ampere_research/pytorch/analyze.py

173 lines
6.1 KiB
Python
Raw Normal View History

2024-12-03 22:16:08 -05:00
#! /bin/python3
2024-12-05 14:17:08 -05:00
from data_stat import Stat, Cpu
2024-12-03 22:16:08 -05:00
import argparse
import os, glob
import re
import json
from enum import Enum
import math
import numpy as np
import matplotlib.pyplot as plt
import itertools
class Plot(Enum):
BOX = 'box'
LINE = 'line'
def accumulate(stats_list: list[dict[str, str | int | float]], category: str, value: str):
print(category)
print(value)
category_list = np.array([stats[category] for stats in stats_list if value in stats])
value_list = np.array([stats[value] for stats in stats_list if value in stats])
result: dict[np.ndarray] = dict()
for category in np.sort(np.unique(category_list)):
result[category] = value_list[category_list == category]
return result
def box_plot(ax, stats_list: list[dict[str, str | int | float]], x: Stat, y: Stat):
data: dict[str, np.ndarray] = accumulate(stats_list, x, y)
print("Plotted data: " + str(data))
ax.boxplot(data.values(), tick_labels=data.keys())
ax.set_ylabel(y.value)
def line_plot(
ax, stats_list: list[dict[str, str | int | float]],
x: Stat, y: Stat, color: Stat
):
x_data: dict[str, np.ndarray] = accumulate(stats_list, color, x)
y_data: dict[str, np.ndarray] = accumulate(stats_list, color, y)
for category in x_data.keys():
sorted_indices = np.argsort(x_data[category])
x_data[category] = x_data[category][sorted_indices]
y_data[category] = y_data[category][sorted_indices]
ax.plot(x_data[category], y_data[category], label=category)
print("Plotted x data: " + str(x_data[category]))
print("Plotted y data: " + str(y_data[category]))
ax.set_ylabel(y)
ax.grid(True)
def visualize(
stats_list: list[dict[str, str | int | float]],
plot: Plot,
rows: int,
size_multiplier: int,
font_size: int,
x: Stat,
y: Stat,
color: Stat,
filter_list: list[str] = []
):
# Remove stats entries containing undesired values (like a specific CPU).
# stats_list = [stats for stats in stats_list
# if len([stats[key] for key in stats.keys()
# if stats[key] in filter_list]) == 0]
#x = Stat.MAXWELL_SIZE
#y = Stat.DTLB_MISS_RATE
#color = Stat.SOLVER
if y is None:
#ys = [stat for stat in Stat if stat.value in stats_list[0].keys()
ys = [stat for stat in stats_list[0].keys() if "power" not in stat]
#and stat is not x
#and y != color
#and y != marker
#and stat.value not in filter_list]
fig, axes = plt.subplots(rows, int(math.ceil(len(ys) / rows)),
figsize = (16 * size_multiplier, 9 * size_multiplier))
match plot:
case Plot.BOX:
for i, y in enumerate(ys):
box_plot(axes[i % rows][int(i / rows)], stats_list, x, y)
case Plot.LINE:
for i, y in enumerate(ys):
line_plot(axes[i % rows][int(i / rows)], stats_list, x, y, color)
handles, labels = axes[i % rows][int(i / rows)].get_legend_handles_labels()
else:
fig, ax = plt.subplots()
match plot:
case Plot.BOX:
box_plot(ax, stats_list, x, y)
case Plot.LINE:
line_plot(ax, stats_list, x, y, color)
handles, labels = ax.get_legend_handles_labels()
#box_plot(ax, stats, x, y)
#line_plot(ax, stats, x, y, color)
match plot:
case Plot.BOX:
title = f"{plot.value}_plot_of_{y.value.replace(' ', '_')}_vs_{x.value.replace(' ', '_')}_excluding_{filter_list}"
case Plot.LINE:
#title = f"{plot.value}_plot_of_{y.replace(' ', '_')}_vs_{x.replace(' ', '_')}_by_{color.replace(' ', '_')}_excluding_{filter_list}"
title = "altra_spmv"
fig.suptitle(title, fontsize = font_size)
fig.legend(handles, labels, fontsize = font_size)
fig.supxlabel(x, fontsize = font_size)
plt.savefig(title + ".png", dpi = 100)
plt.show()
def main():
parser = argparse.ArgumentParser()
2024-12-05 14:17:08 -05:00
parser.add_argument('input_dir',
help='the input directory')
2024-12-03 22:16:08 -05:00
parser.add_argument('-p', '--plot',
choices=[x.name.lower() for x in Plot],
help = 'the type of plot')
parser.add_argument('-r', '--rows', type=int,
help = 'the number of rows to display when -y is not specified',
default = 5)
parser.add_argument('-s', '--size', type=int,
help = 'figure size multiplier',
default = 4)
parser.add_argument('-fs', '--font_size', type=int,
help = 'font size',
default = 40)
parser.add_argument('-x',
#choices=[x.name.lower() for x in Stat],
help = 'the name of the x axis')
parser.add_argument('-y',
#choices=[x.name.lower() for x in Stat],
help = 'the name of the y axis')
parser.add_argument('-c', '--color',
#choices=[x.name.lower() for x in Stat],
help = 'the name of the color')
parser.add_argument('-f', '--filter', nargs = '+',
help = 'a comma-separated string of names and values to filter out.',
default = [])
args = parser.parse_args()
2024-12-05 14:17:08 -05:00
args.plot = Plot[args.plot.upper()]
data_list: list[dict] = list()
for filename in glob.glob(f'{args.input_dir.rstrip("/")}/*.json'):
with open(filename, 'r') as file:
data_list.append(json.load(file))
print(filename + " loaded.")
print(data_list)
#x = Stat[args.x.upper()] if args.x is not None else None
x = args.x
#y = Stat[args.y.upper()] if args.y is not None else None
y = args.y
#color = Stat[args.color.upper()] if args.color is not None else None
color = args.color
visualize(data_list, args.plot, args.rows, args.size, args.font_size, x, y, color, args.filter)
2024-12-03 22:16:08 -05:00
if __name__ == '__main__':
main()