ampere_research/pytorch/output/altra_100_soc-sign-Slashdot090221_2_2.output
2024-12-02 23:32:33 -05:00

159 lines
9.6 KiB
Plaintext

srun: Job time limit was unset; set to partition default of 60 minutes
srun: ################################################################################
srun: # Please note that the oasis compute nodes have aarch64 architecture CPUs. #
srun: # All submission nodes and all other compute nodes have x86_64 architecture #
srun: # CPUs. Programs, environments, or other software that was built on x86_64 #
srun: # nodes may need to be rebuilt to properly execute on these nodes. #
srun: ################################################################################
srun: job 3393718 queued and waiting for resources
srun: job 3393718 has been allocated resources
/nfshomes/vut/ampere_research/pytorch/spmv.py:20: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
).to_sparse_csr().type(torch.float)
tensor(crow_indices=tensor([ 0, 29, 124, ..., 549200, 549200,
549202]),
col_indices=tensor([ 1, 2, 3, ..., 82142, 81974, 82136]),
values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(82144, 82144),
nnz=549202, layout=torch.sparse_csr)
tensor([0.8320, 0.8961, 0.3119, ..., 0.2600, 0.3720, 0.6950])
Shape: torch.Size([82144, 82144])
NNZ: 549202
Density: 8.13917555860553e-05
Time: 3.012270212173462 seconds
Performance counter stats for 'apptainer run pytorch-altra.sif -c numactl --cpunodebind=0 --membind=0 python spmv.py matrices/soc-sign-Slashdot090221.mtx 100':
61.63 msec task-clock:u # 0.008 CPUs utilized
0 context-switches:u # 0.000 /sec
0 cpu-migrations:u # 0.000 /sec
3,293 page-faults:u # 53.433 K/sec
41,677,750 cycles:u # 0.676 GHz (43.47%)
91,767,205 instructions:u # 2.20 insn per cycle (93.66%)
<not supported> branches:u
369,577 branch-misses:u
33,184,885 L1-dcache-loads:u # 538.465 M/sec
489,650 L1-dcache-load-misses:u # 1.48% of all L1-dcache accesses
<not supported> LLC-loads:u
<not supported> LLC-load-misses:u
31,518,657 L1-icache-loads:u # 511.428 M/sec
300,352 L1-icache-load-misses:u # 0.95% of all L1-icache accesses
21,439,232 dTLB-loads:u # 347.878 M/sec (11.35%)
<not counted> dTLB-load-misses:u (0.00%)
<not counted> iTLB-loads:u (0.00%)
<not counted> iTLB-load-misses:u (0.00%)
7.285558270 seconds time elapsed
30.820742000 seconds user
271.093513000 seconds sys
/nfshomes/vut/ampere_research/pytorch/spmv.py:20: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
).to_sparse_csr().type(torch.float)
tensor(crow_indices=tensor([ 0, 29, 124, ..., 549200, 549200,
549202]),
col_indices=tensor([ 1, 2, 3, ..., 82142, 81974, 82136]),
values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(82144, 82144),
nnz=549202, layout=torch.sparse_csr)
tensor([0.2625, 0.3727, 0.7700, ..., 0.9213, 0.0373, 0.4236])
Shape: torch.Size([82144, 82144])
NNZ: 549202
Density: 8.13917555860553e-05
Time: 3.8292958736419678 seconds
Performance counter stats for 'apptainer run pytorch-altra.sif -c numactl --cpunodebind=0 --membind=0 python spmv.py matrices/soc-sign-Slashdot090221.mtx 100':
329,386 BR_MIS_PRED_RETIRED:u # 0.0 per branch branch_misprediction_ratio
19,813,961 BR_RETIRED:u
7.818393438 seconds time elapsed
35.952830000 seconds user
333.700971000 seconds sys
