2024-12-03 22:16:08 -05:00
|
|
|
#! /bin/python3
|
|
|
|
|
2024-12-05 14:17:08 -05:00
|
|
|
from data_stat import Stat, Cpu
|
2024-12-03 22:16:08 -05:00
|
|
|
|
|
|
|
import argparse
|
|
|
|
import os, glob
|
|
|
|
import re
|
|
|
|
import json
|
|
|
|
|
|
|
|
from enum import Enum
|
|
|
|
|
|
|
|
import math
|
|
|
|
import numpy as np
|
2024-12-12 15:47:26 -05:00
|
|
|
import matplotlib
|
2024-12-03 22:16:08 -05:00
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
import itertools
|
|
|
|
|
|
|
|
class Plot(Enum):
|
|
|
|
BOX = 'box'
|
|
|
|
LINE = 'line'
|
|
|
|
|
2024-12-05 15:21:29 -05:00
|
|
|
def accumulate(data_list: list[dict[str, str | int | float]], category: Stat, value: Stat):
|
|
|
|
#print(category.name)
|
|
|
|
#print(value.name)
|
|
|
|
category_list = np.array([stats[category.name] for stats in data_list if value.name in stats])
|
|
|
|
value_list = np.array([stats[value.name] for stats in data_list if value.name in stats])
|
2024-12-03 22:16:08 -05:00
|
|
|
|
|
|
|
result: dict[np.ndarray] = dict()
|
|
|
|
for category in np.sort(np.unique(category_list)):
|
|
|
|
result[category] = value_list[category_list == category]
|
|
|
|
|
|
|
|
return result
|
|
|
|
|
2024-12-05 15:21:29 -05:00
|
|
|
def box_plot(ax, data_list: list[dict[str, str | int | float]], x: Stat, y: Stat):
|
|
|
|
data: dict[str, np.ndarray] = accumulate(data_list, x, y)
|
2024-12-03 22:16:08 -05:00
|
|
|
|
2024-12-05 15:21:29 -05:00
|
|
|
#print("Plotted data: " + str(data))
|
2024-12-03 22:16:08 -05:00
|
|
|
|
|
|
|
ax.boxplot(data.values(), tick_labels=data.keys())
|
|
|
|
ax.set_ylabel(y.value)
|
|
|
|
|
|
|
|
def line_plot(
|
2024-12-05 15:21:29 -05:00
|
|
|
ax, data_list: list[dict[str, str | int | float]],
|
2024-12-09 15:07:23 -05:00
|
|
|
x: Stat, y: Stat, color: Stat,
|
|
|
|
font_size: int
|
2024-12-03 22:16:08 -05:00
|
|
|
):
|
2024-12-12 15:47:26 -05:00
|
|
|
print(x)
|
|
|
|
print(y)
|
|
|
|
print(color)
|
2024-12-05 15:21:29 -05:00
|
|
|
x_data: dict[str, np.ndarray] = accumulate(data_list, color, x)
|
|
|
|
y_data: dict[str, np.ndarray] = accumulate(data_list, color, y)
|
2024-12-03 22:16:08 -05:00
|
|
|
|
|
|
|
for category in x_data.keys():
|
|
|
|
sorted_indices = np.argsort(x_data[category])
|
|
|
|
x_data[category] = x_data[category][sorted_indices]
|
|
|
|
y_data[category] = y_data[category][sorted_indices]
|
|
|
|
ax.plot(x_data[category], y_data[category], label=category)
|
2024-12-05 15:21:29 -05:00
|
|
|
#print("Plotted x data: " + str(x_data[category]))
|
|
|
|
#print("Plotted y data: " + str(y_data[category]))
|
2024-12-03 22:16:08 -05:00
|
|
|
|
2024-12-09 15:07:23 -05:00
|
|
|
ax.set_ylabel(y.value, fontsize=font_size)
|
2024-12-03 22:16:08 -05:00
|
|
|
ax.grid(True)
|
|
|
|
|
|
|
|
def visualize(
|
2024-12-05 15:21:29 -05:00
|
|
|
data_list: list[dict[str, str | int | float]],
|
2024-12-03 22:16:08 -05:00
|
|
|
plot: Plot,
|
|
|
|
rows: int,
|
|
|
|
size_multiplier: int,
|
|
|
|
font_size: int,
|
|
|
|
x: Stat,
|
2024-12-09 15:07:23 -05:00
|
|
|
ys: list[Stat],
|
2024-12-03 22:16:08 -05:00
|
|
|
color: Stat,
|
2024-12-12 15:47:26 -05:00
|
|
|
filter_list: list[str],
|
|
|
|
title: str
|
2024-12-03 22:16:08 -05:00
|
|
|
):
