from data_stat import Stat, Format import torch, scipy import numpy as np import argparse import time import json import sys, os parser = argparse.ArgumentParser() parser.add_argument('iterations', type=int, help='the number of iterations of multiplication to perform') parser.add_argument('format', type=str, choices=[fmt.name.lower() for fmt in Format], help='the sparse format to use') parser.add_argument('-m', '--matrix_file', help='the input matrix (.mtx) file') parser.add_argument('-ss', '--synthetic_size', type=int, help='the synthetic matrix parameters size (rows)') parser.add_argument('-sd', '--synthetic_density', type=float, help='the synthetic matrix density (%)') args = parser.parse_args() args.format = Format[args.format.upper()] device = 'cpu' if args.matrix_file is not None: matrix = scipy.io.mmread(args.matrix_file) matrix = torch.sparse_coo_tensor( np.vstack((matrix.row, matrix.col)), matrix.data, matrix.shape, device=device, dtype=torch.float32) elif args.synthetic_size is not None and args.synthetic_density is not None: nnz = int((args.synthetic_size ** 2) * (args.synthetic_density / 100)) row_indices = torch.randint(0, args.synthetic_size, (nnz,)) col_indices = torch.randint(0, args.synthetic_size, (nnz,)) indices = torch.stack([row_indices, col_indices]) values = torch.randn(nnz) matrix = torch.sparse_coo_tensor( indices, values, size=(args.synthetic_size, args.synthetic_size), device=device, dtype=torch.float32) else: print("No matrix specified!") exit(1) if args.format == Format.CSR: matrix = matrix.to_sparse_csr().type(torch.float32) elif args.format == Format.COO: pass else: print("Unrecognized format!") exit(1) vector = torch.rand(matrix.shape[1], device=device) print(matrix, file=sys.stderr) print(vector, file=sys.stderr) start = time.time() for i in range(0, args.iterations): torch.mv(matrix, vector) #torch.sparse.mm(matrix, vector.unsqueeze(-1)).squeeze(-1) #print(i) end = time.time() result = dict() if args.matrix_file is not None: result[Stat.MATRIX_FILE.name] = os.path.splitext(os.path.basename(args.matrix_file))[0] else: result[Stat.MATRIX_FILE.name] = "synthetic" print(f"Matrix: {result[Stat.MATRIX_FILE.name]}", file=sys.stderr) result[Stat.MATRIX_SHAPE.name] = matrix.shape print(f"Shape: {result[Stat.MATRIX_SHAPE.name]}", file=sys.stderr) result[Stat.MATRIX_SIZE.name] = matrix.shape[0] * matrix.shape[1] print(f"Size: {result[Stat.MATRIX_SIZE.name]}", file=sys.stderr) result[Stat.MATRIX_NNZ.name] = matrix.values().shape[0] print(f"NNZ: {result[Stat.MATRIX_NNZ.name]}", file=sys.stderr) result[Stat.MATRIX_DENSITY.name] = matrix.values().shape[0] / (matrix.shape[0] * matrix.shape[1]) print(f"Density: {result[Stat.MATRIX_DENSITY.name]}", file=sys.stderr) result[Stat.TIME_S.name] = end - start print(f"Time: {result[Stat.TIME_S.name]} seconds", file=sys.stderr) print(json.dumps(result))