173 lines
6.1 KiB
Python
Executable File
173 lines
6.1 KiB
Python
Executable File
#! /bin/python3
|
|
|
|
from data_stat import Stat, Cpu
|
|
|
|
import argparse
|
|
import os, glob
|
|
import re
|
|
import json
|
|
|
|
from enum import Enum
|
|
|
|
import math
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
import itertools
|
|
|
|
class Plot(Enum):
|
|
BOX = 'box'
|
|
LINE = 'line'
|
|
|
|
def accumulate(stats_list: list[dict[str, str | int | float]], category: str, value: str):
|
|
print(category)
|
|
print(value)
|
|
category_list = np.array([stats[category] for stats in stats_list if value in stats])
|
|
value_list = np.array([stats[value] for stats in stats_list if value in stats])
|
|
|
|
result: dict[np.ndarray] = dict()
|
|
for category in np.sort(np.unique(category_list)):
|
|
result[category] = value_list[category_list == category]
|
|
|
|
return result
|
|
|
|
def box_plot(ax, stats_list: list[dict[str, str | int | float]], x: Stat, y: Stat):
|
|
data: dict[str, np.ndarray] = accumulate(stats_list, x, y)
|
|
|
|
print("Plotted data: " + str(data))
|
|
|
|
ax.boxplot(data.values(), tick_labels=data.keys())
|
|
ax.set_ylabel(y.value)
|
|
|
|
def line_plot(
|
|
ax, stats_list: list[dict[str, str | int | float]],
|
|
x: Stat, y: Stat, color: Stat
|
|
):
|
|
x_data: dict[str, np.ndarray] = accumulate(stats_list, color, x)
|
|
y_data: dict[str, np.ndarray] = accumulate(stats_list, color, y)
|
|
|
|
for category in x_data.keys():
|
|
sorted_indices = np.argsort(x_data[category])
|
|
x_data[category] = x_data[category][sorted_indices]
|
|
y_data[category] = y_data[category][sorted_indices]
|
|
ax.plot(x_data[category], y_data[category], label=category)
|
|
print("Plotted x data: " + str(x_data[category]))
|
|
print("Plotted y data: " + str(y_data[category]))
|
|
|
|
ax.set_ylabel(y)
|
|
ax.grid(True)
|
|
|
|
def visualize(
|
|
stats_list: list[dict[str, str | int | float]],
|
|
plot: Plot,
|
|
rows: int,
|
|
size_multiplier: int,
|
|
font_size: int,
|
|
x: Stat,
|
|
y: Stat,
|
|
color: Stat,
|
|
filter_list: list[str] = []
|
|
):
|
|
# Remove stats entries containing undesired values (like a specific CPU).
|
|
# stats_list = [stats for stats in stats_list
|
|
# if len([stats[key] for key in stats.keys()
|
|
# if stats[key] in filter_list]) == 0]
|
|
|
|
#x = Stat.MAXWELL_SIZE
|
|
#y = Stat.DTLB_MISS_RATE
|
|
#color = Stat.SOLVER
|
|
|
|
if y is None:
|
|
#ys = [stat for stat in Stat if stat.value in stats_list[0].keys()
|
|
ys = [stat for stat in stats_list[0].keys() if "power" not in stat]
|
|
#and stat is not x
|
|
#and y != color
|
|
#and y != marker
|
|
#and stat.value not in filter_list]
|
|
fig, axes = plt.subplots(rows, int(math.ceil(len(ys) / rows)),
|
|
figsize = (16 * size_multiplier, 9 * size_multiplier))
|
|
match plot:
|
|
case Plot.BOX:
|
|
for i, y in enumerate(ys):
|
|
box_plot(axes[i % rows][int(i / rows)], stats_list, x, y)
|
|
case Plot.LINE:
|
|
for i, y in enumerate(ys):
|
|
line_plot(axes[i % rows][int(i / rows)], stats_list, x, y, color)
|
|
|
|
handles, labels = axes[i % rows][int(i / rows)].get_legend_handles_labels()
|
|
else:
|
|
fig, ax = plt.subplots()
|
|
|
|
match plot:
|
|
case Plot.BOX:
|
|
box_plot(ax, stats_list, x, y)
|
|
case Plot.LINE:
|
|
line_plot(ax, stats_list, x, y, color)
|
|
|
|
handles, labels = ax.get_legend_handles_labels()
|
|
|
|
#box_plot(ax, stats, x, y)
|
|
#line_plot(ax, stats, x, y, color)
|
|
|
|
match plot:
|
|
case Plot.BOX:
|
|
title = f"{plot.value}_plot_of_{y.value.replace(' ', '_')}_vs_{x.value.replace(' ', '_')}_excluding_{filter_list}"
|
|
case Plot.LINE:
|
|
#title = f"{plot.value}_plot_of_{y.replace(' ', '_')}_vs_{x.replace(' ', '_')}_by_{color.replace(' ', '_')}_excluding_{filter_list}"
|
|
title = "altra_spmv"
|
|
fig.suptitle(title, fontsize = font_size)
|
|
fig.legend(handles, labels, fontsize = font_size)
|
|
fig.supxlabel(x, fontsize = font_size)
|
|
|
|
plt.savefig(title + ".png", dpi = 100)
|
|
plt.show()
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('input_dir',
|
|
help='the input directory')
|
|
parser.add_argument('-p', '--plot',
|
|
choices=[x.name.lower() for x in Plot],
|
|
help = 'the type of plot')
|
|
parser.add_argument('-r', '--rows', type=int,
|
|
help = 'the number of rows to display when -y is not specified',
|
|
default = 5)
|
|
parser.add_argument('-s', '--size', type=int,
|
|
help = 'figure size multiplier',
|
|
default = 4)
|
|
parser.add_argument('-fs', '--font_size', type=int,
|
|
help = 'font size',
|
|
default = 40)
|
|
parser.add_argument('-x',
|
|
#choices=[x.name.lower() for x in Stat],
|
|
help = 'the name of the x axis')
|
|
parser.add_argument('-y',
|
|
#choices=[x.name.lower() for x in Stat],
|
|
help = 'the name of the y axis')
|
|
parser.add_argument('-c', '--color',
|
|
#choices=[x.name.lower() for x in Stat],
|
|
help = 'the name of the color')
|
|
parser.add_argument('-f', '--filter', nargs = '+',
|
|
help = 'a comma-separated string of names and values to filter out.',
|
|
default = [])
|
|
args = parser.parse_args()
|
|
args.plot = Plot[args.plot.upper()]
|
|
|
|
data_list: list[dict] = list()
|
|
|
|
for filename in glob.glob(f'{args.input_dir.rstrip("/")}/*.json'):
|
|
with open(filename, 'r') as file:
|
|
data_list.append(json.load(file))
|
|
print(filename + " loaded.")
|
|
|
|
print(data_list)
|
|
#x = Stat[args.x.upper()] if args.x is not None else None
|
|
x = args.x
|
|
#y = Stat[args.y.upper()] if args.y is not None else None
|
|
y = args.y
|
|
#color = Stat[args.color.upper()] if args.color is not None else None
|
|
color = args.color
|
|
visualize(data_list, args.plot, args.rows, args.size, args.font_size, x, y, color, args.filter)
|
|
|
|
if __name__ == '__main__':
|
|
main()
|