 2702, + 2537, 5158, 9461, 7448, 9578, 6012, 7028, 226, 6053, + 1967, 8146, 5831, 6774, 2244, 6191, 9992, 2390, 9133, + 8890, 766, 5014, 4790, 2155, 4691, 2161, 5599, 1756, + 7675, 496, 9605, 711, 5336, 9031, 2531, 2338, 9491, + 3768, 7092, 9040, 599, 4662, 8394, 522, 7316, 1506, + 525, 4754, 5479, 3359, 6765, 8131, 5941, 6009, 2305, + 1065, 3240, 5116, 987, 2923, 7533, 799, 2666, 5958, + 7677, 3749, 6265, 1775, 7785, 8588, 7337, 5345, 1189, + 7948, 6558, 2457, 299, 6806, 3954, 5519, 1039, 5338, + 7232, 812, 6127, 3761, 4004, 6956, 9330, 4265, 8611, + 6724, 8377, 8527, 2706, 1567, 2671, 2286, 3304, 1272, + 2070, 9256, 4736, 9758, 5406, 1452, 7915, 3101, 144, + 9979, 1960, 6381, 3432, 2638, 7424, 537, 2559, 9614, + 8179, 4691, 7438, 1120, 5872, 3070, 8489, 6931, 1985, + 4925, 4797, 5226, 7081, 8212, 445, 4109, 5640, 2257, + 7467, 2012, 6933, 9812, 6077, 3165, 2359, 17, 5933, + 7004, 1444, 9368, 5351, 6245, 3660, 7222, 2545, 8008, + 2336, 3100, 3043, 8828, 7123, 7845, 9969, 4531, 3791, + 9658, 582, 9738, 7316, 8440, 1704, 64, 9634, 7709, + 5983, 9441, 9604, 5121, 141, 2351, 3725, 6220, 7490, + 9494, 5209, 7692, 9939, 632, 7847, 6751, 9374, 2312, + 8674, 2385, 1543, 8905, 8015, 222, 786, 7500, 8256, + 2521, 6696, 1643, 8098, 4270, 7100, 3669, 2113, 1313, + 8306, 6672, 298, 1769, 5946, 9397, 7730, 9951, 7831, + 3644, 512, 9197, 3290, 2307, 6307, 5995, 9826, 8701, + 1474, 5284, 3261, 2218, 2945, 4813, 3037, 7819, 5822, + 7884, 4720, 2534, 1208, 3616, 922, 2226, 4382, 3494, + 6973, 6642, 6587, 3020, 4947, 3226, 2552, 101, 2200, + 8571, 1979, 8248, 2284, 9387, 3200, 9086, 615, 4324, + 7614, 1291, 9099, 2422, 9376, 7855, 2869, 4373, 9650, + 4367, 4622, 5124, 7211, 2179, 1614, 3245, 5389, 6821, + 6300, 8718, 1035, 3582, 8257, 7452, 2297, 3762, 3338, + 2343, 6557, 3623, 5128, 4244, 4231, 1091, 2759, 1073, + 1438, 9204, 3250, 1109, 5974, 5625, 9640, 5403, 9827, + 9860, 2538, 6365, 3807, 7739, 4746, 196, 7104, 1414, + 9645, 5312, 4324, 1738, 8925, 3231, 558, 7534, 4725, + 9093, 1277, 4867, 2640, 3909, 8870, 6450, 5182, 1941, + 5107, 8388, 8527, 7970, 1975, 7722, 4808, 8077, 5290, + 5743, 6355, 7161, 573, 7648, 7139, 100, 2042, 3159, + 1046, 6596, 5452, 1650, 9645, 6382, 6862, 555, 3741, + 118, 8221, 8479, 8346, 7654, 5102, 3554, 7238, 258, + 9058, 600, 7288, 3482, 1231, 52, 6020, 6829, 8334, + 4647, 3307, 2858, 528, 4606, 6172, 3855, 4925, 5620, + 132, 8810, 4311, 4446, 8520, 9436, 6123, 4339, 1754, + 5002, 7908, 529, 6941, 1458, 1377, 7366, 3326, 2975, + 4976, 2358, 9764, 3735, 4314, 9201, 3224, 3442, 4608, + 7255, 153, 1882, 8568, 6384, 2712, 5756, 5384, 9835, + 2913, 8596, 324, 1552, 8661, 2777, 8374, 5359, 1615, + 3969, 6396, 7689, 2470, 778, 7314, 3640, 427, 3557, + 3960, 5759, 9579, 3154, 4508, 9713, 2509, 4663, 4700, + 2397, 2730, 4887, 7158, 9627, 992, 5544, 8476, 9970, + 6284, 6686, 6616, 1433, 1753, 1639, 788, 8113, 3009, + 2084, 9407, 5338, 8482, 2017, 2846, 3658, 5916, 2942, + 3321, 8671, 2490, 5057, 4147, 6392, 6458, 674, 981, + 3352, 6130, 6143, 264, 4531, 5618, 3537, 3145, 3094, + 4051, 1817, 5211, 9273, 9450, 6106, 8283, 7138, 7857, + 3244, 6049, 1477, 4734, 9695, 9753, 4169, 9542, 2937, + 3509, 7510, 4689, 707, 8198, 7008, 6722, 3337, 5751, + 3766, 833, 8750, 4331, 5594, 3997, 5578, 9017, 3910, + 3070, 1260, 7089, 5023, 6162, 4544, 2963, 5389, 8290, + 2433, 8470, 268, 2658, 5350, 9452, 9566, 5799, 6076, + 5093, 4524, 728, 5385, 601, 1121, 2937, 6609, 9033, + 112, 8436, 1613, 1934, 5295, 1872, 5673, 2468, 20, + 629, 8138, 8511, 4404, 5469, 9306, 3180, 1675, 8874, + 5243, 5951, 1999, 1207, 2097, 2731, 7103, 9382, 5573, + 4542, 3567, 7221, 1313, 4524, 4765, 9415, 2646, 4434, + 2523, 8400, 4785, 4828, 6799, 641, 9477, 4083, 3467, + 6803, 5831, 7241, 1931, 3753, 6755, 5101, 8779, 276, + 723, 6290, 3559, 163, 1895, 5804, 7812, 452, 8815, + 3364, 1546, 636, 1173, 4838, 5941, 3629, 5615, 1065, + 6095, 1559, 4709, 6197, 6796, 6190, 1496, 4155, 8680, + 8774, 2349, 1020, 7910, 216, 8442, 9179, 6834, 1499, + 2872, 6140, 8913, 9738, 5850, 8410, 7955, 3577, 3138, + 5103, 4605, 8243, 2613, 2619, 6014, 1536, 619, 7266, + 4067, 4761, 4808, 7604, 7128, 3593, 8227, 5574, 5711, + 3815, 6532, 6664, 4778, 9035, 2519, 6829, 8402, 9861, + 5598, 8030, 991, 5754, 1489, 8219, 1588, 7984, 3957, + 7982, 7783, 5801, 4818, 6928, 5945, 1030, 6679, 8996, + 2066, 5413, 9651, 8908, 3779, 697, 6794, 9930, 9736, + 8162, 6895, 2355, 5033, 4891, 2352, 2673, 6602, 6389, + 2319, 1938, 3169, 4827, 2997, 199, 8604, 2753, 197, + 9848, 5455, 5838, 5131, 3306, 3152, 5760, 1477, 8162, + 8523, 382, 6174, 1580, 