147 lines
5.1 KiB
Python
147 lines
5.1 KiB
Python
import data_stat
|
|
from data_stat import Stat, Cpu
|
|
|
|
import argparse
|
|
import os, sys
|
|
import subprocess, signal
|
|
import json
|
|
import time
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('cpu', choices=[x.name.lower() for x in Cpu])
|
|
parser.add_argument('matrix_file')
|
|
parser.add_argument('iterations', type=int)
|
|
parser.add_argument('baseline_time_s', type=int)
|
|
parser.add_argument('baseline_delay_s', type=int)
|
|
parser.add_argument('--perf', action='store_true')
|
|
parser.add_argument('--power', action='store_true')
|
|
parser.add_argument('-d', '--debug', action='store_true')
|
|
args = parser.parse_args()
|
|
args.cpu = Cpu[args.cpu.upper()]
|
|
|
|
python = {
|
|
Cpu.ALTRA: 'python3',
|
|
Cpu.EPYC_7313P: 'python3.11'
|
|
}
|
|
program = {
|
|
Cpu.ALTRA: [
|
|
'apptainer', 'run', 'pytorch-altra.sif', '-c',
|
|
'numactl --cpunodebind=0 --membind=0 '
|
|
+ f'python spmv.py {args.matrix_file} {args.iterations}'],
|
|
Cpu.EPYC_7313P: [
|
|
'apptainer', 'run', 'pytorch-epyc_7313p.sif',
|
|
'python3', 'spmv.py', f'{args.matrix_file}', f'{args.iterations}']
|
|
}
|
|
perf = ['perf', 'stat']
|
|
perf_args = {
|
|
Cpu.ALTRA: [
|
|
['-d', '-d'],
|
|
['-M', 'branch_misprediction_ratio'],
|
|
['-M', 'dtlb_walk_ratio,itlb_walk_ratio'],
|
|
['-M', 'l1d_cache_miss_ratio,l1i_cache_miss_ratio'],
|
|
['-M', 'l2_cache_miss_ratio,l2_tlb_miss_ratio,ll_cache_read_miss_ratio']]
|
|
}
|
|
|
|
def baseline_power(cpu: Cpu, baseline_time_s: int) -> list:
|
|
power_process = subprocess.Popen([python[args.cpu], 'power.py', '-s', str(baseline_time_s)],
|
|
stdout=subprocess.PIPE, stderr=subprocess.DEVNULL, text=True)
|
|
return [float(x) for x in power_process.communicate()[0].strip().split('\n') if len(x) != 0]
|
|
|
|
def run_program(program: list[str]) -> tuple[dict, str]:
|
|
if args.debug:
|
|
print(program)
|
|
process = subprocess.run(program,
|
|
stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
|
|
if args.debug:
|
|
print(process.stdout)
|
|
print(process.stderr)
|
|
return (json.loads(process.stdout), process.stderr)
|
|
|
|
result = dict()
|
|
result[Stat.CPU.name] = args.cpu.name
|
|
result[Stat.ITERATIONS.name] = args.iterations
|
|
|
|
program_result = run_program(program[args.cpu])
|
|
result |= program_result[0]
|
|
print(program_result[1], file=sys.stderr)
|
|
|
|
result[Stat.TIME_S.name] = result[Stat.TIME_S_OVERALL.name] / result[Stat.ITERATIONS.name]
|
|
|
|
if args.power:
|
|
result[Stat.BASELINE_TIME_S.name] = args.baseline_time_s
|
|
result[Stat.BASELINE_DELAY_S.name] = args.baseline_delay_s
|
|
|
|
time.sleep(args.baseline_delay_s)
|
|
result[Stat.POWER_BEFORE.name] = baseline_power(args.cpu, args.baseline_time_s)
|
|
if args.debug:
|
|
print(result)
|
|
|
|
run_program(program[args.cpu]) # Warmup
|
|
|
|
if args.cpu == Cpu.ALTRA:
|
|
power_process = subprocess.Popen(
|
|
[python[args.cpu], 'power.py'],
|
|
stdout=subprocess.PIPE, stderr=subprocess.DEVNULL, text=True)
|
|
|
|
run_program(program[args.cpu])[0]
|
|
|
|
power_process.send_signal(signal.SIGINT)
|
|
if args.debug:
|
|
print(result)
|
|
|
|
result[Stat.POWER.name] = [float(x) for x in power_process.communicate()[0].strip().split('\n')]
|
|
# Riemann Sum across the last (s) power recordings.
|
|
from math import ceil
|
|
result[Stat.JOULES.name] = (
|
|
sum(result[Stat.POWER.name][-ceil(result[Stat.TIME_S_OVERALL.name]):-1])
|
|
+ (result[Stat.POWER.name][-1] * (result[Stat.TIME_S_OVERALL.name] % 1)))
|
|
|
|
elif args.cpu == Cpu.EPYC_7313P:
|
|
power_process = subprocess.Popen(
|
|
[python[args.cpu], 'power.py'] + program[args.cpu],
|
|
stdout=subprocess.PIPE, stderr=subprocess.DEVNULL, text=True)
|
|
result[Stat.POWER.name] = [float(x) for x in power_process.communicate()[0].strip().split('\n')]
|
|
result[Stat.JOULES.name] = result[Stat.POWER.name][0] * result[Stat.TIME_S_OVERALL.name]
|
|
|
|
if args.debug:
|
|
print(result)
|
|
#print(len(result['power']))
|
|
#print(sum(result['power']) / len(result['power']))
|
|
|
|
time.sleep(args.baseline_delay_s)
|
|
result[Stat.POWER_AFTER.name] = baseline_power(args.cpu, args.baseline_time_s)
|
|
if args.debug:
|
|
print(result)
|
|
|
|
if args.perf:
|
|
for perf_arg in perf_args[args.cpu]:
|
|
output = run_program(perf + perf_arg + program[args.cpu])[1]
|
|
print(output, file=sys.stderr)
|
|
result = result | data_stat.parse_output(output, args.cpu)
|
|
if args.debug:
|
|
print(result)
|
|
|
|
result = result | data_stat.derive_stats(result)
|
|
|
|
if args.debug:
|
|
print(result)
|
|
|
|
print(json.dumps(result))
|
|
|
|
#arch = subprocess.run(['uname', '-m'], stdout=subprocess.PIPE, text=True).stdout.strip()
|
|
#baseline = subprocess.run(
|
|
# ['./power.sh', args.baseline_time_s],
|
|
# stdout=subprocess.PIPE, stderr=subprocess.STDOUT, text=True)
|
|
#print(baseline)
|
|
#for line in baseline.stdout.split('\n'):
|
|
# print("line")
|
|
# print(line)
|
|
|
|
#os.path.basename(args.matrix_file)
|
|
|
|
#subprocess.run(
|
|
# ['apptainer', 'run', 'pytorch-altra.sif', '-c',
|
|
# f'"numactl --cpunodebind=0 --membind=0 python spmv.py {args.matrix_file} {args.iterations}"'
|
|
# ],
|
|
# stdout=subprocess.PIPE, stderr=subprocess.STDOUT, text=True)
|