ampere_research/pytorch/analyze.py

183 lines
6.5 KiB
Python
Executable File

#! /bin/python3
from data_stat import Stat, Cpu
import argparse
import os, glob
import re
import json
from enum import Enum
import math
import numpy as np
import matplotlib.pyplot as plt
import itertools
class Plot(Enum):
BOX = 'box'
LINE = 'line'
def accumulate(data_list: list[dict[str, str | int | float]], category: Stat, value: Stat):
#print(category.name)
#print(value.name)
category_list = np.array([stats[category.name] for stats in data_list if value.name in stats])
value_list = np.array([stats[value.name] for stats in data_list if value.name in stats])
result: dict[np.ndarray] = dict()
for category in np.sort(np.unique(category_list)):
result[category] = value_list[category_list == category]
return result
def box_plot(ax, data_list: list[dict[str, str | int | float]], x: Stat, y: Stat):
data: dict[str, np.ndarray] = accumulate(data_list, x, y)
#print("Plotted data: " + str(data))
ax.boxplot(data.values(), tick_labels=data.keys())
ax.set_ylabel(y.value)
def line_plot(
ax, data_list: list[dict[str, str | int | float]],
x: Stat, y: Stat, color: Stat
):
x_data: dict[str, np.ndarray] = accumulate(data_list, color, x)
y_data: dict[str, np.ndarray] = accumulate(data_list, color, y)
for category in x_data.keys():
sorted_indices = np.argsort(x_data[category])
x_data[category] = x_data[category][sorted_indices]
y_data[category] = y_data[category][sorted_indices]
ax.plot(x_data[category], y_data[category], label=category)
#print("Plotted x data: " + str(x_data[category]))
#print("Plotted y data: " + str(y_data[category]))
ax.set_ylabel(y.value)
ax.grid(True)
def visualize(
data_list: list[dict[str, str | int | float]],
plot: Plot,
rows: int,
size_multiplier: int,
font_size: int,
x: Stat,
y: Stat,
color: Stat,
filter_list: list[str] = []
):
# Remove stats entries containing undesired values (like a specific CPU).
# data_list = [stats for stats in data_list
# if len([stats[key] for key in stats.keys()
# if stats[key] in filter_list]) == 0]
#x = Stat.MAXWELL_SIZE
#y = Stat.DTLB_MISS_RATE
#color = Stat.SOLVER
if y is None:
#ys = [stat for stat in Stat if stat.name in data_list[0].keys()]
#ys = [stat for stat in data_list[0].keys() if "power" not in stat]
#and stat is not x
#and y != color
#and y != marker
#and stat.value not in filter_list]
# Create sorted, deduped list of all stats in data_list.
ys = [Stat[stat_name] for stat_name in sorted(list(set([stat_name for data in data_list for stat_name in data if type(data[stat_name]) is not list])))]
print([stat.value for stat in ys])
fig, axes = plt.subplots(rows, int(math.ceil(len(ys) / rows)),
figsize = (16 * size_multiplier, 9 * size_multiplier))
match plot:
case Plot.BOX:
for i, y in enumerate(ys):
box_plot(axes[i % rows][int(i / rows)], data_list, x, y)
case Plot.LINE:
for i, y in enumerate(ys):
line_plot(axes[i % rows][int(i / rows)], data_list, x, y, color)
handles, labels = axes[i % rows][int(i / rows)].get_legend_handles_labels()
else:
fig, ax = plt.subplots()
match plot:
case Plot.BOX:
box_plot(ax, data_list, x, y)
case Plot.LINE:
line_plot(ax, data_list, x, y, color)
handles, labels = ax.get_legend_handles_labels()
#box_plot(ax, stats, x, y)
#line_plot(ax, stats, x, y, color)
match plot:
case Plot.BOX:
title = f"{plot.value}_plot_of_{y.value.replace(' ', '_')}_vs_{x.value.replace(' ', '_')}_excluding_{filter_list}"
case Plot.LINE:
#title = f"{plot.value}_plot_of_{y.replace(' ', '_')}_vs_{x.replace(' ', '_')}_by_{color.replace(' ', '_')}_excluding_{filter_list}"
title = "altra_spmv"
fig.suptitle(title, fontsize = font_size)
fig.legend(handles, labels, fontsize = font_size)
fig.supxlabel(x.value, fontsize = font_size)
plt.savefig(title + ".png", dpi = 100)
plt.show()
def main():
parser = argparse.ArgumentParser()
parser.add_argument('input_dir',
help='the input directory')
parser.add_argument('-p', '--plot',
choices=[x.name.lower() for x in Plot],
help = 'the type of plot')
parser.add_argument('-r', '--rows', type=int,
help = 'the number of rows to display when -y is not specified',
default = 5)
parser.add_argument('-s', '--size', type=int,
help = 'figure size multiplier',
default = 4)
parser.add_argument('-fs', '--font_size', type=int,
help = 'font size',
default = 40)
parser.add_argument('-x',
choices=[x.name.lower() for x in Stat],
help = 'the name of the x axis')
parser.add_argument('-y',
choices=[x.name.lower() for x in Stat],
help = 'the name of the y axis')
parser.add_argument('-c', '--color',
choices=[x.name.lower() for x in Stat],
help = 'the name of the color')
parser.add_argument('-f', '--filter', nargs = '+',
help = 'a comma-separated string of names and values to filter out.',
default = [])
args = parser.parse_args()
args.plot = Plot[args.plot.upper()]
args.x = Stat[args.x.upper()] if args.x is not None else None
args.y = Stat[args.y.upper()] if args.y is not None else None
args.color = Stat[args.color.upper()] if args.color is not None else None
data_list: list[dict] = list()
for filename in glob.glob(f'{args.input_dir.rstrip("/")}/*.json'):
with open(filename, 'r') as file:
data_list.append(json.load(file))
print(filename + " loaded.")
visualize(
data_list,
args.plot,
args.rows,
args.size,
args.font_size,
args.x,
args.y,
args.color,
args.filter
)
if __name__ == '__main__':
main()