2419, 5000, 1351, 4299, 2598, + 8064, 714, 8757, 4986, 9885, 1, 9906, 7850, 9127, + 609, 9264, 7572, 5203, 1497, 5370, 2825, 6608, 5307, + 1067, 1059, 6801, 4949, 4490, 3210, 7421, 7811, 1102, + 5058, 8487, 8843, 5590, 9083, 3587, 9580, 6809, 4814, + 5774, 5460, 5247, 1639, 4042, 1058, 5514, 2499, 4333, + 2608, 5359, 3700, 2316, 8701, 7433, 6840, 4441, 7816, + 5852, 6477, 8172, 7852, 5968, 9671, 5374, 1033, 1307, + 7427, 1879, 7842, 1991, 8425, 3031, 6842, 7640, 2472, + 5231, 4002, 6652, 3522, 211, 9391, 7872, 5134, 1378, + 6610, 2732, 1051, 7787, 2466, 1112, 7365, 9226, 5845, + 3593, 4013, 3040, 449, 9502, 9775, 5013, 72, 3221, + 1993, 2626, 656, 562, 8318, 7938, 2465, 4300, 2538, + 873, 5650, 590, 6320, 2620, 5043, 8788, 7544, 7372, + 3427, 2476, 6556, 1948, 1008, 9277, 8552, 7791, 838, + 8482, 7805, 2152, 8325, 132, 5590, 2315, 1155, 2035, + 4363, 7292, 6257, 538, 3095, 8540, 2594, 1676, 6100, + 432, 8590, 397, 6028, 5770, 4864, 259, 9108, 1343, + 3496, 3662, 6106, 9274, 2047, 2081, 3620, 438, 3494, + 55, 6088, 3113, 2526, 6605, 5078, 9048, 4362, 5299, + 8201, 7239, 2961, 6652, 4458, 3937, 4156, 4861, 4275, + 6038]), + values=tensor([4.7714e-01, 6.5835e-01, 6.6810e-01, 8.6236e-01, + 4.8150e-01, 2.9025e-01, 3.8068e-01, 1.2618e-02, + 8.9304e-01, 4.7334e-01, 3.1033e-01, 6.2877e-01, + 4.7847e-01, 6.3115e-01, 3.7549e-01, 7.1375e-01, + 7.1370e-01, 1.5617e-01, 5.9230e-01, 8.6992e-01, + 1.0824e-02, 9.5002e-01, 9.3768e-01, 3.9687e-01, + 2.4891e-01, 3.5396e-01, 7.9816e-01, 4.0629e-01, + 1.1462e-01, 9.2518e-02, 5.4557e-01, 2.8237e-01, + 2.7320e-01, 6.0124e-01, 9.2649e-01, 9.6609e-01, + 2.5218e-02, 8.7923e-01, 2.8120e-01, 8.5964e-01, + 7.5022e-01, 6.9189e-01, 8.6902e-01, 6.6175e-01, + 4.8078e-01, 1.0568e-01, 6.1760e-01, 5.1173e-01, + 7.1935e-01, 7.9758e-01, 5.1397e-01, 9.2681e-01, + 1.5881e-01, 4.0107e-01, 3.7000e-02, 4.5709e-01, + 8.7828e-01, 9.9798e-01, 2.0436e-01, 8.2405e-01, + 2.2018e-01, 8.1418e-01, 6.6142e-01, 6.5186e-01, + 1.7800e-01, 5.1282e-01, 5.4169e-01, 5.1202e-01, + 7.2361e-01, 6.0514e-01, 5.7929e-02, 5.8574e-01, + 1.3412e-01, 2.4876e-01, 8.0263e-02, 3.0969e-01, + 7.6202e-01, 9.0548e-01, 6.8427e-01, 9.4370e-02, + 1.2529e-03, 5.6984e-01, 2.4518e-01, 5.3912e-01, + 7.6442e-01, 1.5031e-01, 7.1477e-01, 5.7099e-01, + 9.6944e-01, 7.7954e-01, 1.9253e-01, 4.3041e-01, + 4.5620e-01, 8.4686e-01, 7.6515e-01, 3.4939e-02, + 6.8882e-01, 2.9488e-01, 3.1215e-01, 5.0502e-01, + 4.1170e-01, 9.0587e-01, 2.6328e-01, 6.3719e-01, + 6.4003e-01, 1.4477e-01, 3.2101e-01, 6.3956e-01, + 5.8353e-01, 6.2460e-02, 8.7149e-01, 5.0409e-01, + 2.9944e-01, 1.5857e-01, 7.5177e-01, 3.8737e-01, + 5.8319e-01, 8.6482e-01, 5.5542e-01, 1.6361e-01, + 9.6946e-01, 7.4385e-01, 7.8405e-01, 9.1404e-01, + 3.1006e-01, 6.1069e-01, 9.8763e-01, 7.8296e-01, + 5.8330e-01, 2.2488e-01, 5.3122e-01, 9.0733e-01, + 1.0823e-01, 7.1544e-01, 5.3686e-01, 9.7645e-01, + 7.0111e-01, 8.3358e-01, 6.7151e-01, 4.5959e-01, + 1.8565e-01, 7.9015e-01, 1.8143e-02, 5.2429e-01, + 9.8713e-01, 7.8291e-02, 3.2014e-01, 7.0142e-01, + 3.2823e-02, 2.0523e-01, 2.8556e-01, 6.5603e-01, + 6.6879e-01, 1.8088e-01, 6.8243e-01, 8.0618e-01, + 5.9647e-01, 2.7644e-01, 6.0267e-01, 9.4412e-01, + 9.6862e-01, 4.6876e-01, 9.2399e-01, 8.4139e-02, + 1.1788e-01, 6.5004e-01, 4.1362e-01, 6.3517e-01, + 9.1004e-01, 8.6067e-01, 3.3935e-01, 9.9589e-01, + 6.5934e-01, 9.0696e-01, 3.5917e-01, 3.4094e-01, + 1.2945e-01, 8.7930e-01, 5.9039e-01, 9.4529e-01, + 5.8159e-01, 4.0632e-01, 3.0761e-02, 3.3183e-01, + 8.7530e-01, 1.2750e-01, 4.8617e-01, 9.8340e-01, + 9.7630e-02, 3.4204e-01, 4.1919e-01, 9.3104e-01, + 8.6768e-01, 7.0351e-02, 9.3605e-01, 3.1020e-01, + 8.5241e-01, 8.9140e-01, 9.8230e-01, 1.2324e-01, + 3.6008e-01, 2.9767e-01, 9.7191e-01, 1.9919e-03, + 2.2594e-01, 6.6331e-02, 1.2033e-02, 9.2786e-01, + 5.1123e-01, 8.4921e-01, 9.4593e-01, 1.5175e-01, + 9.6212e-01, 4.9790e-01, 3.6524e-01, 6.4334e-01, + 8.5222e-01, 8.3525e-01, 4.4515e-01, 9.2110e-01, + 6.7497e-01, 9.1729e-01, 9.5976e-01, 3.4302e-01, + 1.5117e-01, 9.0576e-01, 2.9185e-01, 3.2189e-01, + 6.6528e-01, 4.5914e-01, 8.8528e-01, 9.1793e-01, + 5.4030e-01, 5.4753e-01, 1.9790e-01, 5.5714e-01, + 3.5467e-01, 4.9917e-01, 5.8322e-01, 5.3679e-01, + 6.0002e-01, 2.0784e-01, 3.4511e-01, 2.2987e-01, + 7.2294e-01, 4.0254e-01, 2.7296e-01, 3.4605e-02, + 8.6606e-01, 1.7876e-01, 9.4357e-01, 5.2248e-01, + 7.6849e-01, 7.7606e-01, 3.8884e-01, 3.4760e-01, + 3.4674e-01, 7.9396e-01, 9.2260e-01, 7.9808e-01, + 7.3693e-01, 5.4535e-01, 2.7120e-01, 5.2527e-01, + 8.1707e-01, 9.8153e-01, 4.7831e-02, 9.0352e-01, + 2.7109e-01, 3.6352e-01, 3.9784e-01, 5.4847e-01, + 