263 lines
9.2 KiB
Python
263 lines
9.2 KiB
Python
import data_stat
|
|
from data_stat import Stat, Cpu, Format, MatrixType
|
|
|
|
import argparse
|
|
import os, sys
|
|
import subprocess, signal
|
|
import json
|
|
import time
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('cpu', choices=[x.name.lower() for x in Cpu])
|
|
parser.add_argument('matrix_type', type=str,
|
|
choices=[t.name.lower() for t in MatrixType])
|
|
parser.add_argument('format', type=str,
|
|
choices=[fmt.name.lower() for fmt in Format])
|
|
parser.add_argument('base_iterations', type=int)
|
|
parser.add_argument('min_time_s', type=int)
|
|
parser.add_argument('baseline_time_s', type=int)
|
|
parser.add_argument('baseline_delay_s', type=int)
|
|
#parser.add_argument('--perf', action='store_true')
|
|
parser.add_argument('-m', '--matrix_file', type=str)
|
|
parser.add_argument('-ss', '--synthetic_size', type=int)
|
|
parser.add_argument('-sd', '--synthetic_density', type=float)
|
|
parser.add_argument('-c', '--cores', type=int)
|
|
parser.add_argument('--power', action='store_true')
|
|
parser.add_argument('-d', '--debug', action='store_true')
|
|
args = parser.parse_args()
|
|
args.cpu = Cpu[args.cpu.upper()]
|
|
args.matrix_type = MatrixType[args.matrix_type.upper()]
|
|
args.format = Format[args.format.upper()]
|
|
assert args.baseline_time_s >= 2
|
|
|
|
python = {
|
|
Cpu.ALTRA: 'python3',
|
|
Cpu.EPYC_7313P: 'python3.11',
|
|
Cpu.XEON_4216: 'python3.11'
|
|
}
|
|
perf = ['perf', 'stat']
|
|
perf_args = {
|
|
Cpu.ALTRA: [
|
|
['-d', '-d'],
|
|
['-M', 'branch_misprediction_ratio'],
|
|
['-M', 'dtlb_walk_ratio,itlb_walk_ratio'],
|
|
['-M', 'l1d_cache_miss_ratio,l1i_cache_miss_ratio'],
|
|
['-M', 'l2_cache_miss_ratio,l2_tlb_miss_ratio,ll_cache_read_miss_ratio']]
|
|
}
|
|
|
|
power = ['taskset', '-c', '0', './power.sh']
|
|
def program(
|
|
cpu: Cpu,
|
|
cores: int,
|
|
matrix_type: MatrixType,
|
|
fmt: Format,
|
|
iterations: int,
|
|
matrix_file: str,
|
|
synthetic_size: int,
|
|
synthetic_density: float
|
|
) -> list:
|
|
apptainer = ['apptainer', 'run']
|
|
if cores is not None:
|
|
apptainer += [ '--env', 'OMP_PROC_BIND=true',
|
|
'--env', 'OMP_PLACES={0:' + f'{cores}' + '}']
|
|
|
|
spmv = f'python3 spmv.py {matrix_type.name.lower()} {fmt.name.lower()} '
|
|
spmv += f'{iterations} '
|
|
if matrix_type == MatrixType.SUITESPARSE:
|
|
spmv += f'-m {matrix_file}'
|
|
elif matrix_type == MatrixType.SYNTHETIC:
|
|
spmv += f'-ss {synthetic_size} -sd {synthetic_density}'
|
|
else:
|
|
exit("Unrecognized matrix type!")
