ampere_research/pytorch/output/altra_10_30_vt2010_1000.output
2024-12-03 08:53:39 -05:00

164 lines
9.7 KiB
Plaintext

srun: Job time limit was unset; set to partition default of 60 minutes
srun: ################################################################################
srun: # Please note that the oasis compute nodes have aarch64 architecture CPUs. #
srun: # All submission nodes and all other compute nodes have x86_64 architecture #
srun: # CPUs. Programs, environments, or other software that was built on x86_64 #
srun: # nodes may need to be rebuilt to properly execute on these nodes. #
srun: ################################################################################
srun: job 3394988 queued and waiting for resources
srun: job 3394988 has been allocated resources
/nfshomes/vut/ampere_research/pytorch/spmv.py:20: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
).to_sparse_csr().type(torch.float)
tensor(crow_indices=tensor([ 0, 4, 7, ..., 155588, 155592,
155598]),
col_indices=tensor([ 131, 561, 996, ..., 32237, 32238, 32570]),
values=tensor([79040., 7820., 15136., ..., 2828., 17986., 2482.]),
size=(32580, 32580), nnz=155598, layout=torch.sparse_csr)
tensor([0.2022, 0.3400, 0.2561, ..., 0.8370, 0.0285, 0.6506])
Matrix: vt2010
Shape: torch.Size([32580, 32580])
NNZ: 155598
Density: 0.00014658915806621921
Time: 3.74875545501709 seconds
Performance counter stats for 'apptainer run pytorch-altra.sif -c numactl --cpunodebind=0 --membind=0 python spmv.py matrices/vt2010.mtx 1000':
48.59 msec task-clock:u # 0.007 CPUs utilized
0 context-switches:u # 0.000 /sec
0 cpu-migrations:u # 0.000 /sec
3,274 page-faults:u # 67.376 K/sec
55,030,923 cycles:u # 1.132 GHz (65.54%)
78,222,423 instructions:u # 1.42 insn per cycle (83.60%)
<not supported> branches:u
369,917 branch-misses:u
32,435,815 L1-dcache-loads:u # 667.500 M/sec
467,963 L1-dcache-load-misses:u # 1.44% of all L1-dcache accesses
<not supported> LLC-loads:u
<not supported> LLC-load-misses:u
31,013,287 L1-icache-loads:u # 638.226 M/sec
289,982 L1-icache-load-misses:u # 0.94% of all L1-icache accesses
60,644,978 dTLB-loads:u # 1.248 G/sec (17.29%)
<not counted> dTLB-load-misses:u (0.00%)
<not counted> iTLB-loads:u (0.00%)
<not counted> iTLB-load-misses:u (0.00%)
6.978143797 seconds time elapsed
18.401752000 seconds user
28.060858000 seconds sys
/nfshomes/vut/ampere_research/pytorch/spmv.py:20: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
).to_sparse_csr().type(torch.float)
tensor(crow_indices=tensor([ 0, 4, 7, ..., 155588, 155592,
155598]),
col_indices=tensor([ 131, 561, 996, ..., 32237, 32238, 32570]),
values=tensor([79040., 7820., 15136., ..., 2828., 17986., 2482.]),
size=(32580, 32580), nnz=155598, layout=torch.sparse_csr)
tensor([0.3381, 0.0423, 0.5363, ..., 0.0429, 0.4077, 0.4744])
Matrix: vt2010
Shape: torch.Size([32580, 32580])
NNZ: 155598
Density: 0.00014658915806621921
Time: 3.7925527095794678 seconds
Performance counter stats for 'apptainer run pytorch-altra.sif -c numactl --cpunodebind=0 --membind=0 python spmv.py matrices/vt2010.mtx 1000':
323,004 BR_MIS_PRED_RETIRED:u # 0.0 per branch branch_misprediction_ratio