2.2590e-01, 7.0093e-01, 7.2317e-01, 9.8874e-01, + 2.4136e-01, 8.9288e-01, 4.3400e-01, 3.2705e-01, + 4.0069e-01, 1.8910e-01, 8.1844e-01, 7.9620e-01, + 5.6564e-01, 1.2793e-01, 2.8968e-01, 9.3505e-01, + 3.0875e-01, 7.9151e-01, 2.4407e-01, 2.0703e-02, + 9.6879e-01, 8.8887e-01, 9.7410e-01, 1.8982e-01, + 4.3029e-01, 6.1504e-02, 4.4247e-01, 7.0771e-01, + 8.5999e-01, 6.0147e-02, 1.0992e-01, 2.1045e-02, + 2.9122e-01, 5.5412e-01, 6.6382e-01, 6.2970e-01, + 9.8414e-01, 2.8818e-01, 9.9151e-02, 7.1218e-01, + 9.6381e-01, 3.1820e-01, 8.8603e-01, 2.0768e-01, + 2.5266e-01, 4.1578e-01, 4.2094e-02, 8.3200e-01, + 1.5533e-01, 2.6469e-01, 8.4578e-01, 6.7183e-01, + 9.4744e-01, 5.0742e-01, 9.2285e-01, 2.7251e-01, + 7.5077e-01, 8.9139e-01, 1.5554e-02, 3.6012e-01, + 8.4348e-01, 2.6198e-01, 8.1818e-01, 4.6823e-02, + 7.7674e-01, 3.7275e-01, 2.2973e-01, 8.8084e-01, + 9.4058e-01, 8.3742e-01, 4.1623e-01, 3.1520e-02, + 3.4727e-01, 9.5595e-01, 1.9390e-01, 6.7977e-01, + 3.6465e-01, 2.6049e-01, 2.9796e-01, 1.1722e-01, + 3.9747e-01, 6.8602e-01, 5.6184e-01, 6.8826e-01, + 2.0046e-01, 6.7113e-01, 5.8623e-01, 4.6542e-01, + 6.7784e-01, 2.2631e-01, 4.2916e-01, 5.2430e-01, + 5.5908e-01, 8.4205e-02, 1.0124e-01, 9.4289e-01, + 5.4475e-03, 4.6761e-01, 9.1604e-01, 5.3590e-01, + 8.3150e-01, 5.3336e-01, 1.4978e-01, 5.6498e-01, + 6.6969e-02, 6.4111e-01, 9.1692e-01, 6.8961e-02, + 5.2052e-01, 6.7275e-01, 9.6648e-01, 1.0708e-02, + 3.7208e-01, 8.8149e-01, 4.5841e-01, 4.2290e-01, + 2.8680e-02, 6.1936e-01, 3.2559e-01, 4.5333e-01, + 9.4508e-01, 6.9227e-01, 5.5121e-01, 8.7142e-01, + 2.5169e-01, 2.1455e-01, 5.7989e-01, 1.4356e-01, + 8.7386e-01, 6.7318e-01, 4.6051e-01, 1.5353e-01, + 9.0016e-01, 6.2262e-01, 3.1852e-01, 7.0931e-02, + 6.4187e-01, 9.5944e-01, 8.9126e-01, 2.8364e-01, + 9.9916e-01, 1.9702e-01, 2.2416e-01, 4.3509e-01, + 1.4583e-01, 1.4836e-01, 9.0843e-01, 7.9091e-02, + 8.2524e-01, 5.2035e-01, 1.1139e-01, 1.7207e-01, + 5.1057e-01, 4.3832e-01, 5.2320e-01, 1.3588e-01, + 7.2917e-01, 9.7882e-01, 5.3764e-01, 1.1408e-01, + 9.6750e-01, 5.2236e-02, 1.7656e-01, 6.3825e-01, + 4.2668e-02, 3.1796e-01, 4.0240e-02, 1.7456e-01, + 5.1237e-01, 8.3579e-01, 6.7024e-01, 6.4843e-01, + 7.7335e-01, 5.1312e-01, 1.0212e-01, 3.8262e-01, + 4.8249e-01, 8.2486e-02, 8.1760e-01, 9.7405e-01, + 1.3984e-01, 2.0012e-01, 5.7656e-01, 1.0390e-01, + 4.9240e-01, 7.8365e-01, 9.2216e-01, 7.6854e-01, + 6.6574e-01, 8.6726e-01, 3.9857e-01, 8.9556e-01, + 5.5728e-01, 3.7013e-01, 2.4661e-01, 7.1962e-02, + 2.1412e-01, 6.4604e-01, 9.0376e-01, 7.0492e-01, + 4.2638e-01, 5.8832e-01, 3.4304e-01, 6.3964e-01, + 8.6998e-01, 2.4576e-01, 8.2567e-01, 1.0762e-01, + 3.1310e-01, 8.9782e-01, 6.0560e-01, 2.1446e-02, + 5.3497e-02, 9.6383e-01, 7.7932e-01, 2.1853e-01, + 7.3464e-01, 2.3548e-01, 9.3060e-01, 5.7317e-03, + 7.4298e-01, 5.3537e-01, 4.8560e-01, 9.6730e-01, + 7.6250e-01, 6.9670e-02, 6.0534e-01, 5.0924e-01, + 2.0278e-01, 1.0778e-01, 9.0005e-01, 1.0226e-01, + 4.6301e-01, 1.3695e-01, 4.8460e-01, 5.5213e-01, + 4.9099e-01, 6.6150e-01, 1.4123e-01, 4.8495e-02, + 3.2005e-01, 9.2497e-01, 3.4661e-01, 2.2349e-01, + 6.0811e-01, 6.4216e-01, 5.9953e-01, 4.6989e-01, + 2.0930e-01, 2.5490e-01, 3.4212e-01, 5.8880e-01, + 8.9119e-01, 9.5757e-01, 7.8986e-01, 9.1785e-01, + 8.4240e-02, 7.0146e-01, 4.2999e-01, 8.7659e-01, + 6.6600e-01, 9.3144e-01, 6.6034e-01, 2.5563e-01, + 5.4123e-01, 2.4843e-01, 4.2146e-01, 2.4451e-01, + 5.9355e-02, 7.9812e-01, 9.9665e-01, 1.2106e-01, + 4.8230e-01, 1.6177e-01, 6.8532e-01, 2.3983e-01, + 3.0260e-01, 5.4610e-01, 1.8362e-01, 2.4822e-01, + 5.2604e-01, 1.7262e-01, 9.3319e-01, 5.2875e-01, + 4.4548e-01, 9.6324e-01, 9.3822e-01, 1.4101e-01, + 2.9004e-01, 9.8271e-01, 1.8284e-01, 6.5851e-01, + 5.8992e-01, 1.9685e-01, 7.9180e-02, 4.3183e-01, + 2.5144e-01, 7.4977e-01, 5.0010e-01, 5.3582e-01, + 8.5925e-01, 5.7023e-01, 7.6546e-01, 2.7229e-01, + 6.3567e-01, 1.9853e-02, 9.8156e-01, 5.1300e-01, + 7.0410e-01, 1.9884e-01, 8.2894e-01, 6.0498e-01, + 8.3068e-01, 4.5943e-01, 9.1785e-01, 7.5169e-01, + 6.0400e-02, 6.3811e-01, 4.3791e-01, 6.6424e-01, + 2.3959e-01, 6.6513e-01, 9.6708e-01, 6.6745e-01, + 7.8435e-01, 4.7840e-01, 1.4220e-01, 8.4696e-01, + 3.9492e-01, 1.7747e-01, 1.0384e-01, 3.4803e-01, + 4.4867e-01, 2.1118e-02, 5.1986e-01, 8.6635e-03, + 2.9422e-01, 6.5401e-01, 7.4585e-01, 6.1559e-01, + 9.5539e-02, 1.5754e-01, 5.3164e-01, 1.9059e-01, + 4.7617e-01, 8.1445e-01, 3.7421e-01, 3.5266e-01, + 2.7694e-01, 1.6864e-01, 4.1843e-01, 3.8316e-01, + 6.9262e-01, 6.9038e-01, 8.3762e-01, 6.6963e-01, + 3.0783e-01, 5.9280e-02, 2.5202e-01, 8.1615e-01, + 1.1046e-02, 2.1282e-01, 7.3311e-01, 2.8725e-01, + 7.6723e-01, 