|
|
|
|
# Remove stats entries containing undesired values (like a specific CPU).
|
2024-12-05 15:21:29 -05:00
|
|
|
# data_list = [stats for stats in data_list
|
2024-12-03 22:16:08 -05:00
|
|
|
# if len([stats[key] for key in stats.keys()
|
|
|
|
# if stats[key] in filter_list]) == 0]
|
|
|
|
|
|
|
|
#x = Stat.MAXWELL_SIZE
|
|
|
|
#y = Stat.DTLB_MISS_RATE
|
|
|
|
#color = Stat.SOLVER
|
|
|
|
|
2024-12-09 15:07:23 -05:00
|
|
|
if ys is None:
|
2024-12-05 15:21:29 -05:00
|
|
|
#ys = [stat for stat in Stat if stat.name in data_list[0].keys()]
|
|
|
|
#ys = [stat for stat in data_list[0].keys() if "power" not in stat]
|
2024-12-03 22:16:08 -05:00
|
|
|
#and stat is not x
|
|
|
|
#and y != color
|
|
|
|
#and y != marker
|
|
|
|
#and stat.value not in filter_list]
|
2024-12-05 15:21:29 -05:00
|
|
|
# Create sorted, deduped list of all stats in data_list.
|
|
|
|
ys = [Stat[stat_name] for stat_name in sorted(list(set([stat_name for data in data_list for stat_name in data if type(data[stat_name]) is not list])))]
|
2024-12-03 22:16:08 -05:00
|
|
|
|
2024-12-09 15:07:23 -05:00
|
|
|
print([stat.name for stat in ys])
|
|
|
|
print(len(ys))
|
|
|
|
print(rows)
|
|
|
|
print(int(math.ceil(len(ys) / rows)))
|
|
|
|
fig, axes = plt.subplots(rows, int(math.ceil(len(ys) / rows)),
|
|
|
|
figsize = (16 * size_multiplier, 9 * size_multiplier))
|
2024-12-03 22:16:08 -05:00
|
|
|
|
|
|
|
match plot:
|
|
|
|
case Plot.BOX:
|
2024-12-09 15:07:23 -05:00
|
|
|
for i, y in enumerate(ys):
|
|
|
|
box_plot(axes[i % rows][int(i / rows)], data_list, x, y)
|
2024-12-03 22:16:08 -05:00
|
|
|
case Plot.LINE:
|
2024-12-09 15:07:23 -05:00
|
|
|
for i, y in enumerate(ys):
|
|
|
|
ax = axes[i % rows][int(i / rows)]
|
|
|
|
line_plot(ax, data_list, x, y, color, font_size)
|
2024-12-12 15:47:26 -05:00
|
|
|
if type(ax.get_xaxis().get_major_formatter()) is matplotlib.ticker.ScalarFormatter:
|
|
|
|
ax.get_xaxis().get_major_formatter().set_scientific(False)
|
|
|
|
if type(ax.get_yaxis().get_major_formatter()) is matplotlib.ticker.ScalarFormatter:
|
|
|
|
ax.get_yaxis().get_major_formatter().set_scientific(False)
|
|
|
|
#ax.ticklabel_format(axis='both', style='plain')
|
2024-12-09 15:07:23 -05:00
|
|
|
|
|
|
|
handles, labels = axes[i % rows][int(i / rows)].get_legend_handles_labels()
|
|
|
|
# else:
|
|
|
|
# fig, ax = plt.subplots()
|
|
|
|
#
|
|
|
|
# match plot:
|
|
|
|
# case Plot.BOX:
|
|
|
|
# box_plot(ax, data_list, x, y)
|
|
|
|
# case Plot.LINE:
|
|
|
|
# line_plot(ax, data_list, x, y, color)
|
|
|
|
#
|
|
|
|
# handles, labels = ax.get_legend_handles_labels()
|
|
|
|
|
|
|
|
#box_plot(ax, stats, x, y)
|
|
|
|
#line_plot(ax, stats, x, y, color)
|
|
|
|
|
|
|
|
# match plot:
|
|
|
|
# case Plot.BOX:
|
|
|
|
# title = f"{plot.value}_plot_of_{y.value.replace(' ', '_')}_vs_{x.value.replace(' ', '_')}_excluding_{filter_list}"
|
|
|
|
# case Plot.LINE:
|
|
|
|
# #title = f"{plot.value}_plot_of_{y.replace(' ', '_')}_vs_{x.replace(' ', '_')}_by_{color.replace(' ', '_')}_excluding_{filter_list}"
|
|
|
|
# title = "altra_spmv"
|
2024-12-12 15:47:26 -05:00
|
|
|
#title = f'{plot.value} plot of {[y.value for y in ys]} vs {x.value} by {color.value} excluding {filter_list}'
|
2024-12-09 15:07:23 -05:00
|
|
|
#fig.suptitle(title, fontsize = font_size)
|
2024-12-03 22:16:08 -05:00
|
|
|
fig.legend(handles, labels, fontsize = font_size)
|
2024-12-05 15:21:29 -05:00
|
|
|
fig.supxlabel(x.value, fontsize = font_size)
|
2024-12-03 22:16:08 -05:00