|
|
|
|
if cores is not None:
|
|
spmv += f' -c {cores}'
|
|
|
|
if cpu == Cpu.ALTRA:
|
|
return apptainer + ['pytorch-altra.sif', '-c',
|
|
'numactl --cpunodebind=0 --membind=0 ' + spmv]
|
|
elif cpu == Cpu.EPYC_7313P:
|
|
return apptainer + ['pytorch-epyc_7313p.sif'] + spmv.split(' ')
|
|
elif cpu == Cpu.XEON_4216:
|
|
return apptainer + ['pytorch-xeon_4216.sif',
|
|
'numactl', '--cpunodebind=0', '--membind=0'] + spmv.split(' ')
|
|
|
|
def baseline_power(cpu: Cpu, baseline_time_s: int) -> list:
|
|
power_process = subprocess.Popen(power + [str(baseline_time_s)],
|
|
stdout=subprocess.PIPE, stderr=subprocess.DEVNULL, text=True)
|
|
return [float(x) for x in power_process.communicate()[0].strip().split('\n') if len(x) != 0]
|
|
|
|
def run_program(program: list[str]) -> tuple[dict, str]:
|
|
if args.debug:
|
|
print(program, file=sys.stderr)
|
|
process = subprocess.run(program,
|
|
stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
|
|
process.check_returncode()
|
|
|
|
if args.debug:
|
|
print(process.stdout, file=sys.stderr)
|
|
print(process.stderr, file=sys.stderr)
|
|
return (json.loads(process.stdout), process.stderr)
|
|
|
|
def trapezoidal_rule(power: list[float], time_s: float) -> float:
|
|
result = 0.0
|
|
#relevant_power = power[-int(time_s):]
|
|
relevant_power = power
|
|
|
|
assert(time_s >= 2)
|
|
assert(len(relevant_power) >= 2)
|
|
#assert(len(power) >= time_s)
|
|
|
|
for pair in zip(relevant_power, relevant_power[1:]):
|
|
result += 0.5 * (pair[0] + pair[1])
|
|
result += (time_s % 1) * (power[-1])
|
|
return result
|
|
|
|
result = dict()
|
|
result[Stat.CPU.name] = args.cpu.value
|
|
if args.cores is not None:
|
|
result[Stat.CORES.name] = args.cores
|
|
else:
|
|
if args.cpu == Cpu.ALTRA:
|
|
result[Stat.CORES.name] = 80
|
|
elif args.cpu == Cpu.EPYC_7313P:
|
|
result[Stat.CORES.name] = 16
|
|
elif args.cpu == Cpu.XEON_4216:
|
|
result[Stat.CORES.name] = 16
|
|
|
|
iterations = args.base_iterations
|
|
program_result = run_program(program(
|
|
args.cpu, args.cores, args.matrix_type, args.format, iterations,
|
|
args.matrix_file, args.synthetic_size, args.synthetic_density))
|
|
while program_result[0][Stat.TIME_S.name] < args.min_time_s:
|
|
# Increase the number of iterations by difference between the current time taken and the desired time.
|
|
iterations *= 1 / (program_result[0][Stat.TIME_S.name] / args.min_time_s)
|
|
# Add another 5% for safety.
|
|
iterations += iterations * 0.05
|
|
iterations = int(iterations)
|
|
program_result = run_program(program(
|
|
args.cpu, args.cores, args.matrix_type, args.format, iterations,
|
|
args.matrix_file, args.synthetic_size, args.synthetic_density))
|
|
|
|
result[Stat.ITERATIONS.name] = iterations
|
|
|
|
result |= program_result[0]
|
|
print(program_result[1], file=sys.stderr)
|
|
|
|
result[Stat.TIME_S_1KI.name] = (
|
|
(result[Stat.TIME_S.name] / result[Stat.ITERATIONS.name]) * 1000
|
|
)
|
|
|
|
if args.power:
|
|
result[Stat.BASELINE_TIME_S.name] = args.baseline_time_s
|
|
result[Stat.BASELINE_DELAY_S.name] = args.baseline_delay_s
|
|
|
|
# Baseline
|
|
time.sleep(args.baseline_delay_s)
|
|
baseline_list = baseline_power(args.cpu, args.baseline_time_s)
|
|
if args.debug:
|
|
print(baseline_list, file=sys.stderr)
|
|
assert(len(baseline_list) == args.baseline_time_s)
|
|
|
|
# Power Collection
|
|
start_time = time.time()
|
|
power_process = subprocess.run(
|
|
power + ['-1'] + program(
|
|
args.cpu, args.cores, args.matrix_type, args.format,
|
|
result[Stat.ITERATIONS.name],
|
|
args.matrix_file, args.synthetic_size, args.synthetic_density),
|
|
stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
|
|
power_time_s = time.time() - start_time
|
|
power_process.check_returncode()
|
|
|
|
power_list = [float(x)
|
|
for x in power_process.stdout.strip().split('\n')]
|
|
#power_time_s = json.loads(power_process.stderr)[Stat.TIME_S.name]
|
|
if args.debug:
|
|
print(power_list, file=sys.stderr)
|
|
print(power_time_s, file=sys.stderr)
|
|
|
|
if args.cpu == Cpu.ALTRA:
|
|
# Trapezoidal Rule across the last (s) power recordings.
|
|
result[Stat.J.name] = trapezoidal_rule(
|
|
power_list, power_time_s)
|
|
elif args.cpu == Cpu.EPYC_7313P or args.cpu == Cpu.XEON_4216:
|
|
result[Stat.J.name] = power_list[0] * power_time_s
|
|
|
|
result[Stat.W.name] = result[Stat.J.name] / power_time_s
|
|
|
|
if args.debug:
|
|
print(result, file=sys.stderr)
|
|
#print(len(result['power']))
|
|
#print(sum(result['power']) / len(result['power']))
|
|
|
|
# Baseline
|
|
time.sleep(args.baseline_delay_s)
|
|
baseline_list += baseline_power(args.cpu, args.baseline_time_s)
|
|
if args.debug:
|
|
print(baseline_list, file=sys.stderr)
|
|
assert(len(baseline_list) / 2 == args.baseline_time_s)
|
|
|
|
baseline_joules = (
|
|
trapezoidal_rule(
|
|
baseline_list[:args.baseline_time_s],
|
|
args.baseline_time_s) +
|
|
trapezoidal_rule(
|
|
baseline_list[args.baseline_time_s:],
|
|
args.baseline_time_s)
|
|
)
|
|
baseline_wattage = baseline_joules / (args.baseline_time_s * 2)
|
|
if args.debug:
|
|
print(baseline_joules, file=sys.stderr)
|
|
print(baseline_wattage, file=sys.stderr)
|
|
|
|
result[Stat.J_1KI.name] = (
|
|
(result[Stat.J.name] / result[Stat.ITERATIONS.name]) * 1000
|
|
)
|
|
result[Stat.W_1KI.name] = (
|
|
(result[Stat.W.name] / result[Stat.ITERATIONS.name]) * 1000
|
|
)
|
|
result[Stat.W_D.name] = result[Stat.W.name] - baseline_wattage
|
|
result[Stat.J_D.name] = result[Stat.W_D.name] * power_time_s
|
|
result[Stat.W_D_1KI.name] = (
|
|
(result[Stat.W_D.name] / result[Stat.ITERATIONS.name]) * 1000
|
|
)
|
|
result[Stat.J_D_1KI.name] = (
|
|
(result[Stat.W_D_1KI.name] / result[Stat.ITERATIONS.name]) * 1000
|
|
)
|
|
|
|
if args.debug:
|
|
print(result, file=sys.stderr)
|
|
|
|
print(json.dumps(result))
|
|
#if args.perf:
|
|
# for perf_arg in perf_args[args.cpu]:
|
|
# output = run_program(perf + perf_arg + program[args.cpu])[1]
|
|
# print(output, file=sys.stderr)
|
|
# result = result | data_stat.parse_output(output, args.cpu)
|
|
# if args.debug:
|
|
# print(result)
|
|
#
|
|
# result = result | data_stat.derive_stats(result)
|
|
#
|
|
# if args.debug:
|
|
# print(result)
|
|
|
|
|
|
#arch = subprocess.run(['uname', '-m'], stdout=subprocess.PIPE, text=True).stdout.strip()
|
|
#baseline = subprocess.run(
|
|
# ['./power.sh', args.baseline_time_s],
|
|
# stdout=subprocess.PIPE, stderr=subprocess.STDOUT, text=True)
|
|
#print(baseline)
|
|
#for line in baseline.stdout.split('\n'):
|
|
# print("line")
|
|
# print(line)
|
|
|
|
#os.path.basename(args.matrix_file)
|
|
|
|
#subprocess.run(
|
|
# ['apptainer', 'run', 'pytorch-altra.sif', '-c',
|
|
# f'"numactl --cpunodebind=0 --membind=0 python spmv.py {args.matrix_file} {args.iterations}"'
|
|
# ],
|
|
# stdout=subprocess.PIPE, stderr=subprocess.STDOUT, text=True)
|