5.5518e-01, 2.1261e-01, 3.9670e-01, + 1.2823e-01, 8.5473e-01, 8.2945e-01, 6.0473e-03, + 8.1675e-01, 2.9842e-01, 2.7518e-01, 8.4889e-01, + 1.4176e-01, 2.2999e-01, 9.8103e-01, 6.1864e-01, + 1.7848e-01, 1.4930e-02, 9.0227e-01, 3.7526e-01, + 6.7379e-01, 7.4257e-01, 2.2657e-01, 1.3257e-01, + 6.5286e-02, 4.5247e-01, 1.1977e-02, 4.5326e-01, + 6.2023e-01, 2.9594e-01, 8.5625e-01, 3.2932e-01, + 8.5327e-01, 3.7474e-01, 5.2005e-01, 1.9805e-03, + 1.8896e-01, 2.2181e-01, 1.4462e-01, 2.7939e-01, + 3.3215e-01, 7.7546e-01, 9.2522e-01, 8.1760e-01, + 5.1863e-01, 7.7043e-01, 9.7478e-01, 5.0158e-01, + 4.9716e-01, 1.9079e-01, 3.1415e-01, 9.3979e-01, + 3.9996e-02, 5.6242e-01, 2.6871e-01, 3.4933e-04, + 6.5883e-01, 6.9675e-01, 4.0822e-01, 3.8498e-01, + 1.0241e-01, 8.6637e-01, 2.2285e-01, 7.4028e-01, + 1.7733e-01, 2.7094e-01, 4.5353e-01, 4.3450e-01, + 4.5140e-01, 4.4938e-01, 9.0305e-01, 6.1982e-01, + 1.4139e-01, 8.3423e-01, 9.4445e-01, 9.7407e-01, + 3.3746e-01, 1.2854e-01, 3.3241e-01, 8.0687e-01, + 4.7193e-01, 6.3117e-01, 6.1655e-01, 7.1355e-01, + 9.6168e-01, 4.7774e-01, 6.2907e-01, 8.0398e-02, + 7.1037e-01, 5.8516e-01, 8.8072e-01, 4.9747e-01, + 5.7621e-01, 5.3898e-01, 1.5911e-01, 3.2921e-01, + 3.7609e-01, 2.5010e-01, 4.9033e-01, 6.6828e-01, + 8.3216e-01, 3.2885e-01, 3.5639e-01, 6.1506e-01, + 3.9507e-01, 6.8564e-01, 9.3219e-01, 8.1971e-01, + 3.7975e-01, 6.2635e-02, 7.3499e-01, 8.3335e-01, + 9.6516e-01, 3.6389e-01, 1.4785e-01, 9.8734e-01, + 4.6517e-01, 4.7021e-01, 4.5035e-01, 8.5602e-01, + 8.8317e-01, 6.9377e-01, 1.0737e-01, 3.0491e-01, + 7.4477e-01, 2.7987e-01, 9.1324e-01, 4.3301e-01, + 1.0371e-01, 4.6262e-01, 7.3666e-01, 4.1720e-01, + 8.9850e-01, 7.7097e-01, 8.4133e-01, 9.0364e-01, + 3.7363e-01, 4.2931e-01, 4.3065e-01, 4.7899e-01, + 6.1030e-01, 9.2078e-01, 2.4479e-01, 6.3372e-01, + 7.5302e-01, 6.8533e-02, 2.4034e-01, 2.9799e-01, + 5.9541e-01, 8.0769e-01, 6.0826e-02, 4.9975e-01, + 6.7782e-01, 9.2380e-01, 6.5933e-01, 6.2628e-01, + 3.5499e-01, 7.7217e-01, 7.1395e-01, 8.3721e-01, + 8.8629e-01, 9.0689e-01, 2.0537e-01, 3.0803e-01, + 6.5047e-01, 7.1533e-01, 8.5211e-01, 6.9320e-01, + 9.0068e-01, 1.3613e-01, 7.8974e-01, 8.7644e-01, + 1.5286e-02, 5.1885e-02, 3.0124e-01, 3.2126e-02, + 8.9848e-01, 5.7828e-01, 9.6688e-01, 1.8717e-01, + 8.2536e-01, 6.1247e-01, 4.0347e-01, 4.7207e-01, + 7.2367e-01, 9.3299e-01, 4.6252e-01, 6.5511e-01, + 9.2534e-01, 7.0945e-01, 4.6262e-01, 9.6054e-01, + 9.4908e-01, 4.6484e-01, 9.9122e-01, 1.7594e-02, + 1.4339e-01, 7.1119e-02, 7.0679e-01, 7.2761e-01, + 4.9954e-01, 7.5889e-01, 1.8391e-01, 6.9856e-01, + 9.4138e-01, 9.0301e-01, 5.2853e-01, 5.0671e-01, + 8.2311e-01, 6.1262e-01, 6.5198e-01, 1.4274e-01, + 8.5886e-01, 2.5963e-02, 6.0455e-01, 9.0689e-01, + 4.6808e-02, 3.6223e-01, 3.6475e-01, 1.2150e-01, + 9.1193e-01, 9.1870e-01, 5.4367e-01, 2.4872e-01, + 8.8178e-01, 2.1879e-01, 4.8890e-01, 2.5284e-01, + 1.0187e-01, 3.9640e-02, 2.3500e-01, 1.6553e-01, + 3.0865e-01, 4.7595e-01, 2.7209e-01, 9.0120e-01, + 8.3193e-01, 1.3589e-01, 9.8747e-01, 9.9208e-01, + 3.3995e-01, 2.0806e-01, 4.9592e-02, 8.8307e-01, + 4.4688e-01, 8.3109e-01, 7.4699e-01, 8.7723e-01, + 2.2585e-01, 4.2030e-01, 2.1791e-01, 6.5667e-01, + 6.7550e-01, 8.1568e-01, 1.4914e-01, 8.1042e-01, + 2.8686e-01, 6.8659e-01, 4.8032e-01, 2.5172e-01, + 3.8307e-01, 5.3647e-01, 6.7392e-01, 3.3138e-01, + 4.2032e-02, 4.4574e-01, 1.6246e-01, 6.0810e-01, + 7.0306e-01, 2.1204e-01, 3.9409e-02, 2.2795e-01, + 8.4389e-01, 1.7474e-01, 8.9677e-01, 1.4316e-01, + 8.6058e-01, 6.1491e-01, 3.1661e-01, 9.2257e-01, + 7.4407e-01, 2.4658e-01, 2.5910e-01, 8.2101e-03, + 8.6598e-01, 7.2740e-01, 9.0937e-01, 6.4394e-01, + 4.9736e-01, 3.6977e-01, 6.7672e-01, 3.2331e-01, + 8.7654e-01, 5.8446e-01, 8.9775e-01, 1.7963e-01, + 7.2940e-01, 6.4353e-01, 5.5434e-01, 6.6167e-01, + 6.1351e-01, 3.2832e-01, 6.7163e-01, 6.7831e-01, + 5.1237e-01, 2.1545e-01, 3.3231e-01, 2.8996e-01, + 6.5585e-01, 2.0358e-02, 7.7431e-01, 9.8544e-01, + 9.1419e-01, 9.5741e-01, 7.0935e-01, 3.3533e-01, + 8.7434e-01, 6.1952e-01, 8.9673e-01, 1.8459e-01, + 2.2639e-02, 3.3693e-02, 1.4487e-01, 2.5814e-01, + 7.7431e-01, 3.5981e-01, 6.2179e-01, 2.9769e-01, + 1.7809e-01, 9.9498e-01, 3.6807e-01, 9.3312e-01, + 9.5690e-01, 6.4950e-01, 8.9949e-02, 6.1082e-01, + 5.5730e-04, 2.8380e-01, 1.5247e-01, 2.6631e-01, + 7.0591e-01, 9.1447e-01, 5.5121e-01, 8.2357e-01, + 3.1340e-01, 9.1639e-01, 5.7718e-02, 9.6115e-01, + 9.1335e-01, 7.8484e-01, 2.8462e-01, 7.3102e-01, + 3.0921e-01, 2.4763e-01, 1.7843e-01, 6.2335e-01, + 9.5565e-01, 3.9810e-01, 4.9350e-01, 3.6155e-01, + 9.9764e-01, 2.8685e-01, 3.0377e-01, 2.8867e-01]), + size=(10000, 