/nfshomes/vut/ampere_research/pytorch/spmv.py:20: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
).to_sparse_csr().type(torch.float)
tensor(crow_indices=tensor([ 0, 29, 124, ..., 549200, 549200,
549202]),
col_indices=tensor([ 1, 2, 3, ..., 82142, 81974, 82136]),
values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(82144, 82144),
nnz=549202, layout=torch.sparse_csr)
tensor([0.0340, 0.2650, 0.1324, ..., 0.0868, 0.2162, 0.5618])
Shape: torch.Size([82144, 82144])
NNZ: 549202
Density: 8.13917555860553e-05
Time: 3.464143753051758 seconds
Performance counter stats for 'apptainer run pytorch-altra.sif -c numactl --cpunodebind=0 --membind=0 python spmv.py matrices/soc-sign-Slashdot090221.mtx 100':
27,944,146 L1I_TLB:u # 0.0 per TLB access itlb_walk_ratio
6,811 ITLB_WALK:u
18,962 DTLB_WALK:u # 0.0 per TLB access dtlb_walk_ratio
37,689,058 L1D_TLB:u
7.541903779 seconds time elapsed
32.666428000 seconds user
309.938101000 seconds sys
/nfshomes/vut/ampere_research/pytorch/spmv.py:20: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
).to_sparse_csr().type(torch.float)
tensor(crow_indices=tensor([ 0, 29, 124, ..., 549200, 549200,
549202]),
col_indices=tensor([ 1, 2, 3, ..., 82142, 81974, 82136]),
values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(82144, 82144),
nnz=549202, layout=torch.sparse_csr)
tensor([0.6118, 0.9275, 0.9072, ..., 0.7025, 0.2788, 0.7796])
Shape: torch.Size([82144, 82144])
NNZ: 549202
Density: 8.13917555860553e-05
Time: 1.4259674549102783 seconds
Performance counter stats for 'apptainer run pytorch-altra.sif -c numactl --cpunodebind=0 --membind=0 python spmv.py matrices/soc-sign-Slashdot090221.mtx 100':
31,746,573 L1I_CACHE:u # 0.0 per cache access l1i_cache_miss_ratio
290,044 L1I_CACHE_REFILL:u
471,100 L1D_CACHE_REFILL:u # 0.0 per cache access l1d_cache_miss_ratio
33,271,575 L1D_CACHE:u
5.333100815 seconds time elapsed
24.606404000 seconds user
142.184021000 seconds sys
/nfshomes/vut/ampere_research/pytorch/spmv.py:20: UserWarning: Sparse CSR tensor support is in beta state. If you miss a functionality in the sparse tensor support, please submit a feature request to https://github.com/pytorch/pytorch/issues. (Triggered internally at /space/jenkins/workspace/Releases/pytorch-dls/pytorch-dls/aten/src/ATen/SparseCsrTensorImpl.cpp:55.)
).to_sparse_csr().type(torch.float)
tensor(crow_indices=tensor([ 0, 29, 124, ..., 549200, 549200,
549202]),
col_indices=tensor([ 1, 2, 3, ..., 82142, 81974, 82136]),
values=tensor([1., 1., 1., ..., 1., 1., 1.]), size=(82144, 82144),
nnz=549202, layout=torch.sparse_csr)
tensor([0.1819, 0.6831, 0.7926, ..., 0.2272, 0.8215, 0.3765])
Shape: torch.Size([82144, 82144])
NNZ: 549202
Density: 8.13917555860553e-05
Time: 2.8267815113067627 seconds
Performance counter stats for 'apptainer run pytorch-altra.sif -c numactl --cpunodebind=0 --membind=0 python spmv.py matrices/soc-sign-Slashdot090221.mtx 100':
550,308 LL_CACHE_MISS_RD:u # 1.0 per cache access ll_cache_read_miss_ratio
564,981 LL_CACHE_RD:u
168,456 L2D_TLB:u # 0.1 per TLB access l2_tlb_miss_ratio
20,450 L2D_TLB_REFILL:u
306,309 L2D_CACHE_REFILL:u # 0.2 per cache access l2_cache_miss_ratio
1,745,776 L2D_CACHE:u
7.032343494 seconds time elapsed
31.547129000 seconds user
251.812633000 seconds sys