|
|
|
|
2024-12-12 15:47:26 -05:00
|
|
|
#title = f'{plot.value} plot of {[y.name for y in ys]} vs {x.name} by {color.name} excluding {filter_list}'
|
2024-12-09 15:07:23 -05:00
|
|
|
#plt.xticks(fontsize=font_size)
|
|
|
|
#plt.yticks(fontsize=font_size)
|
|
|
|
plt.savefig(title.replace(' ', '_') + ".png", dpi = 100)
|
2024-12-03 22:16:08 -05:00
|
|
|
plt.show()
|
|
|
|
|
|
|
|
def main():
|
2024-12-09 15:07:23 -05:00
|
|
|
default_figure_size = 4
|
|
|
|
default_font_size = 5 * default_figure_size
|
|
|
|
|
2024-12-03 22:16:08 -05:00
|
|
|
parser = argparse.ArgumentParser()
|
2024-12-05 14:17:08 -05:00
|
|
|
parser.add_argument('input_dir',
|
|
|
|
help='the input directory')
|
2024-12-09 15:07:23 -05:00
|
|
|
parser.add_argument('plot',
|
2024-12-03 22:16:08 -05:00
|
|
|
choices=[x.name.lower() for x in Plot],
|
|
|
|
help = 'the type of plot')
|
2024-12-12 15:47:26 -05:00
|
|
|
parser.add_argument('title', type=str,
|
|
|
|
help = 'the name of the plot')
|
2024-12-03 22:16:08 -05:00
|
|
|
parser.add_argument('-r', '--rows', type=int,
|
|
|
|
help = 'the number of rows to display when -y is not specified',
|
|
|
|
default = 5)
|
|
|
|
parser.add_argument('-s', '--size', type=int,
|
|
|
|
help = 'figure size multiplier',
|
2024-12-09 15:07:23 -05:00
|
|
|
default = default_figure_size)
|
2024-12-03 22:16:08 -05:00
|
|
|
parser.add_argument('-fs', '--font_size', type=int,
|
|
|
|
help = 'font size',
|
2024-12-09 15:07:23 -05:00
|
|
|
default = default_font_size)
|
|
|
|
parser.add_argument('x',
|
2024-12-05 15:21:29 -05:00
|
|
|
choices=[x.name.lower() for x in Stat],
|
2024-12-03 22:16:08 -05:00
|
|
|
help = 'the name of the x axis')
|
2024-12-09 15:07:23 -05:00
|
|
|
parser.add_argument('-ys', nargs='+',
|
|
|
|
choices=[y.name.lower() for y in Stat],
|
2024-12-03 22:16:08 -05:00
|
|
|
help = 'the name of the y axis')
|
|
|
|
parser.add_argument('-c', '--color',
|
2024-12-09 15:07:23 -05:00
|
|
|
choices=[c.name.lower() for c in Stat],
|
2024-12-03 22:16:08 -05:00
|
|
|
help = 'the name of the color')
|
|
|
|
parser.add_argument('-f', '--filter', nargs = '+',
|
|
|
|
help = 'a comma-separated string of names and values to filter out.',
|
|
|
|
default = [])
|
|
|
|
args = parser.parse_args()
|
2024-12-05 14:17:08 -05:00
|
|
|
args.plot = Plot[args.plot.upper()]
|
2024-12-05 15:21:29 -05:00
|
|
|
args.x = Stat[args.x.upper()] if args.x is not None else None
|
2024-12-09 15:07:23 -05:00
|
|
|
args.ys = ([Stat[y.upper()] for y in args.ys]
|
|
|
|
if args.ys is not None else None)
|
2024-12-05 15:21:29 -05:00
|
|
|
args.color = Stat[args.color.upper()] if args.color is not None else None
|
2024-12-05 14:17:08 -05:00
|
|
|
|
|
|
|
data_list: list[dict] = list()
|
|
|
|
|
|
|
|
for filename in glob.glob(f'{args.input_dir.rstrip("/")}/*.json'):
|
|
|
|
with open(filename, 'r') as file:
|
2024-12-11 14:43:23 -05:00
|
|
|
print(filename)
|
2024-12-05 14:17:08 -05:00
|
|
|
data_list.append(json.load(file))
|
|
|
|
print(filename + " loaded.")
|
|
|
|
|
2024-12-05 15:21:29 -05:00
|
|
|
visualize(
|
|
|
|
data_list,
|
|
|
|
args.plot,
|
|
|
|
args.rows,
|
|
|
|
args.size,
|
|
|
|
args.font_size,
|
|
|
|
args.x,
|
2024-12-09 15:07:23 -05:00
|
|
|
args.ys,
|
2024-12-05 15:21:29 -05:00
|
|
|
args.color,
|
2024-12-12 15:47:26 -05:00
|
|
|
args.filter,
|
|
|
|
args.title
|
2024-12-05 15:21:29 -05:00
|
|
|
)
|
2024-12-03 22:16:08 -05:00
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
main()
|