10000), nnz=1000, layout=torch.sparse_csr) +tensor([0.3038, 0.6445, 0.5741, ..., 0.8215, 0.9151, 0.6540]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([10000, 10000]) +Rows: 10000 +Size: 100000000 +NNZ: 1000 +Density: 1e-05 +Time: 10.372447967529297 seconds + +[18.31, 17.96, 18.02, 17.94, 18.39, 17.81, 17.97, 18.58, 17.92, 17.98] +[73.48] +13.651954174041748 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 282031, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.372447967529297, 'TIME_S_1KI': 0.036777687444037345, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1003.1455927085877, 'W': 73.48} +[18.31, 17.96, 18.02, 17.94, 18.39, 17.81, 17.97, 18.58, 17.92, 17.98, 18.3, 18.16, 17.88, 17.97, 17.91, 17.97, 18.81, 17.78, 18.15, 18.05] +325.53999999999996 +16.276999999999997 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 282031, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [10000, 10000], 'MATRIX_ROWS': 10000, 'MATRIX_SIZE': 100000000, 'MATRIX_NNZ': 1000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.372447967529297, 'TIME_S_1KI': 0.036777687444037345, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1003.1455927085877, 'W': 73.48, 'J_1KI': 3.5568628721969846, 'W_1KI': 0.26053873510358794, 'W_D': 57.203, 'J_D': 780.9327346177101, 'W_D_1KI': 0.20282522134091643, 'J_D_1KI': 0.0007191593170286829} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_500000_1e-05.json b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_500000_1e-05.json new file mode 100644 index 0000000..49601d0 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_500000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 8372, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.861924409866333, "TIME_S_1KI": 1.297410942411172, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1310.9924754476547, "W": 87.74, "J_1KI": 156.5925078174456, "W_1KI": 10.480172001911132, "W_D": 71.52799999999999, "J_D": 1068.7562090702056, "W_D_1KI": 8.543717152412803, "J_D_1KI": 1.0205108877702822} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_500000_1e-05.output b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_500000_1e-05.output new file mode 100644 index 0000000..5b5d205 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_500000_1e-05.output @@ -0,0 +1,68 @@ +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '500000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 1.2540500164031982} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 3, 6, ..., 2499994, + 2499996, 2500000]), + col_indices=tensor([ 37595, 347043, 415637, ..., 145391, 181131, + 323148]), + values=tensor([0.9304, 0.5156, 0.8153, ..., 0.0582, 0.6116, 0.3872]), + size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.4551, 0.3395, 0.9990, ..., 0.2154, 0.7020, 0.1344]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 2500000 +Density: 1e-05 +Time: 1.2540500164031982 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '8372', '-ss', '500000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [500000, 500000], "MATRIX_ROWS": 500000, "MATRIX_SIZE": 250000000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.861924409866333} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 5, 10, ..., 2499992, + 2499994, 2500000]), + col_indices=tensor([140767, 212572, 418184, ..., 257460, 329048, + 350732]), + values=tensor([0.1302, 0.7593, 0.7287, ..., 0.1348, 0.8551, 0.2122]), + size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.3362, 0.7821, 0.5665, ..., 0.5113, 0.4644, 0.7174]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 2500000 +Density: 1e-05 +Time: 10.861924409866333 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 5, 10, ..., 2499992, + 2499994, 2500000]), + col_indices=tensor([140767, 212572, 418184, ..., 257460, 329048, + 350732]), + values=tensor([0.1302, 0.7593, 0.7287, ..., 0.1348, 0.8551, 0.2122]), + size=(500000, 500000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.3362, 0.7821, 0.5665, ..., 0.5113, 0.4644, 0.7174]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([500000, 500000]) +Rows: 500000 +Size: 250000000000 +NNZ: 2500000 +Density: 1e-05 +Time: 10.861924409866333 seconds + +[18.33, 17.76, 18.07, 18.0, 18.02, 17.78, 17.96, 17.97, 18.01, 17.77] +[87.74] +14.941787958145142 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 8372, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.861924409866333, 'TIME_S_1KI': 1.297410942411172, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1310.9924754476547, 'W': 87.74} +[18.33, 17.76, 18.07, 18.0, 18.02, 