19,091,130 BR_RETIRED:u
7.233250772 seconds time elapsed
19.111768000 seconds user
32.178633000 seconds sys
/nfshomes/vut/ampere_research/pytorch/spmv.py:20: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
).to_sparse_csr().type(torch.float)
tensor(crow_indices=tensor([ 0, 4, 7, ..., 155588, 155592,
155598]),
col_indices=tensor([ 131, 561, 996, ..., 32237, 32238, 32570]),
values=tensor([79040., 7820., 15136., ..., 2828., 17986., 2482.]),
size=(32580, 32580), nnz=155598, layout=torch.sparse_csr)
tensor([0.7962, 0.6492, 0.2778, ..., 0.5407, 0.1159, 0.3587])
Matrix: vt2010
Shape: torch.Size([32580, 32580])
NNZ: 155598
Density: 0.00014658915806621921
Time: 3.668635129928589 seconds
Performance counter stats for 'apptainer run pytorch-altra.sif -c numactl --cpunodebind=0 --membind=0 python spmv.py matrices/vt2010.mtx 1000':
27,178,617 L1I_TLB:u # 0.0 per TLB access itlb_walk_ratio
6,398 ITLB_WALK:u
19,770 DTLB_WALK:u # 0.0 per TLB access dtlb_walk_ratio
36,355,567 L1D_TLB:u
6.925944164 seconds time elapsed
18.970654000 seconds user
30.786317000 seconds sys
/nfshomes/vut/ampere_research/pytorch/spmv.py:20: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
).to_sparse_csr().type(torch.float)
tensor(crow_indices=tensor([ 0, 4, 7, ..., 155588, 155592,
155598]),
col_indices=tensor([ 131, 561, 996, ..., 32237, 32238, 32570]),
values=tensor([79040., 7820., 15136., ..., 2828., 17986., 2482.]),
size=(32580, 32580), nnz=155598, layout=torch.sparse_csr)
tensor([0.8340, 0.3434, 0.3449, ..., 0.9828, 0.6683, 0.0312])
Matrix: vt2010
Shape: torch.Size([32580, 32580])
NNZ: 155598
Density: 0.00014658915806621921
Time: 3.623232126235962 seconds
Performance counter stats for 'apptainer run pytorch-altra.sif -c numactl --cpunodebind=0 --membind=0 python spmv.py matrices/vt2010.mtx 1000':
31,341,858 L1I_CACHE:u # 0.0 per cache access l1i_cache_miss_ratio
291,951 L1I_CACHE_REFILL:u
468,242 L1D_CACHE_REFILL:u # 0.0 per cache access l1d_cache_miss_ratio
32,805,413 L1D_CACHE:u
6.941260499 seconds time elapsed
18.410270000 seconds user
27.908787000 seconds sys
/nfshomes/vut/ampere_research/pytorch/spmv.py:20: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
).to_sparse_csr().type(torch.float)
tensor(crow_indices=tensor([ 0, 4, 7, ..., 155588, 155592,
155598]),
col_indices=tensor([ 131, 561, 996, ..., 32237, 32238, 32570]),
values=tensor([79040., 7820., 15136., ..., 2828., 17986., 2482.]),
size=(32580, 32580), nnz=155598, layout=torch.sparse_csr)
tensor([0.2754, 0.3661, 0.9484, ..., 0.7285, 0.5354, 0.4116])
Matrix: vt2010
Shape: torch.Size([32580, 32580])
NNZ: 155598
Density: 0.00014658915806621921
Time: 3.7337992191314697 seconds
Performance counter stats for 'apptainer run pytorch-altra.sif -c numactl --cpunodebind=0 --membind=0 python spmv.py matrices/vt2010.mtx 1000':
520,057 LL_CACHE_MISS_RD:u # 1.0 per cache access ll_cache_read_miss_ratio
541,186 LL_CACHE_RD:u
191,068 L2D_TLB:u # 0.1 per TLB access l2_tlb_miss_ratio
22,725 L2D_TLB_REFILL:u
288,895 L2D_CACHE_REFILL:u # 0.2 per cache access l2_cache_miss_ratio
1,728,320 L2D_CACHE:u
7.164825085 seconds time elapsed
18.193885000 seconds user
30.023194000 seconds sys