srun: Job time limit was unset; set to partition default of 60 minutes srun: ################################################################################ srun: # Please note that the oasis compute nodes have aarch64 architecture CPUs. # srun: # All submission nodes and all other compute nodes have x86_64 architecture # srun: # CPUs. Programs, environments, or other software that was built on x86_64 # srun: # nodes may need to be rebuilt to properly execute on these nodes. # srun: ################################################################################ srun: job 3394149 queued and waiting for resources srun: job 3394149 has been allocated resources /nfshomes/vut/ampere_research/pytorch/spmv.py:20: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) ).to_sparse_csr().type(torch.float) tensor(crow_indices=tensor([ 0, 1, 2, ..., 766390, 766394, 766396]), col_indices=tensor([ 0, 1, 2, ..., 116833, 89, 116834]), values=tensor([-1.0000e+00, -1.0000e+00, -1.0000e+00, ..., 1.0331e+01, -1.0000e-03, 1.0000e-03]), size=(116835, 116835), nnz=766396, layout=torch.sparse_csr) tensor([0.4749, 0.3788, 0.8812, ..., 0.8281, 0.8889, 0.4945]) Shape: torch.Size([116835, 116835]) NNZ: 766396 Density: 5.614451099680581e-05 Time: 2.2480316162109375 seconds Performance counter stats for 'apptainer run pytorch-altra.sif -c numactl --cpunodebind=0 --membind=0 python spmv.py matrices/dc2.mtx 100': 50.43 msec task-clock:u # 0.009 CPUs utilized 0 context-switches:u # 0.000 /sec 0 cpu-migrations:u # 0.000 /sec 3,285 page-faults:u # 65.135 K/sec 54,118,679 cycles:u # 1.073 GHz (60.92%) 77,692,421 instructions:u # 1.44 insn per cycle (82.73%) branches:u 367,999 branch-misses:u 32,182,371 L1-dcache-loads:u # 638.112 M/sec 491,960 L1-dcache-load-misses:u # 1.53% of all L1-dcache accesses LLC-loads:u LLC-load-misses:u 30,682,258 L1-icache-loads:u # 608.367 M/sec 300,874 L1-icache-load-misses:u # 0.98% of all L1-icache accesses 55,244,523 dTLB-loads:u # 1.095 G/sec (19.09%) dTLB-load-misses:u (0.00%) iTLB-loads:u (0.00%) iTLB-load-misses:u (0.00%) 5.813837947 seconds time elapsed 28.815118000 seconds user 213.749674000 seconds sys /nfshomes/vut/ampere_research/pytorch/spmv.py:20: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) ).to_sparse_csr().type(torch.float) tensor(crow_indices=tensor([ 0, 1, 2, ..., 766390, 766394, 766396]), col_indices=tensor([ 0, 1, 2, ..., 116833, 89, 116834]), values=tensor([-1.0000e+00, -1.0000e+00, -1.0000e+00, ..., 1.0331e+01, -1.0000e-03, 1.0000e-03]), size=(116835, 116835), nnz=766396, layout=torch.sparse_csr) tensor([0.9715, 0.3920, 0.0297, ..., 0.1819, 0.5744, 0.8105]) Shape: torch.Size([116835, 116835]) NNZ: 766396 Density: 5.614451099680581e-05 Time: 2.2333595752716064 seconds Performance counter stats for 'apptainer run pytorch-altra.sif -c numactl --cpunodebind=0 --membind=0 python spmv.py matrices/dc2.mtx 100': 325,039 BR_MIS_PRED_RETIRED:u # 0.0 per branch branch_misprediction_ratio 19,383,216 BR_RETIRED:u 5.973132269 seconds time elapsed 29.719778000 seconds user 213.706315000 seconds sys /nfshomes/vut/ampere_research/pytorch/spmv.py:20: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) ).to_sparse_csr().type(torch.float) tensor(crow_indices=tensor([ 0, 1, 2, ..., 766390, 766394, 766396]), col_indices=tensor([ 0, 1, 2, ..., 116833, 89, 116834]), values=tensor([-1.0000e+00, -1.0000e+00, -1.0000e+00, ..., 1.0331e+01, -1.0000e-03, 1.0000e-03]), size=(116835, 116835), nnz=766396, layout=torch.sparse_csr) tensor([0.3371, 0.4985, 0.9905, ..., 0.6075, 0.1568, 0.3782]) Shape: torch.Size([116835, 116835]) NNZ: 766396 Density: 5.614451099680581e-05 Time: 1.9790923595428467 seconds Performance counter stats for 'apptainer run pytorch-altra.sif -c numactl --cpunodebind=0 --membind=0 python spmv.py matrices/dc2.mtx 100': 26,060,519 L1I_TLB:u # 0.0 per TLB access itlb_walk_ratio 4,749 ITLB_WALK:u 16,865 DTLB_WALK:u # 0.0 per TLB access dtlb_walk_ratio 34,819,729 L1D_TLB:u 5.575020445 seconds time elapsed 26.769391000 seconds user 188.138935000 seconds sys /nfshomes/vut/ampere_research/pytorch/spmv.py:20: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) ).to_sparse_csr().type(torch.float) tensor(crow_indices=tensor([ 0, 1, 2, ..., 766390, 766394, 766396]), col_indices=tensor([ 0, 1, 2, ..., 116833, 89, 116834]), values=tensor([-1.0000e+00, -1.0000e+00, -1.0000e+00, ..., 1.0331e+01, -1.0000e-03, 1.0000e-03]), size=(116835, 116835), nnz=766396, layout=torch.sparse_csr) tensor([0.6806, 0.8858, 0.7035, ..., 0.6007, 0.0880, 0.4550]) Shape: torch.Size([116835, 116835]) NNZ: 766396 Density: 5.614451099680581e-05 Time: 1.5306556224822998 seconds Performance counter stats for 'apptainer run pytorch-altra.sif -c numactl --cpunodebind=0 --membind=0 python spmv.py matrices/dc2.mtx 100': 30,777,115 L1I_CACHE:u # 0.0 per cache access l1i_cache_miss_ratio 293,980 L1I_CACHE_REFILL:u 461,522 L1D_CACHE_REFILL:u # 0.0 per cache access l1d_cache_miss_ratio 32,216,597 L1D_CACHE:u 4.961298684 seconds time elapsed 23.946357000 seconds user 156.598674000 seconds sys /nfshomes/vut/ampere_research/pytorch/spmv.py:20: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.) ).to_sparse_csr().type(torch.float) tensor(crow_indices=tensor([ 0, 1, 2, ..., 766390, 766394, 766396]), col_indices=tensor([ 0, 1, 2, ..., 116833, 89, 116834]), values=tensor([-1.0000e+00, -1.0000e+00, -1.0000e+00, ..., 1.0331e+01, -1.0000e-03, 1.0000e-03]), size=(116835, 116835), nnz=766396, layout=torch.sparse_csr) tensor([0.3029, 0.1908, 0.9816, ..., 0.0418, 0.8182, 0.5474]) Shape: torch.Size([116835, 116835]) NNZ: 766396 Density: 5.614451099680581e-05 Time: 2.28926944732666 seconds Performance counter stats for 'apptainer run pytorch-altra.sif -c numactl --cpunodebind=0 --membind=0 python spmv.py matrices/dc2.mtx 100': 567,700 LL_CACHE_MISS_RD:u # 1.0 per cache access ll_cache_read_miss_ratio 588,689 LL_CACHE_RD:u 189,417 L2D_TLB:u # 0.1 per TLB access l2_tlb_miss_ratio 22,360 L2D_TLB_REFILL:u 328,306 L2D_CACHE_REFILL:u # 0.2 per cache access l2_cache_miss_ratio 1,908,607 L2D_CACHE:u 5.710829283 seconds time elapsed 28.671301000 seconds user 213.960421000 seconds sys