17.78, 17.96, 17.97, 18.01, 17.77, 18.44, 18.07, 17.99, 17.91, 18.26, 18.15, 17.93, 17.77, 18.22, 18.2] +324.24 +16.212 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 8372, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [500000, 500000], 'MATRIX_ROWS': 500000, 'MATRIX_SIZE': 250000000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.861924409866333, 'TIME_S_1KI': 1.297410942411172, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1310.9924754476547, 'W': 87.74, 'J_1KI': 156.5925078174456, 'W_1KI': 10.480172001911132, 'W_D': 71.52799999999999, 'J_D': 1068.7562090702056, 'W_D_1KI': 8.543717152412803, 'J_D_1KI': 1.0205108877702822} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_50000_0.0001.json b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_50000_0.0001.json new file mode 100644 index 0000000..bafcc4c --- /dev/null +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_50000_0.0001.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 78280, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.048285484313965, "TIME_S_1KI": 0.12836338125081712, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1146.701253862381, "W": 82.44, "J_1KI": 14.648713002840841, "W_1KI": 1.053142565150741, "W_D": 66.134, "J_D": 919.8925366683006, "W_D_1KI": 0.8448390393459376, "J_D_1KI": 0.010792527329406458} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_50000_0.0001.output b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_50000_0.0001.output new file mode 100644 index 0000000..d22c5fa --- /dev/null +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_50000_0.0001.output @@ -0,0 +1,85 @@ +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 0.1482532024383545} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 2, 8, ..., 249991, 249997, + 250000]), + col_indices=tensor([11188, 48325, 9835, ..., 16403, 16442, 24121]), + values=tensor([0.5273, 0.3289, 0.0892, ..., 0.0153, 0.8132, 0.4919]), + size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) +tensor([0.4620, 0.4376, 0.8938, ..., 0.9801, 0.7388, 0.7080]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 250000 +Density: 0.0001 +Time: 0.1482532024383545 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '70824', '-ss', '50000', '-sd', '0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 9.499845743179321} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 5, 12, ..., 249991, 249995, + 250000]), + col_indices=tensor([ 9700, 17110, 17880, ..., 40636, 42079, 45237]), + values=tensor([0.5791, 0.9394, 0.7161, ..., 0.4792, 0.4698, 0.8140]), + size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) +tensor([0.2158, 0.6632, 0.3616, ..., 0.9096, 0.8324, 0.6259]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 250000 +Density: 0.0001 +Time: 9.499845743179321 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '78280', '-ss', '50000', '-sd', '0.0001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 250000, "MATRIX_DENSITY": 0.0001, "TIME_S": 10.048285484313965} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 6, 11, ..., 249990, 249995, + 250000]), + col_indices=tensor([ 1806, 10529, 23120, ..., 17166, 35800, 40447]), + values=tensor([0.3161, 0.7150, 0.6424, ..., 0.5169, 0.8858, 0.3422]), + size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) +tensor([0.5244, 0.0456, 0.6715, ..., 0.9006, 0.5240, 0.6616]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 250000 +Density: 0.0001 +Time: 10.048285484313965 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 6, 11, ..., 249990, 249995, + 250000]), + col_indices=tensor([ 1806, 10529, 23120, ..., 17166, 35800, 40447]), + values=tensor([0.3161, 0.7150, 0.6424, ..., 0.5169, 0.8858, 0.3422]), + size=(50000, 50000), nnz=250000, layout=torch.sparse_csr) +tensor([0.5244, 0.0456, 0.6715, ..., 0.9006, 0.5240, 0.6616]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 250000 +Density: 0.0001 +Time: 10.048285484313965 seconds + +[18.31, 18.07, 18.04, 17.95, 17.89, 18.22, 18.08, 17.87, 18.03, 18.16] +[82.44] +13.909525156021118 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 78280, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.048285484313965, 'TIME_S_1KI': 0.12836338125081712, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1146.701253862381, 'W': 82.44} +[18.31, 18.07, 18.04, 17.95, 17.89, 18.22, 18.08, 17.87, 18.03, 18.16, 18.33, 19.12, 18.1, 18.07, 17.96, 17.95, 18.08, 18.08, 18.21, 18.0] +326.12 +16.306 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 78280, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 250000, 'MATRIX_DENSITY': 0.0001, 'TIME_S': 10.048285484313965, 'TIME_S_1KI': 0.12836338125081712, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1146.701253862381, 'W': 82.44, 'J_1KI': 14.648713002840841, 'W_1KI': 1.053142565150741, 'W_D': 66.134, 'J_D': 919.8925366683006, 'W_D_1KI': 0.8448390393459376, 'J_D_1KI': 0.010792527329406458} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_50000_0.001.json b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_50000_0.001.json new file mode 100644 index 0000000..9c50222 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_50000_0.001.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 17475, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.743166208267212, "TIME_S_1KI": 0.6147734597005557, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1295.2754010248184, "W": 87.46, "J_1KI": 74.12162523747172, "W_1KI": 5.004864091559369, "W_D": 70.91274999999999, "J_D": 1050.2119905559418, "W_D_1KI": 4.057954220314734, "J_D_1KI": 0.2322148337805284} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_50000_0.001.output b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_50000_0.001.output new file mode 100644 index 0000000..95a3055 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_50000_0.001.output @@ -0,0 +1,65 @@ +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '0.001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 0.6008265018463135} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 42, 90, ..., 2499902, + 2499947, 2500000]), + col_indices=tensor([ 1236, 2335, 2455, ..., 44227, 44372, 44789]), + values=tensor([0.4453, 0.9405, 0.8001, ..., 0.3243, 0.3638, 0.0708]), + size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.5116, 0.1335, 0.5143, ..., 0.8718, 0.6117, 0.3765]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 2500000 +Density: 0.001 +Time: 0.6008265018463135 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '17475', '-ss', '50000', '-sd', '0.001'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 2500000, "MATRIX_DENSITY": 0.001, "TIME_S": 10.743166208267212} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 49, 107, ..., 2499873, + 2499945, 2500000]), + col_indices=tensor([ 1803, 2168, 2288, ..., 48770, 49205, 49605]), + values=tensor([0.1814, 0.9281, 0.5481, ..., 0.9692, 0.2397, 0.8106]), + size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.8810, 0.5797, 0.1795, ..., 0.7146, 0.8135, 0.6945]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 2500000 +Density: 0.001 +Time: 10.743166208267212 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 49, 107, ..., 2499873, + 2499945, 2500000]), + col_indices=tensor([ 1803, 2168, 2288, ..., 48770, 49205, 49605]), + values=tensor([0.1814, 0.9281, 0.5481, ..., 0.9692, 0.2397, 0.8106]), + size=(50000, 50000), nnz=2500000, layout=torch.sparse_csr) +tensor([0.8810, 0.5797, 0.1795, ..., 0.7146, 0.8135, 0.6945]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 2500000 +Density: 0.001 +Time: 10.743166208267212 seconds + +[18.24, 17.93, 17.9, 17.93, 18.17, 17.82, 18.06, 21.0, 18.11, 19.61] +[87.46] +14.809917688369751 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 17475, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.743166208267212, 'TIME_S_1KI': 0.6147734597005557, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1295.2754010248184, 'W': 87.46} +[18.24, 17.93, 17.9, 17.93, 18.17, 17.82, 18.06, 21.0, 18.11, 19.61, 18.37, 18.2, 17.93, 17.83, 17.81, 18.07, 18.0, 17.85, 21.15, 18.15] +330.94500000000005 +16.547250000000002 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 17475, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 2500000, 'MATRIX_DENSITY': 0.001, 'TIME_S': 10.743166208267212, 'TIME_S_1KI': 0.6147734597005557, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1295.2754010248184, 'W': 87.46, 'J_1KI': 74.12162523747172, 'W_1KI': 5.004864091559369, 'W_D': 70.91274999999999, 'J_D': 1050.2119905559418, 'W_D_1KI': 4.057954220314734, 'J_D_1KI': 0.2322148337805284} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_50000_1e-05.json b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_50000_1e-05.json new file mode 100644 index 0000000..598f4f1 --- /dev/null +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_50000_1e-05.json @@ -0,0 +1 @@ +{"CPU": "Xeon 4216", "CORES": 16, "ITERATIONS": 112560, "MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.602921962738037, "TIME_S_1KI": 0.0941979563143038, "BASELINE_TIME_S": 10, "BASELINE_DELAY_S": 10, "J": 1061.1344814062118, "W": 76.1, "J_1KI": 9.427278619458171, "W_1KI": 0.6760838663823738, "W_D": 59.91175, "J_D": 835.4063569827675, "W_D_1KI": 0.532265014214641, "J_D_1KI": 0.004728722585417919} diff --git a/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_50000_1e-05.output b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_50000_1e-05.output new file mode 100644 index 0000000..fbbef6c --- /dev/null +++ b/pytorch/output_synthetic_maxcore/xeon_4216_max_csr_10_10_10_synthetic_50000_1e-05.output @@ -0,0 +1,81 @@ +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '1000', '-ss', '50000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 0.10953974723815918} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 25000, 25000, 25000]), + col_indices=tensor([20679, 38088, 21453, ..., 14604, 22112, 37567]), + values=tensor([0.0203, 0.9911, 0.7304, ..., 0.1348, 0.2520, 0.4128]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.2000, 0.8382, 0.5478, ..., 0.6017, 0.0874, 0.6263]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 0.10953974723815918 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '95855', '-ss', '50000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 8.94165301322937} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 25000, 25000, 25000]), + col_indices=tensor([31700, 16272, 20084, ..., 46363, 9221, 39878]), + values=tensor([0.3577, 0.1970, 0.2573, ..., 0.9498, 0.8667, 0.9638]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.7704, 0.6386, 0.5878, ..., 0.7750, 0.3511, 0.4334]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 8.94165301322937 seconds + +['apptainer', 'run', 'pytorch-xeon_4216.sif', 'numactl', '--cpunodebind=0', '--membind=0', 'python3', 'spmv.py', 'synthetic', 'csr', '112560', '-ss', '50000', '-sd', '1e-05'] +{"MATRIX_TYPE": "synthetic", "MATRIX_FORMAT": "csr", "MATRIX_SHAPE": [50000, 50000], "MATRIX_ROWS": 50000, "MATRIX_SIZE": 2500000000, "MATRIX_NNZ": 25000, "MATRIX_DENSITY": 1e-05, "TIME_S": 10.602921962738037} + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 25000, 25000, 25000]), + col_indices=tensor([11228, 2410, 48293, ..., 48555, 29403, 27641]), + values=tensor([0.9662, 0.4123, 0.9370, ..., 0.4524, 0.0602, 0.8924]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.4903, 0.0715, 0.0009, ..., 0.3750, 0.8526, 0.7709]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 10.602921962738037 seconds + +/nfshomes/vut/ampere_research/pytorch/spmv.py:75: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at ../aten/src/ATen/SparseCsrTensorImpl.cpp:53.) + matrix = matrix.to_sparse_csr().type(torch.float32) +tensor(crow_indices=tensor([ 0, 0, 0, ..., 25000, 25000, 25000]), + col_indices=tensor([11228, 2410, 48293, ..., 48555, 29403, 27641]), + values=tensor([0.9662, 0.4123, 0.9370, ..., 0.4524, 0.0602, 0.8924]), + size=(50000, 50000), nnz=25000, layout=torch.sparse_csr) +tensor([0.4903, 0.0715, 0.0009, ..., 0.3750, 0.8526, 0.7709]) +Matrix Type: synthetic +Matrix Format: csr +Shape: torch.Size([50000, 50000]) +Rows: 50000 +Size: 2500000000 +NNZ: 25000 +Density: 1e-05 +Time: 10.602921962738037 seconds + +[18.19, 18.01, 17.81, 17.69, 18.0, 18.19, 18.15, 17.85, 17.89, 17.99] +[76.1] +13.94394850730896 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 112560, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.602921962738037, 'TIME_S_1KI': 0.0941979563143038, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1061.1344814062118, 'W': 76.1} +[18.19, 18.01, 17.81, 17.69, 18.0, 18.19, 18.15, 17.85, 17.89, 17.99, 18.3, 17.89, 18.04, 18.07, 17.99, 17.83, 18.01, 18.29, 17.73, 18.17] +323.765 +16.18825 +{'CPU': 'Xeon 4216', 'CORES': 16, 'ITERATIONS': 112560, 'MATRIX_TYPE': 'synthetic', 'MATRIX_FORMAT': 'csr', 'MATRIX_SHAPE': [50000, 50000], 'MATRIX_ROWS': 50000, 'MATRIX_SIZE': 2500000000, 'MATRIX_NNZ': 25000, 'MATRIX_DENSITY': 1e-05, 'TIME_S': 10.602921962738037, 'TIME_S_1KI': 0.0941979563143038, 'BASELINE_TIME_S': 10, 'BASELINE_DELAY_S': 10, 'J': 1061.1344814062118, 'W': 76.1, 'J_1KI': 9.427278619458171, 'W_1KI': 0.6760838663823738, 'W_D': 59.91175, 'J_D': 835.4063569827675, 'W_D_1KI': 0.532265014214641, 'J_D_1KI': 0.004728722585417919} diff --git a/pytorch/synthetic_densities b/pytorch/synthetic_densities new file mode 100644 index 0000000..fcd06c2 --- /dev/null +++ b/pytorch/synthetic_densities @@ -0,0 +1,6 @@ +0.00001 +0.0001 +0.001 +0.01 +0.05 +0.1 diff --git a/pytorch/synthetic_sizes b/pytorch/synthetic_sizes new file mode 100644 index 0000000..fc7c6bc --- /dev/null +++ b/pytorch/synthetic_sizes @@ -0,0 +1,5 @@ +10000 +50000 +100000 +500000 +1000000